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VIsuAL sySTEMS, AND the developmental and learning mech-
anisms that shape them during the life span, have evolved
because they enhance performance in those tasks relevant to
survival and reproduction, such as detecting and localizing
predators or prey, navigating through the environment, iden-
tifving materials, estimating the three-dimensional geometry
of the environment, recognizing specific objects encoun-
terecl before, and so on. Thus, the proper study of a visual
system must include an analysis of those specific tasks that
the system evolved to perform. An ideal obscrver analysis
provides a principled approach for understanding a visual
task, the stimulus information available to perform the task,
and the anatomical and physiological constraints that limit
performance of the task.

The central concept in ideal observer analysis is the ideal
observer, a theoretical device that performs a given task in an
optimal fashion, given the available information and some
specified constraints. This is not to say that ideal observers
perform without error, but rather that they perform at the
physical limit of what is possible in the situation. In gencral,
ideal observers make mistakes becausc of the complexity
and uncertainty that exist in the visual environment and
because of the inherent noise in light or in whatever signal
serves as input to the ideal observer. The fundamental role
of uncertainty and noise in limiting possible performance
implics that ideal observers must be derived and described
in probabilistic (statistical) terms.

[deal observer analysis involves determining the perfor-
mance of the ideal observer in a given task and then
comparing its performance to that of the biological system
under consideration, which (depending on the application)
might be the organism as a whole, some neural subsystem,
or an individual neuron. In vision science, ideal observer
analyses have been carried out for many different tasks,
ranging from photon detection, to pattern discrimination, to
information coding in neural populations, to shape estima-
tion, to recognition of complex objects. Here the focus is
on detection, discrimination, and identification, with an
emphasis on what has been learned through ideal observer
analysis about the retina, lateral geniculate nucleus ( LGN},
and primary visual cortex. Other applications of ideal
observer analysis are described in other chapters within this
volume (see also Knill and Richards, 1996; Simoncelli and
Olshausen, 2001},

Basic concepls and formulas

The purpose of deriving an ideal obscrver is to determine
the optimal performance in a task, given the physical prop-
erties of the environment and stimuli. Organisms generally
do not perform optimally, and hence one should not think
of an ideal observer as a potentially realistic model of the
actual performance of the organism. Rather, the value of
an ideal observer is to provide a precise measure of the
stimulus information available for performing the task, a
computational theory of how to perform the task, and an
appropriate benchmark against which to compare the per-
formance of the organism (Green and Swets, 1966). In addi-
tion, the ideal observer can serve as a useful starting point
for developing realistic models {e.g,, Schrater and Kersten,
2001). With an appropriate ideal observer in hand, one
knows how the task should be performed. Thus, it becomes
possible to explore in a principled way what the organisim is
doing right and what it is doing wrong. This can be done by
degrading the ideal observer in a systematic fashion by
including, for example, hypothesized sources of internal
noise (Barlow, 1977), inefliciencies in central decision
processes (Barlow, 1977; Green and Swets, 1966; Pelli, 1990),
or known anatomical or physiological factors that would
limit performance (Geisler, 1989).

Obviously, an ideal observer analysis is sensible only for
objective tasks with well-defined performance goals, such as
identifying as accurately as possible the physical category to
which an object belongs or estimating some physical prop-
erty of an object. Ideal observer analysis is neither possible
nor sensible for subjective tasks such as judging the appar-
ent hue of a stimulus or judging whether a stereoscopic
display appears fused or diplopic.

Bavesian Ipean Osservers  Most forms of idcal obscrver
analysis are based on the concepts of Bayesian statistical
decision theory. To illustrate the Bayesian approach, con-
sider a categorization task where there are n possible stimu-
lus categories, ¢, € . . . , 6, and the observer’s task on each
trial is to identify the category correctly, given the particular
stimulus 8 arriving at the eye.' If there is substantial stimu-

" Experts should note that in this example the utility/loss function
is degenerate and does not appear; it will be introduced shordy.
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lus noise or overlapping of categories, then the task will be
inherently probabilistic. As might be expected intuitively,
performance is maximized on average by computing the
probability of each category, given the stimulus, and then
choosing the category C that is most probable:™*

C =arg max[p(c:[S)] )
Note that “arg max” is just a shorthand notation for a
procedure that finds and then returns the catégory that has
the highest probability, given the stimulus.* In practice, the
probability of a category given the sumulus is often com-
puted by making use of Bayes’ formula:

P(Slﬂ' )p(ﬁi )
p(8)
where p(ciS) is the posterior probability, p(S|c,) is the likelihood,
and p(c) is the prior probability.” The probability in the denom:
inator, p(S), is a constant that is the same for all the cate-

pel8) = 2)

gorics and hence plays no role in the optimal decision rule.
Furthermore, it is completely determined by the likelihoods
and prior probabilities:

£8)= 3 4(Sle, )p(c)) ©

Substituting Bayes’ formula into equation 1, the optimal
response is given by

C=arg .frxax[;J(S}cr-) p(e;)] 4

In other words, one can identify a stimulus with maximum
accuracy by combining the prior probability of the different
catcgories and the likelihood of the stimulus given each of
the possible categories.

