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2829 Introduction

30 A fundamental goal of sensory systems neuroscience is
31 the characterization of the functional relationship between
32 stimuli and neural responses. The purpose of such a
33 characterization is to elucidate the computation being
34 performed by the system. Many electrophysiological
35 studies in sensory areas describe neural firing rates in
36 response to highly restricted sets of stimuli that are
37 parameterized by one or perhaps two stimulus parameters.
38 Although such Btuning curve[ measurements have led to
39 considerable understanding of neural coding, they provide
40 only a partial glimpse of the full neural response function.
41 On the other hand, it is not feasible to measure neural
42 responses to all stimuli. One way to make progress is to
43 restrict the response function to a particular model (or
44 class of models). In this modeling approach, the problem
45 is reduced to developing a set of stimuli along with a
46 methodology for fitting the model to measurements of
47 neural responses to those stimuli. One wants a model that
48 is flexible enough to provide a good description of neural
49 responses but simple enough that the fitting is both
50 tractable and well constrained under realistic experimental
51 data conditions.
52 One class of solutions, which we refer to as Bspike-
53 triggered analysis,[ has received considerable attention in
54 recent years due to a variety of new methodologies,
55 improvements in stimulus generation technology, and

56demonstration of physiological results. In these methods,
57one generally assumes that the probability of a neuron
58eliciting a spike (i.e., the instantaneous firing rate) is
59governed only by recent sensory stimuli. More specifically,
60the response model is assumed to be an inhomogeneous
61Poisson process whose rate is a function of the stimuli
62presented during a recent temporal window of fixed
63duration. In the forward neural response model, the stimuli
64are mapped to a scalar value that determines the instanta-
65neous firing rate of a Poisson spike generator. Our job in the
66analysis is to work backward: From the stimuli that elicited
67spikes, we aim to estimate this firing rate function. The
68analysis of experimental data is thus reduced to examining
69the properties of the stimuli within temporal windows
70preceding each recorded spike, known as the spike-
71triggered stimulus ensemble (Figure 1A).
72Understanding how the spike-triggered distribution dif-
73fers from the raw stimuli is key to determining the firing
74rate function. It is often useful to visualize the analysis
75problem geometrically (Figure 1B). Consider input stim-
76uli, which at each time step consist of an array of
77randomly chosen pixel values (8 pixels in this example).
78The neural response at any particular moment in time is
79assumed to be completely determined by the stimulus
80segment that occurred during a prespecified interval in the
81past (6 time steps in this example). The overall stimulus
82dimensionality is high (48 dimensions here), but we can
83depict a projection of the stimuli onto two space–time
84vectors. The raw stimulus ensemble and the spike-
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85 triggered ensemble are then two clouds of points in this
86 space. Intuitively, the task of estimating the neural
87 response function corresponds to describing the ways in
88 which these two clouds differ. In practice, when the input
89 stimulus space is of high dimensionality, one cannot
90 estimate the neural response function without further
91 assumptions.
92 Spike-triggered analysis has been employed to estimate
93 the terms of a Wiener/Volterra expansion (Korenberg,
94 Sakai, & Naka, 1989; Marmarelis & Marmarelis, 1978;
95 Volterra, 1959; Wiener, 1958), in which the mapping from
96 stimuli to firing rate is described using a low-order
97 polynomial (see Dayan & Abbott, 2001; Rieke, Warland,
98 de Ruyter van Steveninck, & Bialek, 1997 for a review).
99 Although any reasonable function can be approximated as
100 a polynomial, the firing rate nonlinearities found in the
101 responses of sensory neurons (e.g., half-wave rectified,
102 rapidly accelerating and saturating) tend to require a
103 polynomial with many terms (see, e.g., Rieke et al., 1997).
104 However, the amount of data needed for accurate
105 estimation grows rapidly with the number of terms.
106 Therefore, in an experimental setting where one can
107 estimate only the first few terms of the expansion, the
108 polynomial places a strong restriction on the nonlinearity.
109 As an alternative to the polynomial approximation, one
110 can assume that the response function operates on a low-
111 dimensional linear subspace of the full stimulus space
112 (Bialek & de Ruyter van Steveninck, 2005; de Ruyter van
113 Steveninck & Bialek, 1988). That is, the response of a
114 neuron is modeled with a small set of linear filters whose
115 outputs are combined nonlinearly to generate the instanta-
116 neous firing rate. Stated differently, although the stimulus

117space is high dimensional, it is assumed that the neuron
118only cares about a small set of dimensions. This is in
119contrast to the Wiener/Volterra approach, which in general
120does not restrict the subspace but places a restriction on
121the nonlinearity.1 By concentrating the data into a space of
122reduced dimensionality, the neural response can be fit with
123less restriction on the form of the nonlinearity.
124A number of techniques have been developed to estimate
125the linear subspace and, subsequently, the nonlinearity. In
126the most widely used form of this analysis, the linear front
127end is limited to a single filter that serves as an explicit
128representation of the Breceptive field[ of the neuron, but the
129nonlinearity is essentially unrestricted. With the right
130choice of stimuli, this linear filter may be estimated by
131computing the spike-triggered average (STA) stimulus (i.e.,
132the mean stimulus that elicited a spike). The STA has been
133widely used in studying auditory neurons (e.g., Eggermont,
134Johannesma, & Aertsen, 1983). In the visual system, STA
135has been used to characterize retinal ganglion cells
136(e.g., Meister, Pine, & Baylor, 1994; Sakai & Naka,
1371987), lateral geniculate neurons (e.g., Reid & Alonzo,
1381995), and simple cells in primary visual cortex (V1;
139e.g., DeAngelis, Ohzawa, & Freeman, 1993; Jones &
140Palmer, 1987; McLean & Palmer, 1989). Given the STA
141filter, one typically has enough experimental data to
142construct a nonparametric estimate of the nonlinearity
143(i.e., a lookup table; Anzai, Ohzawa, & Freeman, 1999;
144Chichilnisky, 2001; deBoer & Kuyper, 1968; Eggermont
145et al., 1983). For some classes of nonlinearity, it has also
146been shown that one can write down a closed-form
147solution for the estimates of the linear filter and non-
148linearity in a single step (Nykamp & Ringach, 2002).

Figure 1. The spike-triggered stimulus ensemble. (A) Discretized stimulus sequence and observed neural response (spike train). On each
time step, the stimulus consists of an array of randomly chosen values (eight, for this example). These could represent, for example, the
intensities of a fixed set of individual pixels on the screen or the contrast of each of a set of fixed sinusoidal gratings that are additively
superimposed. The neural response at any particular moment in time is assumed to be completely determined by the stimulus segment
that occurred during a prespecified interval in the past. In this figure, the segment covers six time steps and lags three time steps behind
the current time (to account for response latency). The spike-triggered ensemble consists of the set of segments associated with spikes.
(B) Geometric (vector space) view of the spike-triggered ensemble. Stimuli (here, 48-dimensional) are projected onto two space–time
vectors. In this example, each of the two vectors contained 1 stixel (space–time pixel) set to a value of 1, and the other 47 stixels were set
to 0. For these given vectors, the projection is equivalent to the intensity of the corresponding stixel in the stimulus. More generally, one
can project the stimuli onto any two 48-dimensional vectors. The spike-triggered stimulus segments (white points) constitute a subset of
all stimulus segments presented (black points).
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149 This methodology may be extended to the recovery of
150 multiple filters (i.e., a low-dimensional subspace) and the
151 nonlinear combination rule. One approach to finding a low-
152 dimensional subspace is the spike-triggered covariance
153 (STC; Bialek & de Ruyter van Steveninck, 2005; de Ruyter
154 van Steveninck & Bialek, 1988). STC has been used to
155 characterize multidimensional models and a nonlinear
156 combination rule in systems ranging from the invertebrate
157 motion system (Bialek & de Ruyter van Steveninck, 2005;
158 Brenner, Bialek & de Ruyter van Steveninck, 2000; de
159 Ruyter van Steveninck & Bialek, 1988) to songbird
160 forebrain auditory neurons (Sen, Wright, Doupe, & Bialek,
161 2000) to the vertebrate retina cells (Pillow, Simoncelli, &
162 Chichilnisky, 2003; Schwartz, Chichilnisky, & Simoncelli,
163 2002) and mammalian cortex (Horwitz, Chichilnisky, &
164 Albright, 2005; Rust, Schwartz, Movshon, & Simoncelli,
165 2004, 2005; Touryan, Lau, & Dan, 2002). In addition,
166 several authors have recently developed subspace estima-
167 tion methods that use higher order statistical measures
168 (Paninski, 2003; Sharpee, Rust, & Bialek, 2003, 2004). A
169 review of spike-triggered subspace approaches may also be
170 found in Ringach (2004) and Simoncelli, Pillow, Paninski,
171 & Schwartz (2004).
172 Despite the theoretical elegance and experimental
173 applicability of the subspace methods, there are a host of
174 issues that an experimentalist is likely to confront when
175 attempting to use them: How should one choose the
176 stimulus space? Howmany spikes does one need to collect?
177 How does one know if the recovered filters are significant?
178 How should one interpret the filters? How do the filter
179 responses relate to the nonlinear firing rate function? and so
180 on. In this article, we describe the family of spike-triggered
181 subspace methods in some detail, placing emphasis on
182 practical experimental issues, and demonstrating these
183 (where possible) with simulations. We focus our discussion
184 on the STA and STC analyses, which have become quite

185widely used experimentally. A software implementation of
186the methods described is available on the Internet at http://
187www.cns.nyu.edu/~lcv/stc/ AQ5.
188

189
190The linear–nonlinear Poisson
191(LNP) model

192Experimental approaches to characterizing neurons are
193generally based on an underlying response model. Here, we
194assume a model constructed from a cascade of three
195operations:

1961. a set of linear filters, fkY1Ik
Y

mg,
1972. a nonlinear transformation that maps the instanta-
198neous responses of these filters to a scalar firing rate,
199and

2003. a Poisson spike generation process, whose instanta-
201neous firing rate is determined by the output of the
202nonlinear stage.

