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The visual system evolved to process natural images, and the 
goal of visual neuroscience is to understand the computations 
it uses to do this. Indeed the goal of any theory of visual 
function is a model that will predict responses to any stimulus, 
including natural scenes. It has, however, recently become 
common to take this fundamental principle one step further: 
trying to use photographic or cinematographic representations 
of natural scenes (natural stimuli) as primary probes to explore 
visual computations. This approach is both challenging and 
controversial, and we argue that this use of natural images 
is so fraught with difficulty that it is not useful. Traditional 
methods for exploring visual computations that use artificial 
stimuli with carefully selected properties have been and 
continue to be the most effective tools for visual neuroscience. 
The proper use of natural stimuli is to test models based on 
responses to these synthetic stimuli, not to replace them.

There are two important commonly held fallacies that drive the new 
fashion of using natural stimuli in visual neuroscience experiments. The 
first is that in 40 years of experimentation and modeling, we have failed 
to capture important aspects of the behavior of neurons in primary 
visual cortex. The second is that an important reason for this ‘failure’ is 
that we have been trapped in the world of ‘simplistic’ artificial stimuli, 
which lack the richness of natural stimuli and have therefore prevented 
us from uncovering crucial facts of cortical organization1.

Standard models for cortical cells based on synthetic stimuli
We know a considerable amount about the response properties of 
neurons in primary visual cortex (V1). These neurons show stimulus 
selectivity simultaneously for a diverse set of parameters, such as the 
location, size, form and color of an object. An important goal of visual 
neurophysiology is to produce models of these neurons that describe 
how this stimulus selectivity arises. Ultimately, one hopes to integrate 
all these models into a single theory that can predict neuronal and 
population responses to any arbitrary stimulus.

In the classical tradition, a visual physiologist observes the response 
of a neuron to a particular stimulus or class of stimuli and considers 
whether the current generation of models captures that behavior or 
whether these models require elaboration. In other words, the physiolo-
gist treats the current model as a hypothesis and designs experiments to 

test it. Naturally, these models are based on measurements made with 
stimuli that are simple and easily parameterized, such as bars, points of 
light and sinusoidal gratings, and are then tested with stimuli of increas-
ing complexity.

The history of research on neurons in V1 illustrates the success 
of this approach. V1 neurons simultaneously represent information 
both about the spatial structure of a stimulus and where it is located 
in the visual field (for a review see ref. 2). This multidimensional 
representation is based on selectivity for such stimulus features as the 
position, orientation, size, binocular disparity and color of station-
ary stimuli, as well as the direction and speed of moving stimuli. The 
first widely accepted formal models of these cells (referred to here 
as the ‘old standard models’) captured these tuning properties by 
passing an image through one or more linear spatiotemporal filters 
(Fig. 1a). In these models, stimulus selectivity arises from the shape of 
these filters: stimuli that resemble the filters produce high firing rates 
whereas stimuli that differ produce negligible firing rates. To capture 
this behavior, model spatial filters based on Gabor or related wavelet 
functions are typically used3,4. Within V1, neurons that are sensitive 
to the position of a stimulus within their receptive field (‘simple cells’) 
are commonly modeled as a single linear filter whose output is half-
rectified by the inevitable threshold nonlinearity shared by all spiking 
neurons5. The position insensitivity of ‘complex cells’ is commonly 
modeled with two phase-shifted filters whose outputs are squared 
and summed (the energy model6,7) before being passed through the 
nonlinear spiking threshold. The responses of both kinds of neurons 
are irregular, and this variability can be reasonably approximated by 
a Poisson spiking process.

These old standard models predict not only the selectivity of V1 neu-
rons’ responses to bars, edges and gratings, but they also provide a credible 
account of responses to a variety of more complicated targets, including 
checkerboards8, random dot textures and Glass patterns9, and photo-
graphs of natural scenes10. This is not to say, however, that the old standard 
models are completely satisfactory. Research has uncovered a number of 
interesting ways in which they fail, resulting in the continuing evolution 
of a more elaborate and comprehensive ‘new standard model’.