203This LNP cascade is illustrated in Figure 2. The third
204stage, which essentially amounts to an assumption that the
205generation of spikes depends only on the recent stimulus
206(and not on the history of previous spike times), is often
207not stated explicitly but is critical to the analysis.
208If we assume a discretized stimulus space, we can
209express the instantaneous firing rate of the model as:

rðtÞ ¼ NðkY1 I s
YðtÞ; kY2 I s

YðtÞ;Ik
Y

m I s
YðtÞÞ; ð1Þ

210211where s
YðtÞ is a vector containing the stimuli over an

212appropriate temporal window preceding the time t. Here,
213the linear response of filter i (i.e., the projection or dot
214product of the filter k

Y

i with the stimuli s
YðtÞ) is given by

215k
Y

i I s
YðtÞ. The nonlinear transformation N(I) operates over

216the linear filter responses.
217

218
219Spike-triggered analysis

220We aim to characterize the LNP model by analyzing the
221spike-triggered stimulus ensemble. The spike-triggered
222analysis techniques proceed as follows:

2231. Estimate the low-dimensional linear subspace (set of
224filters). This effectively projects the high-dimension
225stimulus into a low-dimensional subspace that the
226neuron cares about.

2272. Compute the filter responses for the stimulus, and
228estimate the nonlinear firing rate function based on
229these responses. As noted earlier, typical physiolog-
230ical data sets allow nonparametric estimates of the
231nonlinearity for one or two filters but require more
232model restrictions as the number of filters increases.

Figure 2. Block diagram of the LNP model. On each time step, the
components of the stimulus vector are linearly filtered by k

Y

0Ik
Y

m.
The responses of the linear filters are then passed through a
nonlinear function N(I), whose output determines the instanta-
neous firing rate of a Poisson spike generator.
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233 In the following subsections, we describe these steps in
234 detail. In the Experimental issues section, we also stress
235 the importance of an additional step: validating the
236 resulting model by comparing it to neural responses from
237 other stimuli.

238 Subspace (filter) estimation

239 In general, one can search for any deviation between the
240 raw and spike-triggered stimulus ensembles. This can be
241 done, for instance, using measures of information theory
242 (Paninski, 2003; Sharpee et al., 2003, 2004). Another
243 natural approach is to consider only changes in low-order
244 moments between the raw and spike-triggered stimulus.
245 Here, we focus on changes in the first and second
246 moments, which may be computed efficiently and manip-
247 ulated using a set of standard linear algebraic techniques.
248 We also briefly discuss how the analysis relates to the
249 Wiener/Volterra approach.

250 Spike-triggered average

251 The simplest deviation between the spike-triggered and
252 raw stimulus distributions is a change in the mean.
253 Assuming that the raw stimuli have zero mean, this can be
254 estimated by computing the average of the spike-triggered
255 ensemble (STA):

Â ¼ 1

N
~
N

n¼1

s
Y
tnð Þ; ð2Þ

256257 where tn is the time of the nth spike, s
YðtnÞ is a vector

258 representing the stimuli presented during the temporal
259 window preceding that time, and N is the total number of
260 spikes. In practice, the times tn are binned. If there is more
261 than one spike in a bin, then the stimulus vector for that

262time bin is multiplied by the number of spikes that
263occurred. The STA is illustrated in Figure 3A.
264For an LNP model with a single linear filter, the STA
265provides an unbiased estimate of this filter,2 provided that
266the input stimuli are spherically symmetric (Bussgang,
2671952; Chichilnisky, 2001; Paninski, 2003), and the non-
268linearity of the model is such that it leads to a shift in the
269mean of the spike-triggered ensemble relative to the raw
270ensemble (see Limitations and potential failures section
271and Experimental issues section). This last requirement
272rules out, for example, a model with a symmetric
273nonlinearity such as full-wave rectification or squaring.
274For an LNPmodel with multiple filters, the STA provides
275an estimate of a particular linear combination of the model
276filters, subject to the same restrictions on input stimuli and
277the form of the nonlinearity given above (Paninski, 2003;
278Schwartz et al., 2002). That is, the STA lies in the
279subspace spanned by the filters, but one cannot assume
280that it will exactly represent any particular filter in the
281model. 282

283Spike-triggered covariance

284The STA only recovers a single filter. Additional filters
285may be recovered seeking directions in the stimulus space
286in which the variance of the spike-triggered ensemble
287differs from that of the raw ensemble. Assuming that the
288raw stimuli have spherical covariance, this is achieved by
289computing the STC matrix:

Ĉ ¼ 1

Nj1
~
N

n¼1

s
Y
tnð Þj Â

� �
s
Y
tnð Þj Â

� �
T ; ð3Þ

290291where the [I]T indicates the transpose of the vector. Again,
292the tn are binned in practice, and this means that each term
293should be multiplied by the number of spikes occurring in
294the associated time bin.

Figure 3. Two alternative illustrations of STA. (A) The STA is constructed by averaging the spike-triggered stimulus segments in red boxes
(and subtracting off the average over the full set of stimulus segments). (B) Geometric (vector space) depiction of spike-triggered
averaging in two dimensions. Black points indicate raw stimuli. White points indicate stimuli eliciting a spike. The STA, indicated by the line
in the diagram, corresponds to the difference between the mean (center of mass) of the spike-triggered ensemble and the mean of the raw
stimulus ensemble.
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295 The STCmatrix embodies the multidimensional variance
296 structure of the spike-triggered ensemble. Specifically, the
297 variance of the ensemble in any direction specified by a unit
298 vector, û, is simply ûTĈû. The surface swept out by all
299 such unit vectors scaled by the square root of their
300 associated variance is a multidimensional ellipsoid. The
301 principle axes of this ellipsoid, along with the associated
302 variances, may be recovered as the eigenvectors and
303 associated eigenvalues of the STC matrix. This is
304 illustrated in Figure 4. The consistency of the STC
305 estimate is guaranteed, provided that the input stimuli are
306 Gaussian (Paninski, 2003) and the nonlinearity of the
307 model is such that it leads to a change in the variance of
308 the spike-triggered ensemble relative to the raw ensem-
309 ble. Note that the Gaussianity is a more severe require-
310 ment than the spherical symmetry required for STA
311 analysis (see Limitations and potential failures section
312 and Experimental issues section).
313 The STA and STC filters together form a low-dimen-
314 sional linear subspace of the neural response. A number of
315 groups have presented different approaches for combining
316 the STA and STC analyses; in practice, these variants all
317 converge to the same estimated subspace.3 Usually, the
318 STA is subtracted prior to computing the STC filters
319 (Brenner, Bialek & de Ruyter van Steveninck, 2000;
320 de Ruyter van Steveninck & Bialek, 1988). It is often (but
321 not always) the case that the STA will lie within the
322 subspace spanned by the significant STC axes. Depending
323 on the nonlinear properties of the response, it could

324coincide with either high- or low-variance STC axes. To
325simplify visualization and interpretation of the axes, we
326have chosen for all of our examples to perform the STC
327analysis in a subspace orthogonal to the STA. Specifically,
328we compute STC on a set of stimuli from which the STA
329has been projected:

s
Y ¼ s

Y
j ½sYT Â�Â=kÂk2: ð4Þ

330331

332

333Comparison to Wiener/Volterra analysis

334The STA provides an estimate of the first (linear) term in
335a polynomial series expansion of the system response
336function and, thus, is the first term of the Wiener/Volterra
337series. Whereas the Wiener/Volterra approach assumes that
338the nonlinearity is literally a polynomial, in the STA
339subspace approach, the nonlinearity is essentially unre-
340stricted. For nonlinearities such as a sigmoid, the Wiener/
341Volterra expansion would require many terms to capture
342the neural response function. An example of STA analysis
343for characterizing a model with a single filter and sigmoidal
344nonlinearity is presented in the model simulations below.
345The second-order term in the Wiener series expansion
346describes the response as a weighted sum over all pairwise
347products of components in the stimulus vector. The weights
348of this sum (the second-order Wiener kernel) may be
349estimated from the STC matrix. However, the STC method

Figure 4. Two alternative illustrations of STC. (A) The STC is determined by constructing the covariance of the spike-triggered stimuli
(relative to the raw stimuli), followed by an eigenvector analysis of the covariance matrix. This can result in multiple filters that represent
directions in stimulus space for which the spike-triggered stimuli have lower or higher variance than the raw stimuli. (B) Geometric
depiction of STC. Black points indicate raw stimuli. White points indicate stimuli eliciting a spike. Ellipses represent the covariance of each
ensemble. Specifically, the distance from the origin to the ellipse along any particular direction is the standard deviation of the ensemble in
that direction. Raw stimuli are distributed in a circular (Gaussian) fashion. Spike-triggered stimuli are elliptically distributed, with a reduced
variance (relative to the raw stimuli) along the minor axis. The minor axis of the ellipse corresponds to a suppressive direction: Stimuli that
have a large component along this direction (either positive or negative) are less likely to elicit a spike. The variance of the major axis of
the ellipse matches that of the raw stimuli and, thus, corresponds to a direction in stimulus space that does not affect the neuron’s firing
rate.
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350 is not just a specific implementation of a second-order
351 Wiener/Volterra model. The STC approach uses the STC
352 matrix as a means to obtain a linear subspace, within
353 which the nonlinearity is much less restricted. In contrast,
354 the second-order Wiener/Volterra approach assumes a
355 quadratic nonlinearity: This is suitable for characterizing
356 nonlinearities such as the Benergy model[ (Adelson &
357 Bergen, 1985) of complex cells in primary visual cortex
358 (e.g., Emerson, Bergen, & Adelson, 1992; Emerson,
359 Citron, Vaughn, & Klein, 1987; Szulborski & Palmer,
360 1990); however, it cannot describe response functions
361 with nonlinearities such as divisive gain control (Albrecht
362 & Geisler, 1991; Heeger, 1992) because these cannot be
363 formulated as sums (or differences) of squared terms. An
364 STA/STC approach is more flexible in capturing such
365 nonlinearities (Rust, Schwartz, et al., 2005; Schwartz
366 et al., 2002), as we demonstrate in the next section.
367

368

369 Simulations of example model neurons

370 We simulate an example ideal simple cell model, for
371 which there is only a single filter, followed by half-wave

372rectification and then squaring. Specifically, the instanta-
373neous firing rate is determined by:

gðsYÞ ¼ r )k
Y

I s
Y

2
2

� �
: ð5Þ

374375

376The spike-triggered analysis results are shown in
377Figure 5. The spike-triggered ensemble exhibits a change
378in the mean relative to the raw stimulus ensemble due to
379the asymmetric nonlinearity. We recover the STA filter by
380computing the change in the mean (Equation 2). Next, we
381consider changes in the variance between the raw and
382spike-triggered stimulus ensemble. For this model neuron,
383there is no further relationship between the stimulus space
384and spikes. In the limit of infinite data, the spike-triggered
385ensemble would be a randomly selected subset of the raw
386stimulus ensemble, and the variance in any direction would
387be identical to that of the raw stimulus set. In an
388experimental setting, the finiteness of the spike-triggered
389ensemble produces random fluctuation of the variance in
390different directions. As a result, there are small random
391increases or decreases in variance of the spike-triggered
392ensemble relative to the raw stimulus set. This is reflected
393in the eigenvalue analysis of Figure 5. Due to the random
394fluctuations, the sorted eigenvalues cover a range around a
395constant value of 1 (i.e., the variance of the raw stimulus
396ensemble) but are not exactly equal to this constant value.
397Now, consider an example model neuron, for which there
398is more than a single filter. We simulate an ideal V1
399complex cell model (see also simulations in Sakai &
400Tanaka, 2000). The model is constructed from two space–
401time-oriented linear receptive fields, one symmetric and
402the other antisymmetric (Adelson & Bergen, 1985). The
403linear responses of these two filters are squared and
404summed, and the resulting signal then determines the
405instantaneous firing rate:

gðsYÞ ¼ r ðkY1 I s
YÞ2 þ ðkY2 I s

YÞ2
h i

: ð6Þ

406407

408Spike-triggered analysis on the model neuron is shown in
409Figure 6. The STA is close to zero. This occurs because
410for every stimulus, there is a stimulus of opposite polarity
411(corresponding to a vector on opposite sides of the origin)
412that is equally likely to elicit a spike, and thus, the average
413stimulus eliciting a spike will be zero. The recovered
414eigenvalues indicate that two directions within this space
415have substantially higher variance than the others. The
416eigenvectors associated with these two eigenvalues corre-
417spond to the two filters in the model (formally, they span
418the same subspace). In contrast, eigenvectors correspond-
419ing to eigenvalues in the gradually descending region
420appear arbitrary in their structure.

Figure 5. Eigenvalues and eigenvectors for an LNP model with a
single linear filter followed by a point nonlinearity. The simulation
is based on a sequence of 50,000 stimuli, with a response
containing 1,891 spikes. Top: Model filter and nonlinearity. As in
Figure 1, filters are 6 � 8 and, thus, live in a 48-dimensional
space. The nonlinearity cartoon represents half squaring: Positive
filter responses are squared, and negative filter responses are set
to zero. Bottom: STA filter, and sorted eigenvalues of covariance
matrix of stimuli eliciting spikes (STC). We plot the first 47
eigenvalues and omit the last eigenvalue, which is zero due to
projecting out the STA (see Equation 4). The eigenvalues are
gradually descending, and corresponding eigenvectors appear
unstructured.
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421 Finally, we consider a version of a divisive gain control
422 model (e.g., Geisler, 1992; Heeger, 1992):

g s
Yð Þ ¼ r

1þ )k
Y

1 I s
Y

2
2

1þ ðkY2 I s
YÞ2 þ :4ðkY3 I s

YÞ2
: ð7Þ

423424

425 The analysis results are shown in Figure 7. First, we
426 recover the STA filter, which is nonzero due to the half

427squaring in the numerator. A nonsymmetrical nonlinearity
428of this sort is captured by changes in the mean. Next, we
429examine the sorted eigenvalues obtained from the STC
430analysis. Most of the eigenvalues descend gradually, but
431the last two eigenvalues lie significantly below the rest,
432and their associated eigenvalues span approximately the
433same subspace as the actual simulation filters.
434

435Significance testing

436How do we know if the recovered STA and STC filters
437are significant? In some cases, such as a prototypical
438complex cell in primary visual cortex, there is essentially
439no difference between the mean of the raw and spike-
440triggered stimuli (Rust, Schwartz, et al., 2005; Touryan
441et al., 2002), which leads to a weak STA. To quantify this,
442we test the hypothesis that the difference between the
443mean of the raw and spike-triggered stimulus is no
444different than what one would expect by chance. We
445specifically test whether the magnitude of the true spike-
446triggered stimulus STA is smaller or equal to what would
447be expected by chance. More specifically, we generate a
448distribution of random STA filters by bootstrapping: We
449randomly time-shift the spike train relative to the raw
450stimulus sequence, gather the resulting spike-triggered
451stimulus ensemble, and perform the STA analysis. The
452randomly time-shifted spike train retains all temporal
453structure that is present in the original spike train. We
454repeat this 1,000 times, each time computing the average
455of the stimulus subset. We can then set a significance
456criterion (e.g., the 95% confidence interval) within which
457we deem the magnitude of the true STA to be
458insignificant.
459The issue of significance is also of importance for the
460STC filters. Although the low-variance eigenvalues are
461clearly below the gradually descending region in the
462illustrated example of Figure 7, the distinction is not so
463obvious in some experimental situations. An example in
464which the significance cutoff is not clear-cut is shown in
465Figure 8. A significance test should allow us to determine
466the number of eigenvector axes (filters) corresponding to
467significant increases or decreases in variance. That is, we
468would like to find changes in variance in the spike-
469triggered ensemble that are not just due to chance
470(because of the finiteness of the number of spikes) but
471that relate to actual neural response characteristics.
472The significance testing must be done in a nested fashion
473because the distribution of the lowest and highest eigen-
474values under the null hypothesis depends on the dimension-
475ality of the space. We begin by assuming that none of the
476eigenvalues are significant. We compare the true eigen-
477values to the eigenvalues of randomly selected stimuli with
478the same interspike interval. If the largest true eigenvalue
479lies outside the range of largest eigenvalues of the randomly
480shifted stimuli and if the smallest true eigenvalue lies
481outside the range of smallest eigenvalues of the randomly

Figure 6. Eigenvalues and eigenvectors for an LNP ideal complex
cell model. In this model, the Poisson spike generator is driven by
the sum of squares of two oriented linear filter responses. As in
Figure 1, filters are 6 � 8 and, thus, live in a 48-dimensional
space. The simulation is based on a sequence of 50,000 raw
stimuli, with a response containing 4,298 spikes. Top: Model,
including two input filters, nonlinearities, and Poisson spiking.
Bottom: STA filter is unstructured for the ideal complex cell. The
plot also shows the eigenvalues, sorted in descending order. We
plot the first 47 eigenvalues and omit the last eigenvalue which is
zero due to projecting out the STA (see Equation 4). Two of the
eigenvalues are substantially larger than the others and indicate
the presence of two directions in the stimulus space along which
the model responds. The others correspond to stimulus directions
that the model ignores. Also shown are three example eigenvec-
tors (6 � 8 linear filters), two of which are structured while one is
unstructured.
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482 shifted stimuli, then we conclude that none of our axes are
483 significant and accept the hypothesis. More specifically, to
484 compute the randomly selected eigenvalues, we generate
485 distributions of minimal/maximal eigenvalues by boot-