There are five important elements of V1 receptive fields not cap-
tured by the old standard model. First, although the old model postu-
lated one input filter for simple cells and two for complex cells, more 
sensitive spike-triggered analysis has shown that additional filters are 
often required to account fully for the dimensionality of the stimulus 
set to which these cells respond11,12. Furthermore, the simple linear 
or quadratic transformations of filter outputs in the old model may 
need to replaced with more general point nonlinearities. Second, there 
are three more or less distinct gain control mechanisms that change 
responses depending on the combination of stimuli being presented. 
One of these regulates luminance gain when the average illumination 
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of the receptive field changes13. A second regulates contrast gain when 
the local average stimulus contrast varies14–17. A third regulates the 
temporal dynamics of responses depending on the temporal charac-
ter of concurrent stimulation18. These gain controls in combination 
capture such effects as the ability of an otherwise ineffective stimulus 
to reduce the response to an effective one14, as well as the saturation of 
signals and decreases in latency at high stimulus contrasts17. The three 
gain controls may not be completely independent of one another, and 
their basis in neural circuits is an active area of study. Third, it has long 
been known that V1 responses depend on the history of stimulation 
because of the phenomenon of contrast adaptation19. This important 
time-dependent nonlinearity seems to depend partly on a neuron’s 
history of activity20,21 and partly on changes in synaptic input22–24, 
and it has a major influence on cortical responses. Fourth, the old 
standard model of a V1 neuron’s classical receptive field fails to deal 
with the existence of ‘hypercomplex’ cells25 and, more generally, with 
the suppression of responses by stimuli presented in regions outside 
the classical receptive field26. The addition of an inhibitory surround 
signal, originating in part from feedback signals from other corti-
cal areas, extends the models to include this behavior27–29. Fifth and 
finally, capturing the behavior of neurons on short time scales (<50 
ms) requires that the old standard Poisson-spiking models be extended 
to include more realistic (e.g., Hodgkin-Huxley) spike generation30–32. 
All of these elements can be combined to create a ‘new standard model’, 
schematically illustrated in Figure 1b as a synthesis and elaboration of 
the old standard models of Figure 1a.

All these extensions of the old standard model of V1 neurons were 
discovered and characterized using combinations of synthetic stimuli 
like bars and gratings; none of them was found using natural stimuli. 
Moreover, there is no case in which the response of V1 neurons to natu-
ral stimuli has been shown not to be captured by the new standard 
model. However, the components of this new standard model were for 
the most part discovered in relative isolation from one another, and an 
important challenge is to develop a set of measurement techniques to 
recover all the components of the new standard model for a single cell. 
Modern spike-triggered techniques are making a start on this problem 
(for example, see ref. 33), but they still fall short of achieving this goal. 
For the moment, then, the new standard model represents our accu-
mulated understanding of the mechanisms in play in visual cortical 
processing, but it cannot be specified for individual cells. This creates a 
complex challenge for those who would use the new standard model to 
predict responses to complex stimuli, like natural images, that engage 
most or all of the mechanisms diagrammed in Figure 1b.

Uses and abuses of natural stimuli
There are two fundamentally different approaches that use natural 
stimuli. The principle behind the first approach is that one can deduce 
the properties of brain mechanisms for visual coding by reverse engi-
neering: start with a set of natural scenes, and then infer the properties 
of the visual mechanisms that would best process those scenes. This is 
an appealing idea and seems both simple and direct, but the difficulty 
is that it is not clear what it means to say that a set of mechanisms are 
‘best’ for processing natural scenes, because it is not clear what is to be 
optimized. One approach34 is based on the hypothesis that the early 
visual system is designed to reduce redundancy in the neural code35 and 
seeks the best set of mechanisms that satisfy a ‘sparse coding’ constraint. 
Others36,37 take a different approach and optimize their mechanisms for 
independence in the sense given by independent components analysis. 
A third approach finds mechanisms that satisfy a different criterion 
for independence38. Each of these approaches is self-consistent and 
compelling in the terms the authors define, but the problem is that goals 
the brain satisfies in choosing neural codes are unknown. Because the 
specific coding models that emerge from these approaches depend in 
detail on the optimization chosen, the results can give only a qualita-
tive impression of the true mechanisms. Another limitation of most 
of these efforts is that the computations usually generate mechanisms 
that only resemble the simple cells of the old standard model (Fig. 1a) 
and rarely incorporate more than one or two isolated features of the 
new standard model (Fig. 1b).