486strapping: We randomly time-shift the spike train relative
487to the raw stimulus sequence, gather the resulting spike-
488triggered stimulus ensemble, perform the STA and STC
489analysis on the spike-triggered ensemble, and extract the
490minimum and maximum eigenvalues. After repeating
4911,000 times, we estimate the 95% confidence interval for
492both the largest and smallest eigenvalues. We then ask
493whether the maximal and minimal eigenvalues obtained
494from the true spike-triggered ensemble lie within this
495interval. If so, we accept the hypothesis.
496Figure 8A shows that the hypothesis of no significant
497eigenvalues is unlikely to be correct for this example: The
498smallest eigenvalue lies far beyond the confidence
499interval. We therefore assume that the largest outlier
500(here, the smallest eigenvalue) has a corresponding axis
501that significantly affects the variance of the neural
502response. We thus proceed to test the hypothesis that all
503remaining axes are insignificant. To do so, we first project
504out the axis deemed significant and repeat the boot-
505strapping in the remaining subspace. Note that the
506distribution of eigenvalues (gray region in Figures 8A,
5078B, and 8C) changes as the dimensionality of the
508remaining space decreases. We continue this process in a
509nested fashion, until the largest and smallest eigenvalues
510from the true spike-triggered ensemble lie within the
511estimated confidence interval. Figure 8B shows that we
512cannot accept the hypothesis of two significant axes.
513Finally, the hypothesis of four significant axes (Figure 8B)
514is accepted and results in eigenvalues that lie within the
515confidence interval.
516

517Filter estimation accuracy

518Assuming that the recovered STA and STC filters are
519significant, we would also like to understand how accurate
520they are. The accuracy of our estimated filters depends on
521three quantities: (1) the dimensionality of the stimulus
522space, d; (2) the number of spikes collected, N; and (3) the

Figure 8. (A) Nested hypothesis testing. Gray solid line corresponds to 95% confidence interval, assuming no suppressive axes (B), two
suppressive axes, and (C) four suppressive axes. If the hypothesis is accepted, eigenvalues should lie within the confidence interval. For
the assumption of no or two suppressive axes, some eigenvalues lie below the confidence interval, indicating that the hypothesis is
incorrect. In contrast, for the assumption of four suppressive axes, eigenvalues lie roughly within the confidence interval.

Figure 7. Eigenvalues and eigenvectors for an LNP divisive
normalization model. The simulation is based on a sequence of
250,000 stimuli, with a response containing 30,444 spikes. Top:
Model. Bottom: STA filter, sorted eigenvalues of covariance
matrix of stimuli eliciting spikes (STC), and eigenvectors. Two of
the eigenvalues are substantially lower than the others and
indicate the presence of two suppressive directions in the
stimulus space.
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523 strength of the response signal, relative to the standard
524 deviation of the raw stimulus ensemble, A.
525 Asymptotically, the errors decrease as (Paninski, 2003):

MAE k
Y� �

¼ A

BðkYÞ

ffiffiffiffi
d

N

r
; ð8Þ

526527 where MAE indicates the mean of the angular error (the
528 arccosine of the normalized dot product) between the
529 estimated filter and the true filter and BðkYÞ is a
530 proportionality factor that depends inversely on the
531 strength of the response signal (Paninski, 2003). For
532 example, the strength of response signal is the length of
533 the STA vector in the limit of infinite data. An
534 experimentalist does not have access to the strength of
535 response signal. However, the number of spikes and
536 number of stimulus dimensions are known, and thus, the
537 function of Equation 8 may be used to extrapolate the

538error behavior based on bootstrap estimates. To demon-
539strate this, we simulate an experiment on the model
540divisive normalization neuron.
541We describe a bootstrap method to determine the error in
542filter estimation. We show that the bootstrap-estimated
543error is reasonably matched to the theoretical prediction of
544the error in Equation 8, when the ratio of number of spikes
545to number of stimulus dimensions is sufficiently high. We
546run a pilot experiment on the model divisive normal-
547ization neuron and collect 409,600 input samples. We
548consider how the ratio of stimulus dimensionality to
549number of spikes affects accuracy. Specifically, we hold
550the stimulus dimensionality fixed (which is 48 here) and
551vary the number of input samples (and thus spikes). For a
552given number of input samples, we bootstrap, drawing
553(with replacement) random subsets of stimuli (equal to the
554number of input samples). We consider the spike-triggered
555stimuli from this subset and compute the STA and STC.

Figure 9. Accuracy in filter estimation. Simulations are shown for the divisive normalization example of Figure 7. Bottom: The error is
computed as a function of the ratio of number of spikes to stimulus dimensionality. Stimulus dimensionality is held fixed for all simulations
but a number of input stimuli (and thus spikes) are varied. Black line and points is the bootstrap-estimated error (mean angular error
obtained from bootstrapping; see main text) of estimation of the lowest eigenvector. The gray line is the theoretical prediction of the mean
angular error, computed as the square root of the stimulus dimensionality (here, 48) to number of spikes (see Equation 8 and Paninski,
2003). We multiply the theoretical prediction by a constant parameter that yields the least square error with the bootstrap-estimated error
above for the last five points (because the theoretical prediction only holds for the small error regime).
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556 We repeat this many times (here, 1,000) and derive an
557 estimate of the mean angular error for a given STC filter.
558 This is achieved by computing the mean of the 1,000
559 estimated filters from the bootstrappingVwe will denote
560 this the mean estimated filter, and then, for each of the
561 1,000 estimated filters, by computing its mean angular
562 error with the mean estimated filter and taking an average
563 over these computations. This analysis assumes that there
564 are no systematic biases in the estimates (such as those
565 shown in Figure 15).
566 In Figure 9, we plot the error estimates for the filter
567 corresponding to the lowest eigenvalue. As the number of
568 spikes to number of stimulus dimensions increases, the
569 error is reduced. We also show, for three example ratios,
570 the eigenvalues and the filter estimate corresponding to the
571 lowest eigenvalue. For a low ratio of spike counts to
572 stimulus dimensions, the eigenvalues descend gradually,
573 and the smallest one is not separated from the rest; for a
574 high ratio of spike counts to stimulus dimensions, the
575 eigenvalues take on a pattern similar to Figure 7. Finally,
576 we return to Equation 8: We fit this equation (and
577 corresponding proportionality factor) to the errors derived
578 from bootstrapping and obtain a rather good match for the
579 low error regime. Such an analysis could be used in an
580 experimental situation to determine data requirements for
581 a given error level, by extrapolating the curve from values
582 estimated from a pilot experiment. In the Experimental
583 issues section, we elaborate on running a pilot experiment
584 to choose a reasonable tradeoff between number of spikes
585 and stimulus dimensionality.586

587 Characterizing the nonlinearity

588 According to the LNPmodel, the firing rate of a neuron is
589 given by a nonlinear transformation of the linear filter
590 responses (Figure 2). Using the same set of stimuli and
591 spike data as for the linear filter estimation, we seek to
592 estimate the nonlinearity and, thus, characterize a neural
593 model that specifies the full transformation from stimulus
594 to neural firing rate. We therefore need to estimate the
595 firing rate of the neuron as a function of the linear filter
596 responses. To do so, it is important to recognize that the
597 ratio of the frequency of occurrence of spike-triggered

598stimuli to that of raw stimuli is proportional to the
599instantaneous firing rate. This can be seen using Bayes
600rule:

P spikeks
Yð Þ ¼ PðspikeÞPðsYkspikeÞ

PðsYÞ ; ð9Þ

601602and therefore,

P spikeks
Yð Þò PðsYkspikeÞ

PðsYÞ ; ð10Þ

603604where PðspikeksYÞ is the instantaneous firing rate,
605PðsYkspikeÞ is the frequency of occurrence of spike-
606triggered stimuli, and PðsYÞ is the frequency of occurrence
607of raw stimuli.
608The problem of estimating the nonlinearity can thus be
609described as one of estimating the ratio of two probability
610densities of Equation 10. The accuracy of the estimation is
611dependent on the dimensionality (number of filters) in the
612linear subspace. For one or two filters, we can use simple
613histograms to estimate the numerator and denominator of
614Equation 10. For more filters, this becomes impractical
615due to the so-called Bcurse of dimensionality[: The
616amount of data needed to sufficiently fill the histogram
617bins in a d-dimensional space grows exponentially with d.
618In this case, we typically need to incorporate additional
619assumptions about the form of the nonlinearity.
620Consider a model LNP neuron with only a single filter
621followed by a point nonlinearity. First, we estimate the
622linear filter by computing the STA. Then, we compute the
623linear filter response for each stimulus, by taking a dot
624product of the filter with the stimulus. We do this for all
625instantiations of the spike-triggered stimuli and compute a
626histogram estimating the numerator density PðsYkspikeÞ; we
627do this for all instantiations of the raw stimuli and
628compute a histogram estimating the denominator density
629PðsYÞ. The nonlinearity that determines the firing rate is
630then the ratio of these two densities or the ratio of the
631histogram values in each bin. An example is shown in
632Figure 10 (see also Chichilnisky, 2001). We plot the
633histograms of the spike-triggered and raw stimuli filter

Figure 10. Nonlinearity for an LNP model with a single linear filter followed by a point nonlinearity. Left: Raw (black) and spike-triggered
(white) histograms of the linear (STA) responses. Histograms have been renormalized to a maximal probability of 1. Right: The quotient of
the spike-triggered and raw histograms gives an estimate of the nonlinearity that generates the firing rate.

Journal of Vision (2006) 0, 1–23 Schwartz et al. 10



634 responses (Figure 10, left). We observe the nonlinearity by
635 examining the ratio of these two histograms (Figure 10,
636 right): The instantaneous firing rate grows monotonically
637 and asymmetrically, that is, increases for stimuli to which
638 the filter responds strongly and positively.
639 Note that the nonlinearity can be arbitrarily complicated
640 (even discontinuous). The only constraint is that it must
641 produce a change in the mean of the spike-triggered
642 ensemble, as compared with the original stimulus ensemble.
643 Thus, the interpretation of reverse correlation in the context
644 of the LNPmodel is a significant departure from theWiener/
645 Volterra series expansion, in which even a simple sigmoidal
646 nonlinearity would require the estimation of many terms for
647 accurate characterization (Rieke et al., 1997).
648 Next, consider an ideal complex cell model neuron as in
649 Equation 6. The recovered eigenvalues indicate that two
650 directions within this space have substantially higher
651 variance than the others (recall Figure 6). As before, we
652 compute the raw and spike-triggered stimulus responses
653 for each of the two filters. A two-dimensional scatter plot
654 of these filter responses is shown in Figure 11 (left) for
655 both the spike-triggered and raw stimuli. This is a two-
656 dimensional depiction of samples from the numerator and
657 denominator distributions in Equation 10. The scatter plots
658 are similar in essence to those described in Figure 4, but
659 the stimuli are projected onto the two filters recovered
660 from the analysis. To estimate the two-dimensional non-
661 linear firing rate function (Figure 11, right), we compute
662 the two-dimensional histogram for the spike-triggered and
663 raw stimuli responses and calculate the ratio of the
664 histogram values in each bin. This is analogous to the

665one-dimensional example shown in Figure 10. Similar
666pairs of excitatory axes and nonlinearities have been
667obtained from STC analysis of V1 cells in cat (Touryan
668et al., 2002) and monkey (Rust et al., 2004; Rust,
669Schwartz, et al., 2005).
670Finally, consider the divisive normalization model in
671Equation 7, for which the eigenvalues and eigenvectors
672are shown in Figure 7. Figure 12 (left) shows a scatter plot
673of the STA filter response versus a suppressive filter
674response. The spiking stimuli lie within an ellipse, with
675the minor axis corresponding to the suppressive filter. This
676is exactly what we would expect in a suppressive system,
677such as that plotted in Figure 4. The two-dimensional
678nonlinearity is estimated by taking the quotient as before.
679This reveals an approximately saddle-shaped function,
680indicating the interaction between the excitatory and
681suppressive signals (Figure 12, right). Similar suppressive
682filters have been obtained from STC analysis of retinal
683ganglion cells (in both salamander and monkey; Schwartz
684et al., 2002) and simple and complex cells in monkey V1
685(Rust et al., 2004).
686For some systems, such as H1 of the blowfly (Bialek & de
687Ruyter van Steveninck, 2005; Brenner, Bialek & de Ruyter
688van Steveninck, 2000), the dimensionality of STA and
689STC filters is sufficiently low (and the data set sufficiently
690large) to calculate the quotient of Equation 10 directly (as
691we have shown in the simulation examples) and thus
692estimate the nonlinearity. But what happens when there
693are more than two significant filters derived from the STA
694and STC analyses? There is not one single recipe; rather,
695there are a number of ways to try and approach this

Figure 11. Nonlinearity for ideal complex cell model. This corresponds to eigenvalue and eigenvector example of Figure 6. Left: Scatter
plots of stimuli projected onto estimated filters (i.e., filter responses) corresponding to first two eigenvalues (e1 and e2). Black points
indicate the raw stimulus set. White points indicate stimuli eliciting a spike. Also shown are one-dimensional projections onto a single filter.
Right: The quotient of the two-dimensional spike-triggered and raw histograms provides an estimate of the two-dimensional nonlinear
firing rate function. This is shown as a circular-cropped grayscale image, where intensity is proportional to firing rate. Superimposed
contours indicate four different response levels. Also shown are one-dimensional nonlinearities onto a single filter.

Journal of Vision (2006) 0, 1–23 Schwartz et al. 11



696 problem, and the answer depends on the particular system
697 and data at hand.
698 One approach is to consider specific classes of LNP
699 models that might be suitable for the particular neural area
700 under study. For instance, in retinal ganglion cell data, it
701 was shown that fitting a divisive normalization model to the
702 filters recovered from STA and STC provided a reasonable
703 characterization of the data (Schwartz et al., 2002). In
704 another study in area V1, the dimensionality of the filters
705 from STA and STC was too high for computing the
706 nonlinearity within the full recovered subspace (Rust,
707 Schwartz, et al., 2005). The form of nonlinearity was
708 restricted by first computing squared sums of excitatory
709 filter responses and squared sums of suppressive filter
710 responses, and only then was the nonlinearity between
711 these pooled excitatory and suppressive signals deter-
712 mined. This simplification could be made because it was
713 observed that projections of stimuli onto the recovered
714 filters within the excitatory or suppressive pools always
715 resulted in elliptical contoursVsuggesting sum of squares
716 operations governing the combination within each pool.
717 An alternative approach, published in this special issue,
718 assumes that the nonlinearity takes the form of a ratio of
719 Gaussians (Pillow & Simoncelli, in press).720

721

722
723 Limitations and potential failures

724 The STA and STC estimates depend critically on the
725 distribution of input stimuli and on the particular non-

726linearity of the neuron. For an LNP model with a single
727linear filter, the consistency of the STA estimator is
728guaranteed (e.g., irrespective of the neural nonlinearity)
729only if the distribution of input stimuli are spherically
730symmetric; that is, any two stimulus vectors with equal
731vector length have an equal probability of being presented
732(Chichilnisky, 2001). If one aims to recover a set of filters
733using both STA and STC, then the consistency of the
734estimator is guaranteed under the more stringent condition
735that the stimuli be Gaussian distributed (Paninski, 2003).
736The estimator is also guaranteed for elliptically symmetric
737Gaussian stimuli, in which the covariance matrix is not
738equal to the identity (see Appendix). For example, even if
739the raw stimuli are constructed as spherical Gaussian, a
740finite number of stimuli might, by chance, produce some
741axes that have (slightly) higher variance than others. There
742might also be interest in presenting to a neuron colored or
7431/f noise.
744Note that non-Gaussian stimulus distributions can lead to
745artifacts in the spike-triggered analysis, and the artifacts are
746dependent on how the nonlinear response properties of the
747neuron interact with the distribution. In the Experimental
748issues section, we show simulated examples with non-
749Gaussian stimuli, demonstrating how this could poten-
750tially impact the STA and STC in a model neuron. These
751examples do not indicate that experiments with non-
752Gaussian stimuli and STA/STC analysis will necessarily
753lead to artifacts, but because there is no general solution
754for eliminating artifacts that can arise from non-Gaussian
755stimuli, it is advisable to run experimental controls with
756Gaussian stimuli.

Figure 12. Nonlinearity for divisive normalization model. This corresponds to the eigenvalue and eigenvector example of Figure 7. Left:
Scatter plots of stimuli projected onto estimated filters (i.e., filter responses) corresponding to STA and last suppressive eigenvector. Black
points indicate the raw stimulus set. White points indicate stimuli eliciting a spike. Also shown are one-dimensional projections onto a
single filter. Right: The quotient of the two-dimensional spike-triggered and raw histograms provides an estimate of the two-dimensional
nonlinear firing rate function. This is shown as a circular-cropped grayscale image, where intensity is proportional to firing rate.
Superimposed contours indicate four different response levels. Also shown are one-dimensional nonlinearities onto a single filter.
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757 Even if one is careful to design an experiment and data
758 analysis methodology that leads to accurate and artifact-
759 free estimates, a spike-triggered analysis can still fail if the
760 model assumptions are wrong. Two examples of failure of
761 the LNP model are as follows: (1) there is no low-
762 dimensional subspace in which the neural response may
763 be described or (2) the neural response has a strong
764 dependence on spike history (e.g., refractoriness, bursting,
765 adaptation) that cannot be described by an inhomogeneous
766 Poisson process. STA/STC analysis of data simulated using
767 more realistic spike generation models, such as Hodgkin–
768 Huxley (Agüera y Arcas & Fairhall, 2003; Agüera y Arcas,
769 Fairhall, & Bialek, 2001, 2003; Pillow & Simoncelli,
770 in press) and integrate-and-fire (Pillow & Simoncelli,

7712003), produces biased estimates and artifactual filters.
772Although the STA/STC filters might in some cases still
773provide a reasonable description of a neuron’s response, it
774is important to recognize that the LNP model provides
775only a crude approximation of the neural response (see
776Interpretation issues section).
777

778
779Interpretation issues

780There are a number of important issues that arise in
781interpreting the spike-triggered analysis. First, the number
782of filters recovered by STA and STC provides only a lower