The second common use of natural images is more ambitious: to probe 
the visual system directly with natural images, motivated by the notion 
that the synthetic stimuli used in classic physiology experiments may 
not be sufficiently rich to uncover the full range of neuronal behavior1. 
Implicit in this approach is the assumption that synthetic stimuli are 
in some way impoverished or ‘simplistic’ and therefore somehow miss 
important features of visual response. The main—and in our view, crip-
pling—challenge is that the statistics of natural images are complex and 
poorly understood. Without understanding the constituents of natural 
images, it is imprudent to use them to develop a well-controlled hypoth-
esis-driven experiment. Ironically, the only way to know what importance 

Figure 1   ‘Standard’ models of visual cortical cells, old and new. (a) The 
standard models of simple and complex cells in V1, circa 1985. The 
responses of simple cells are predicted by convolving the stimulus with a 
single linear spatiotemporal filter (represented by the cube; each face of the 
cube schematizes a section through the center of the filter), and passing the 
output through a spiking threshold nonlinearity obeying Poisson statistics 
that converts membrane voltage Vm into spikes at a rate ips (impulses per 
second). The responses of complex cells are predicted by summing the 
squared outputs of two linear spatiotemporal filters that have an approximate 
quadrature phase relationship in both space and time, and 
then passing the resulting signal through the same spiking nonlinearity. 
(b) The new standard model of visual cortical cells, circa 2005. The various 
deficiencies of the models in a have been corrected by allowing for multiple 
initial filters combined with an arbitrary nonlinearity N, and including several 
additional mechanisms: gain controls for luminance, contrast and temporal 
dynamics; contrast adaptation; and surround suppression and context 
effects. The output is passed through a spiking nonlinearity incorporating 
more realistic (e.g., Hodgkin-Huxley) dynamics. See text for details.
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to attach to different aspects of natural scene statistics is to have a com-
prehensive formal model of the neuron under study—but this is usually 
presented as the outcome rather than the foundation for the analysis.

The most popular way to try to solve this problem is to use ‘reverse 
correlation’ or spike-triggered approaches. In a traditional reverse cor-
relation experiment, an experimenter constructs a stimulus-response 
model by presenting random stimuli (such as Gaussian white noise) 
and determining the characteristics of the subset of stimuli that 
elicit spikes (such as the spike-triggered average or spike-triggered 
covariance; for reviews, see refs. 33, 39). To yield an unbiased result, 
these techniques require that the stimuli are uncorrelated (‘white’), 
that their intensities are chosen from a Gaussian distribution and 
(in whatever descriptive space the experimenter chooses) that they 
span all dimensions of interest. A number of authors have applied 
similar approaches using natural images by modifying their analy-
sis techniques to try to compensate for the strongly non-white and 
non-Gaussian nature of these stimuli40–47. The problem is that when 
one extracts the subset of stimuli that are correlated with spikes, the 
correlations in the stimulus set make it difficult to determine why the 
stimulus-response correlation is present. Is it because of a mechanistic 
relationship between the stimulus and the neural circuit under study, 
or because of the correlations between the stimulus and other mem-
bers of the stimulus set that may themselves be effective? Removing 
the effect of these correlations is straightforward if the system under 
study is simple. But if it has unknown architecture, it is necessary 
to make assumptions about the form of the underlying neural com-
putation to distinguish the components of the response attributable 
to the neuron from those attributable to the correlations among the 
stimuli. The importance of these potential difficulties is difficult to 
determine with certainty, and it is certainly worthwhile to explore the 
question empirically. One ambitious attempt to use natural stimuli 
to study mechanism in cortical cells used a spike-triggered analysis 
and attempted to moderate the effects of stimulus correlations41. The 
data were fit to a model similar in form to the old standard model of 
Figure 1a, but this succeeded in capturing only a small fraction of the 
variance in the responses of V1 neurons to natural stimulus sequences, 
a result that falls well short of complete success.