Figure 13. Interpretation issues and sum of half squares LNP model: filters. (A) Left: Model filter responses are half squared (negative
values set to zero) and then added together. Note that this is different from the full squaring of the ideal complex cell. Right: Geometry of
the STA and STC analysis. The STA is a vector average of the model filters. The STC is forced to be 90 deg away from the STA. Although
the STA and STC filters do not equal the model filters, they do span the same subspace. (B) Example of spatially shifted model filters.
Both STA and STC analysis reveal filters that are quite different from the model but span the same subspace. (C) Example of oriented
filters. We extend the two-filter model to four filters that are each half squared and then added together. The STA is the average of all four
filters and has a center/surround appearance rather than an oriented one. The other three STC filters are orthogonal. (D) The model
neuron includes five spatially overlapping filters. The filter responses undergo a weighted sum of half squares, followed by addition of a
(negative) linear surround (gray curve). The STA is a vector average of the linear filters, and the STC filters are orthogonal.
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783 bound on the actual number of filters. The neural response
784 may be dependent on mechanisms not identified by the
785 STC analysis: (1) Other filters might affect the response,
786 but the dependence is too weak and buried in the statistical
787 error (a possibility with any experimental methodVrecall
788 Figure 9); or (2) The neural response nonlinearities may
789 not lead to a change in the mean or variance. It should be
790 noted that although such a nonlinearity is theoretically
791 possible, most known physiological nonlinearities do
792 affect the mean, the variance, or both.
793 Next, the recovered filters cannot be taken literally as
794 physiologically instantiated mechanisms. The STC filters,
795 together with the STA, form an orthogonal basis for the
796 stimulus subspace in which the responses are generated.
797 The analysis does not yield a unique solution: A whole
798 family of equivalent models can be constructed (by
799 transforming to alternative sets of filters using an
800 invertible linear transformation), which, given the same
801 stimulus, produce the same response. Thus, even if a
802 neuron’s response is well described by an LNP model, we
803 cannot claim to recover the actual filters that the neuron is
804 using to compute its response. Rather, the goal is to find a
805 set of filters that span the proper subspace; that is, with
806 this set of filters, one can compute the same responses as
807 with the actual set.
808 Figure 13 shows a simulation for an example of model
809 neuron in which the STA and STC do not recover the
810 actual model filters but do span the same subspace. The
811 model neuron responds with a rate proportional to a sum
812 of half squares, as opposed to the sum of squares typical
813 of the ideal complex cell:
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816 The simulation results for different input filters are shown
817 in Figure 13. Now, the STA does not result in a zero-
818 weighted filter because the filter responses are not
819 symmetric as in the ideal complex cell. Interestingly, the
820 STA is not equal to either of the two excitatory filters of
821 the model; rather, it is a vector average of the two filters.
822 STC analysis on the stimuli perpendicular to the STA
823 reveals an additional excitatory filter. Note that the two
824 recovered filters together span the excitatory subspace of
825 the original model filters. Figure 13C shows an example
826 with four input filters of different orientations whose
827 responses are half squared and summed; the STA takes on a
828 more center–surround, unoriented appearance. Figure 13D
829 shows an example of five overlapping spatial filters. These
830 can be thought of as subunits, as has been proposed for
831 retina (Hochstein & Shapley, 1976; see also Rust,
832 Schwartz, et al., 2005 for cortical data). The nonlinear
833 combination of these filters is followed by a subtraction of
834 a linear surround. The resulting STA takes on the well-
835 known spatial profile of retinal ganglion cells, and the
836 STC filters are forced to be 90 deg apart and similar to

837what is found experimentally (Pillow, Simoncelli, &
838Chichilnisky, 2004). The two-dimensional depiction of
839the nonlinearity for the above examples is interesting: The
840spike-triggered stimuli form a shape that resembles a
841portion of an annulus (Figure 14). Neurons with non-
842linearities of this flavor can be seen in area V1 of the
843macaque (Rust, Schwartz, et al., 2005) and in retinal
844ganglion cells (Schwartz & Simoncelli, 2001).
845Another reason why the recovered filters should not be
846interpreted as a physiological mechanism is that the LNP
847model assumes Poisson spiking. A number of authors have
848demonstrated that these Poisson assumptions do not
849accurately capture the statistics of neural spike trains
850(Berry & Meister, 1998; Keat, Reinagel, Reid, &
851Meister, 2001; Pillow, Shlens, Paninski, Chichilnisky,
852& Simoncelli, 2005a; Reich, Victor, & Knight, 1998).
853The dependence of neural responses on spike history
854(e.g., refractoriness, bursting, adaptation) may be cap-
855tured only indirectly in the LNP model through time-
856delayed suppressive STC filters (Agüera y Arcas &
857Fairhall, 2003; Agüera y Arcas et al., 2003; Schwartz
858et al., 2002). For instance, during a refractory period, a
859neuron will not spike, and this can be captured by an
860LNP model with a set of suppressive STC filters in time.
861The suppressive filters may still provide a reasonably
862accurate description of the neural response but do not
863reveal the mechanism of refractoriness.
864Finally, the labeling of whether a filter is excitatory or
865suppressive is crudely based on the net change in the mean
866or variance and may not correspond physiologically to
867excitation or suppression. A given filter can indeed be both
868excitatory and suppressive. For example, a filter might be
869half square rectified, yielding a positive increase in the
870mean, but also include a compressive squared nonlinearity
871(as in divisive normalization). Because the STA and STC
872filters are orthogonal, the analysis will extract a single
873filter and label it as excitatory. As before, the analysis still
874finds the right subspace; one can then analyze the
875interaction and aim to estimate a model within the
876subspace.
877

878
879Experimental issues

880We now discuss issues that arise when designing and
881interpreting spike-triggered experiments.

882Stimulus choice
883Stimulus space

884The stimuli in a spike-triggered experiment need to be
885restricted to lie in a finite-dimensional space, and the
886experimentalist must choose the fundamental components
887(i.e., the axes) of this space. At any moment in time, the
888neuron is exposed to a linear combination of this set of
889stimulus components. In many published examples (as well
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890 as the examples shown in this article), the axes of the
891 stimulus space corresponds to pixel (or stixel) intensities.
892 However, the stimulus may be described in terms of other
893 components, such as the amplitudes of a particular set
894 of sinusoids (Ringach, Sapiro, & Shapley, 1997), the
895 velocities of a randomly moving spatial pattern (Bair,
896 Cavanaugh, & Movshon, 1997; Borghuis et al., 2003;
897 Brenner, Bialek & de Ruyter van Steveninck 2000; de
898 Ruyter van Steveninck & Bialek, 1988), or any other fixed
899 set of functions. More generally, it is possible to do the
900 analysis in a space that is a nonlinear function of the input
901 stixels (David, Vinje, & Gallant, 2004; Nishimoto, Ishida,
902 & Ohzawa, 2006; Theunissen et al., 2001). This is useful
903 when one believes that the cells’ response is LNP on these
904 inputs (Rust, Simoncelli, & Movshon, 2005), although it
905 may then be more difficult to interpret the results. The
906 fundamental constraints on the choice of these compo-
907 nents are that (1) the neuron should respond reasonably to
908 stochastically presented combinations of these compo-
909 nents and (2) the neuron’s response should be well
910 approximated by an LNP model operating in the space
911 of these components.
912 The choice of a finite-dimensional stimulus space places
913 a restriction on the generality of the experimental results:
914 The response of the cell will only be characterized within
915 the subspace spanned by the stimulus components
916 (Ringach et al., 1997). Stated differently, without further
917 assumptions, the model one constructs with STC can only
918 predict stimuli responses that lie in the space defined by
919 the experimental stimulus ensemble. For example, one
920 cannot predict the responses to chromatic stimuli when
921 using achromatic stimuli or to a full two-dimensional
922 space when probing the neuron with only a single spatial
923 dimension (as in the case of bars). Similarly, one cannot

924use the model to predict responses to stimuli that have a
925finer spatial or temporal resolution than that used in the
926characterization.
927To obtain a more general characterization, one needs to
928increase the stimulus resolution. Unfortunately, this
929increases the dimensionality of the stimulus space and,
930thus, requires more spikes to achieve the same quality of
931filter estimation. At the same time, the increase in
932resolution typically reduces the responsivity of the cell
933(e.g., because the effective contrast is reduced), thus
934making it more difficult to obtain the needed spikes.
935Recall that the error in filter estimation is a direct
936consequence of the ratio of the number of spikes to
937stimulus dimensionality, as in the example model neuron
938simulation shown in Figure 9. Therefore, it is useful to run
939a pilot experiment to determine the proper balance between
940number of spikes (e.g., duration of the experiment) to
941stimulus dimensionality for a particular class of neurons. In
942practice, it useful for a physiologist to adopt a rule of thumb
943for the particular system at hand: In the V1 experiments,
944Rust, Schwartz, et al. (2005) found that at least 100 spikes
945per dimension were typically needed to obtain a good
946characterization. Other experimental methodologies or
947settings (e.g., recordings from an awake behaving animal)
948and other classes of neurons may be more limited in the
949number of spikes that can be collected.
950

951Stochastic stimulus distribution

952As stated earlier, the STC portion of the spike-triggered
953analysis is only guaranteed to work for Gaussian stimuli.
954The use of non-Gaussian white noise stimulus distributions
955(e.g., uniform, binary, sparse) is quite common experimen-
956tally, as the samples are easy to generate and the higher

Figure 14. Interpretation issues and sum of half squares LNP model: nonlinearity. Nonlinearity is shown for model simulation of filters in
Figure 13B (almost identical plots are found for Figures 13C and 13D). Left: Scatter plots of stimuli projected onto estimated filters (i.e.,
filter responses) corresponding to STA and first eigenvector. Black points indicate the raw stimulus set. White points indicate stimuli
eliciting a spike. Also shown are one-dimensional projections onto a single filter. Right: The quotient of the two-dimensional spike-
triggered and raw histograms provides an estimate of the two-dimensional nonlinear firing rate function. This is shown as a circular-
cropped grayscale image, where intensity is proportional to firing rate. Superimposed contours indicate four different response levels. Also
shown are one-dimensional nonlinearities onto a single filter.
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957 contrast of the stimuli generally leads to higher average
958 spike rates. In practice, their use is often justified by
959 assuming that the linear filters are smooth relative to the
960 pixel size/duration (e.g., Chichilnisky, 2001). Natural
961 signal stimuli (such as visual scenes and auditory vocal-
962 izations) are also non-Gaussian (Daugman, 1989; Field,
963 1987), but their use is becoming increasingly popular
964 (David & Gallant, 2005; David et al., 2004; Felsen & Dan,
965 2005; Ringach, Hawken, & Shapley, 2002; Sen et al.,
966 2000; Smyth, Willmore, Baker, Thompson, & Tolhurst,
967 2003; Theunissen et al., 2001; for recent perspectives, see
968 Felsen & Dan, 2005; Rust & Movshon, 2005). Natural
969 signals can reveal response properties that occur less
970 frequently under Gaussian white noise stimulation, such as
971 bursting in the LGN (Lesica & Stanley, 2004), and they
972 are often more effective in driving higher neural areas.
973 However, nonspherical stimuli can produce artifacts in
974 the STA filters, and non-Gaussian stimuli can produce
975 artifacts in the STC filters. Figure 15 shows two simu-
976 lations of an LNP model with a single linear filter and a
977 simple sigmoidal nonlinearity, each demonstrating that
978 nonspherical stimulus distributions can lead to poor
979 estimates of the linear stage. The examples are meant to
980 emphasize the potential for bias but do not necessarily
981 mean that an artifact will occur in experiment. Indeed, the
982 particular nonlinear behaviors of the neural response will
983 determine if and how much of a bias occurs. Because we
984 do not know the nonlinearity a priori, the safest approach
985 is to compare the experimental linear filter estimate to a
986 control using spherically symmetric stimuli.
987 The first example shows a Bsparse noise[ experiment, in
988 which the stimulus at each time step lies along one of the
989 axes. As shown in the figure, the nonlinearity can result in

990an STA that is biased toward an axis of the space. The
991second example uses stimuli in which each component is
992drawn from a uniform distribution, which produces an
993estimate biased toward the Bcorner[ of the space. Note,
994however, that the estimate will be unbiased in the case of a
995purely linear neuron or of a half-wave-rectified linear
996neuron (Ringach et al., 1997).
997Non-Gaussian stimuli can produce strong artifacts in the
998STC analysis. Figure 16A (left) shows an example
999simulation of the divisive normalization model with
1000binary stimuli. Note that in addition to the two Breal[
1001suppressive filters of the model, the analysis also finds two
1002significant artifactual suppressive filters; these have a few
1003high-intensity stixels. Similar artifacts have been found in
1004experimental circumstances (Rust, Schwartz, et al., 2005).
1005More intuition for the artifacts can be gained by examin-
1006ing two-dimensional scatter plots that include an
1007artifactual filter response versus the STA filter response
1008(Figure 16A, right). The raw binary stimuli are clearly not
1009spherical in this two-dimensional view. Specifically, the
1010set tapers as one moves in the direction of the STA. This
1011reduction in variance of the raw stimulus happens to
1012coincide with the stimuli that elicit spikes (i.e., those that
1013have a large STA component). Thus, the spike-triggered
1014analysis reveals the artifactual filter as an axis of
1015significantly reduced variance, although it is actually not
1016reduced relative to the raw stimuli.
1017There is, unfortunately, no generic recipe for reducing
1018artifacts. From our experience with binary stimuli, we have
1019found that the artifacts can be partially corrected by
1020adjusting the raw stimulus such that the covariance
1021estimated at each value of the STA is equal (conditional
1022whitening; Rust, Schwartz, et al., 2005). Specifically, we

Figure 15. Simulations of an LNP model demonstrating bias in the STA for two different nonspherical stimulus distributions. The linear
stage of the model neuron corresponds to an oblique axis (line in both panels), and the firing rate function is a sigmoidal nonlinearity (firing
rate corresponds to intensity of the underlying grayscale image in the left panel). In both panels, the black and white Btarget[ indicates the
recovered STA. Left: Simulated response to sparse noise. The plot shows a 2-dimensional subspace of a 10-dimensional stimulus space.
Each stimulus vector contains a single element with a value of T1, whereas all other elements are zero. Numbers indicate the firing rate for
each of the possible stimulus vectors. The STA is strongly biased toward the horizontal axis. Right: Simulated response of the same
model to uniformly distributed noise. The STA is now biased toward the corner. Note that in both examples, the estimate will not converge
to the correct answer, regardless of the amount of data collected.
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1023 partition the stimuli of Figure 16A (right) into horizontal
1024 slabs according to the value of the excitatory filter
1025 response and compute the covariance matrix for each
1026 subset (Cn for the nth subset). The stimuli in each subset
1027 are whitened by multiplying them by

EeE
T
e þ E0EnD

j1
2

n ET
nE0; ð11Þ

10281029 where Ee is a matrix containing the (orthogonal) excita-
1030 tory filters (only one in this exampleVthe STA), E0

1031 contains an orthogonal basis for the remainder of the
1032 stimulus space, and En and Dn are the eigenvectors and
1033 eigenvalues for the remainder of the conditional cova-
1034 riance matrix, Cn, respectively. The first term serves to
1035 preserve the component of the stimulus in the direction of
1036 the STA, while the second term depicts a whitening (by
1037 the inverse of the raw stimuli in that slice) in the other
1038 dimensions.

1039After this conditional whitening, the stimuli are recom-
1040bined and STC analysis is applied on the spike-triggered set
1041to reestimate the filters. Figure 16B shows that following
1042conditional whitening, there are only two significant
1043suppressive eigenvalues corresponding to the real model
1044filter subspace.
1045We have described an example of binary stimulus
1046artifacts and partially correcting for those artifacts. There
1047is generally no known fix for artifacts, but there are several
1048things that can be done to check for artifacts:

10491. It is helpful to examine the projection of the raw and
1050spike-triggered stimuli onto pairs of filters recovered
1051from the analysis; if these are not spherical, then the
1052filters can include artifacts. However, it is important to
1053remember that the stimulus space is huge, and
1054projection onto two dimensions might appear spheri-
1055cally symmetric but does not guarantee spherical
1056symmetry in the full space.

Figure 16. STC artifacts with binary stimuli. We ran the same model neuron as in Figure 7, but we replaced Gaussian stimuli with binary
stimuli. (A) Left: There are four eigenvalues significantly below what one would expect by chance. Two of the corresponding eigenvectors
correspond to the real model filter subspace, but two of them are artifactual. Right: Projection onto one of the artifactual filters versus the
STA. The raw stimuli are nonspherical and have regions of lower variance at the top and bottom corners. The spiking stimuli appear in the
upper corner because this is where the STA projection is largest. Although the variance of the raw and spike-triggered stimuli is the same
when confined to this corner, the variance of the spike-triggered stimuli is significantly smaller than the variance of the entire raw
ensemble, and this generates the artifactual suppressive filter (e45). (B) Left: After conditional whitening (see main text), there are only
two significantly low eigenvalues corresponding to the model neuron subspace. Right: Projection onto the same eigenvalue as the
artifactual filter above, as against the STA. The raw stimuli are now not perfectly circular but have roughly equal variance in all directions.

Journal of Vision (2006) 0, 1–23 Schwartz et al. 17



1057 2. It is sometimes useful to run a model neuron
1058 simulation with the given stimuli and see if artifactual
1059 filters emerge. The simplest simulation one can run is
1060 an LNP model with a single linear filter: If a
1061 significant STC filter is found, this is indicative of an
1062 artifactual axis in simulation. Here, we have demon-
1063 strated a slightly more involved example of a divisive
1064 normalization simulation. However, it is important to
1065 realize that we have control only over the stimulus
1066 ensemble; we have no control over the nonlinear
1067 behaviors of the neural response, and the artifacts
1068 depend on these nonlinearities. We can explore in
1069 simulation nonlinearities that have been attributed to
1070 neurons, and this has proved helpful in some cases.

1071 3. It is recommended to compare experimentally the
1072 filter subspace recovered with a given stimulus
1073 ensemble with that recovered with Gaussian
1074 stimuli (recording from the same neuron); differ-
1075 ences in the outcome between the two stimulus
1076 types could indicate estimation biases or failures
1077 of the model.