So why do these analyses provide such disappointing results? Some 
have argued that this reflects deep limitations in our understanding of 
V1, and they suggest that we must refocus our efforts away from tradi-
tional, simple stimuli toward stimuli with more naturalistic character-
istics1 to overcome these limitations. But there is a simpler explanation. 
The significant and widely misunderstood limitation of spike-triggered 
approaches—using either synthetic or natural stimuli—is that they are 
not model-free; these techniques fit a specific model to the data, and 
in most cases this model is no more than a variant of the ‘old standard 
model’ shown in Figure 1a. Specifically, the data are used to fit a model 
in which the stimulus is first passed through one or more linear filters, 
the outputs of those filters are combined via an instantaneous nonlin-
earity, and noise is introduced into the system via a Poisson process. 
Without the elements of the new standard model (Fig. 1b), it is hardly 
surprising that the model performs poorly when put to a quantitative 
test. There is little doubt that the additional mechanisms represented in 
Figure 1b have a major role in natural scene responses. Yet the models 
evaluated in natural scene experiments lack these features; some work 
on subcortical processing suggests ways in which they might be incor-
porated48. Another major limitation of the spike-triggered approaches 
is the absence of a realistic spike generator. These models are used to 
predict firing rate over the course of one or two frames (10–50 ms), 
yet within this time frame, deviations from Poisson spiking have a 
profound impact, especially at high firing rates. Techniques have been 

proposed to incorporate realistic, non-Poisson spiking into spike-trig-
gered characterizations30,31, but these methods have not yet been gen-
eralized to models like the one in Figure 1b.

So the parsimonious interpretation of the ‘failure’ of the old standard 
model when faced with natural scenes is not very grand. Instead of 
reflecting some special feature of natural images that can reveal hitherto 
unsuspected neural machinery, it may be that the failure reflects only 
the limitations of the models used to evaluate the data, limitations that 
have been made very clear by numerous experiments using synthetic 
stimuli. In particular, until methods exist to fit the full model shown 
in Figure 1b, we cannot know whether the deficiencies in our abil-
ity to predict responses to natural stimuli from spike-triggered analy-
ses—using either natural or synthetic stimulus sets—are due to known 
mechanisms or to novel ones.

Proper use of the natural and the artificial
Fitting and testing models that are general enough to predict the 
responses to arbitrary stimuli remains a central goal of visual neuro-
physiology. This process is useful because it provides a quantitative 
analysis of how close we are to reaching our goal of describing the 
behaviors of these neurons, and responses to natural scenes will always 
be the standard against which models are tested. But it seems to us that 
the limitations on using natural stimuli to build models rather than to 
test them are too important to ignore. Consider a scenario in which 
we are able to fit all known mechanisms with an integrated model but 
find that this model fails to accurately predict the response properties 
to natural scenes. What then? We would want to establish what machin-
ery is missing from our description, and at this point, natural stimuli 
themselves are of no assistance. To determine mechanism, we must 
return to the classical approach of presenting artificial stimuli that are 
carefully designed as efficient and principled tests of specific hypoth-
eses. In constructing these stimuli, we would be foolish to ignore the 
composition and structure of natural images, but only with synthetic 
stimuli could we carefully control and test model elements of compu-
tational importance. The proof of success will be found in predicting 
the responses to natural stimuli, but the predictions themselves will be 
made from artificial ingredients.

These disadvantages of natural stimuli do not invalidate their use 
in exploratory experiments. Indeed, for neurons with complex prop-
erties whose circuitry is unknown (such as those in higher cortical 
areas), these methods may be the best or even the only way to begin 
(for example, see ref. 49). But there are two phases to discovery. After 
the system is explored using stimuli that are chosen mostly for their 
effectiveness, model-building begins and our tools become the classical 
ones of hypothesis and test. In the study of primary visual cortex, we are 
fully engaged in that second stage. In our view, the proper use for studies 
of natural stimuli is to provide the benchmark against which success or 
failure can be measured. But success will require the model-guided use 
of artificial stimuli to uncover neuronal mechanism.
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