1078 Touryan, Felsen, and Dan (2005) compared STC
1079 analysis in area V1 for white noise and natural images.
1080 To partially correct for the natural image stimuli, they first
1081 whitened the stimuli in the ensemble. Although this
1082 cannot correct for the nonspherical nature of the stimuli,
1083 they showed that the first two eigenvectors (representing
1084 complex cells in their data) were similar for white noise
1085 and natural images. The natural images required far fewer
1086 raw stimuli to achieve the same result, probably because
1087 they are more effective at eliciting spikes. They also found
1088 additional significant (and artifactual) filters that were
1089 compared with artifactual filters arising in a simulation
1090 with natural images.
1091 Other techniques have been designed to cope directly
1092 with non-Gaussian input, such as images, and thus bypass
1093 this limitation of the STC approach. The basic idea is quite
1094 simple: Instead of relying on a particular statistical moment
1095 (e.g., mean or variance) for comparison of the spike-
1096 triggered and raw stimulus distributions, one can use a more
1097 general comparison function that can identify virtually any
1098 difference between the two distributions. A natural choice
1099 for such a function is information-theoretic: One can
1100 compare the mutual information between a set of filter
1101 responses and the probability of a spike occurring
1102 (Paninski, 2003; Sharpee et al., 2003, 2004). This
1103 approach is promising because it places essentially no
1104 restriction on the stimulus ensemble. A drawback is that
1105 the estimation problem is significantly more complicated;
1106 it is more expensive to compute and may get trapped in
1107 local optima. However, it has been successfully applied to
1108 estimate one- or two-dimensional subspace models in
1109 simulation and from physiological data in response to
1110 natural images (Paninski, 2003; Sharpee et al., 2003, 2004,
1111 2006). Other techniques, based on artificial neural net-
1112 works (Lau, Stanley, & Dan, 2002; Lehky, Sejnowski, &

1113Desimone, 1992), have also been developed and applied to
1114natural images (Prenger, Wu, David, & Gallant, 2004). 1115

1116

1117Validation

1118Validation is useful to evaluate the degree to which the
1119recovered model is an accurate description of the neural
1120response. At the very least, it is worthwhile verifying that the
1121model, when fit to one run of white noise stimulation, can
1122then predict responses to another run. Because the model is a
1123rate model, this is most directly done by measuring
1124responses to repeated stimuli and comparing their average
1125(the PSTH) against that predicted from the model. Another
1126possibility is to Bplay back[ as stimuli the eigenvectors that
1127were found in the spike-triggered analysis to verify that they
1128affect the neuron’s response as expected (Rust, Schwartz,
1129et al., 2005; Touryan et al., 2002). This requires that one
1130perform the analysis and stimulus generation online during
1131the experiment. Playing back the eigenvectors is also
1132helpful for determining the importance of the individual
1133model components that are recovered from the analysis; for
1134example, the weakest components might have only a minor
1135impact on the neural response.
1136It is also of interest to test howwell the model generalizes
1137to other stimuli: If one characterizes the model with a set of
1138bars, how well does the model predict the response to a
1139single bar? If one characterizes the model with high
1140contrast stimuli, how well does it predict the response to
1141low contrast stimuli? Ultimately, we would like a model
1142that predicts the response to any arbitrary stimulus.
1143Validating the model on different stimuli can help assess
1144the robustness of the model and when it breaks, and, in turn,
1145can identify the need for further improving spike-triggered
1146analysis techniques. 1147

1148

1149
1150Discussion

1151We have described a set of spike-triggered techniques for
1152characterizing the functional response properties of neu-
1153rons using stochastic stimuli. In general, there is a tradeoff
1154between restricting the subspace dimensionality (as in the
1155STA and STC approaches) versus restricting the non-
1156linearity (as in the Wiener/Volterra approaches). Here, we
1157have focused specifically on STA and STC analyses. These
1158methods rely on an assumption that the response of the
1159neuron is governed by an initial linear stage that serves to
1160reduce the dimensionality of the stimulus space. The linear
1161stage is followed by a nonlinearity upon which we place
1162fairly minimal constraints. Having worked with these
1163methods in both retina and V1, we have found that many
1164experimental and analysis issues are quite tricky. We have
1165presented examples with model neuron simulations, high-
1166lighting similarities with experiments where possible.
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1167 Estimation of the linear subspace can be corrupted by
1168 three distinct sources of error, which we have discussed in
1169 this article. First, there are errors due to the finiteness of the
1170 data. The rate at which these decrease with increasing data
1171 is given in Equation 8 and illustrated in Figure 9. Second,
1172 there are biases that can arise from the interaction of the
1173 neural nonlinearities and use of non-Gaussian stimuli.
1174 Examples are shown in Figure 15. Finally, there are errors
1175 due to model failure.
1176 There are a number of interesting directions for future
1177 research. First, the LNP model can be extended to
1178 incorporate some spike history dependence, by recursively
1179 feeding back the spiking output into the linear input stage.
1180 This Brecursive LNP[ model (also referred to as a general
1181 linear model [GLM]) has appeared in recent literature
1182 (Pillow, Paninski, Uzzell, Simoncelli, & Chichilnisky,
1183 2005; Truccolo, Eden, Fellows, Donogue, & Brown,
1184 2005) and may allow the introduction of some adaptation
1185 effects, as well as shorter timescale effects such as
1186 refractoriness, bursting, or rapid gain adjustments. This
1187 model can no longer be directly fit to data with STA and
1188 STC and requires more complex fitting procedures. In
1189 addition, the techniques described here can be adjusted for
1190 the analysis of multineuronal interactions (e.g., Nykamp,
1191 2003; Okatan, Wilson, & Brown, 2005; Pillow, Shlens,
1192 Paninski, Chichilnisky, & Simoncelli, 2005b). Such
1193 methods have been applied, for example, in visual cortex
1194 (Tsodyks, Kenet, Grinvald, & Arieli, 1999), motor cortex
1195 (Paninski, Fellows, Shoham, Hatsopoulos, & Donoghue,
1196 2004), and hippocampus (Harris, Csicsvari, Hirase,
1197 Dragoi, & Buzsáki, 2003). Also, neurons adapt to stimuli
1198 over multiple timescales (Brenner, Bialek & de Ruyter
1199 van Steveninck, 2000; Fairhall, Lewen, Bialek, & de
1200 Ruyter van Steveninck, 2001), and it would be interesting
1201 to extend current approaches to incorporate adaptation.
1202 Finally, it would be desirable to develop techniques that
1203 can be applied to a cascaded series of LNP stages. This
1204 will be essential for modeling responses in higher order
1205 sensory areas, which are presumably constructed from
1206 more peripheral responses. Specifically, if the afferent
1207 responses that arrive in a particular neural area are
1208 reasonably understood, then one may be able to arrange
1209 to perform the spike-triggered analysis in the space of the
1210 afferents (Rust, Simoncelli, et al., 2005).

1211
1212 Appendix

1213 We describe how to compute STA and STC for
1214 elliptically symmetric Gaussian stimuli. If the distribution
1215 of stimuli is elliptically symmetric, then a modified
1216 STA can be computed as follows (e.g., Theunissen et al.,
1217 2001):

Â¶ ¼ Cj1 Â; ðA1Þ

12181219where

C ¼~
n

s
YðtnÞsYTðtnÞ ðA2Þ

12201221is the covariance matrix of the raw stimuli such that C =
1222VTDV (we assume that the mean stimulus is zero). Note
1223that this solution is a regression estimate for a linear
1224mapping from stimuli to spikes. The surprising result is
1225that one can use linear regression on a one-dimensional
1226LN model if the input vectors are elliptically distributed.
1227As in the case of STA, STC can be generalized to the case
1228of an elliptically symmetric stimulus distribution. Here, the
1229natural choice is to solve for stimulus dimensions in which
1230the ratio of variances of the spike-triggered and raw
1231stimulus ensembles is either large or small. Mathemati-
1232cally, we write this ratio in a direction specified by unit
1233vector û as:

r ûð Þ ¼ ûTĈû

ûTCû
: ðA3Þ

12341235

1236The solution to this problem can be computed directly
1237using a generalized eigenvector analysis. Specifically, we
1238first solve for the whitening transform in the denominator,
1239computing the eigenvalues D and eigenvectors V of the
1240covariance matrix of the raw stimuli. We set
1241X ¼ Vð

ffiffiffiffi
D

p
Þj1

and û ¼ Xv̂, obtaining:

r ûð Þ ¼ v̂TXTĈVv̂

v̂T v̂
: ðA4Þ

12421243

1244This is now equivalent to solving a standard eigenvector
1245problem, calculating the eigenvalues and eigenvectors of
1246XTĈX. 1247
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1257
1258Footnotes

1259
1
It should be noted that a Wiener/Volterra approach has

1260also been applied within a subspace, but under the
1261assumption of a lowVorder polynomial nonlinearity (e.g.,
1262Emerson et al., 1987, 1992; Szulborski & Palmer, 1990).
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1263
2
Note that the STA estimate is unbiased but it does not, in

1264 general, correspond to a maximum likelihood estimate
1265 (Dayan & Abbott, 2001).
1266

3
Note that recent work (Pillow & Simoncelli, 2006)

1267 suggests an informationVtheoretic objective that com-
1268 bines the STA and STC optimally.

1269
1270 References

1271 Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal
1272 energy models for the perception of motion. Journal
1273 of the Optical Society of America A, Optics and
1274 Image Science, 2, 284–299. [PubMed]
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