In the laboratory, maximizing accuracy is a common goal
defined by the experimental design. For this goal, all errors
are equally costly, because all errors have the same effect on
the accuracy measure. However, this is rarely the case for
natural situations, where the costs and benefits associated
with different stimulus-response outcomes have a more
complex structure. For example, if the goal is survival, then
some errors are more costly than others—mistaking a

?In the case of ties at the highest probability, one can pick arbi-
trarily from those tied categories.

*Throughout this chapter, capital letters refer to random quanti-
ties and boldface letters refer to vecior quantities, where the term
vector refers to an ordered list of properties (generally, integer- or
real-valued ¢uantities).

*More simply, arg max[f{x]] is the value of x (the argument) for
which f{x} reaches its maximum value.

?Bayes’ formula follows directly from the definition of conditional

probability: ple; & 8) = plc|S)p(8) = p(S|ejpic)
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poisonous snake for a branch is more costly than mistaking
a branch for a poisonous snake. Within the framework of
Bayesian statistical decision theory, more complex goals are
represented with a utility function, u(r, ®), which specifies
the cost or benefit associated with making response r when
the state of the environment is @ (e.g., Berger, 1985). In this
more general case, the optimal decision is to make the
response, R, that maximizes the average utility over all
the possible states of the ‘environment (see footnote 3):

R=arg :max[z ulr, ®)p(S|w) p(m)} (5)

In this decision rule, p(®) is the prior probability of a given
state of the environment, and #(S|®) is the stimulus likeli-
hood given a state of the environment. Note that equation
4 is special case of equation 3, where the possible states of
the environment are the stimulus categories, ¢1, ¢; . . ., ¢, the
possible responses are the ‘category names, the benefits for
all correct responses are equal, and the costs for all incorrect
responses are equal.
.

ConsTRAINED BavesiaN Ipear Osservers The class of
Bayesian ideal observers considered so far operates directly
on the stimulus 8 that arrives at the eye. However, for many
applications, it is useful to incorporate some biological con-
straints into an ideal observer analysis. For example, if good
estimates are available for the optics of the eye, the spatial
arrangement of the photoreceptors, and their spectral sen-
sitivities, then these estimates can serve as plausible con-
straints on an ideal observer. In this case, the ideal observer
would show the maximum performance possible in the given
task, using the photons caught in the photoreceptors. Such
an 1deal observer must perform worse than one designed to
use the photons arriving at the cornea. To the extent that
the constraints are accurate, the difference in performance
between the ideal observer at the cornea and the one at the
level of photon absorptions would provide a precise measure
of the information (relevant to the task) lost in the process
of image formation and photon capture. Furthermore, the
difference in the performance of the ideal observer at the
level of photon capture and the performance of the organ-
1sm as a whole would provide a precise measure of the infor-
mation lost in the neural processing subsequent to photon
capture {e.g., Geisler, 1989).

Another useful way to use constrained ideal observers is
to allow some free parameters in the biological constraints
and then determine what parameter values produce the
best-performing ideal observer. For example, in an ideal
observer at the level of photon absorptions, one can allow
the peak wavelengths of the receptors to be free parameters
and then determine what peak wavelengths would produce
the best-performing ideal observer. This would be a precise




way of determining how close an organism’s photoreceptors
are to the optimum for the given task (Regan et al., 2001).
Alternatively, the free parameters might represent the recep-
tive field shapes (the configuration of weights placed on each
receptor) for some given number ol postreceptor neurons.
This would be a precise way of determining how close an
organism’s receptive field shapes are to the optimum for the
given task.

A general class of constrained Bayesian ideal observers
can be represented by introducing a constraint_function, go(8S),
which maps (either deterministically or probabilistically) the
stimulus 8 at the cornea into an intermediate signal Z = gy(8).
For example, $ might be a vector representing the number
of photons entering the pupil from cach pixel on a display
screen, and Z might be a vector representing the number of
photons absorbed in each photoreceptor; hence g(S) would
specify the combined effect of the optics, photoreceptor
lattice, and photoreceptor absorption spectra. Alternatively,
Z might represent the spike count for each ganglion cell, and
2(S) would specify the combined effect of the optics and all
retinal processing Any free parameters, such as the peaks of
the photoreceptor absorption spectra or the shapes of the
receptive fields, are represented in the constraint function by
a parameter vector 9.

For any given parameter vector, the optimal decision rule
has the same structure as before:

R=arg max[z ulr, (D)ﬁo(zkﬂ)ﬁ((ﬂ)} (6)

The only difference is that the stimulus 8 is replaced by
the intermediate signal Z. Applying this optimal decision
rule typically requires determining the intermediate-signal
likelihood po(Z|®), by combining the constraint function gy(S)
with the stimulus likelihood distribution p(S|w). If there are
free  parameters,
is given by the following formula (e.g., Geisler and Diehl,

2002):

O =arg max ml_aX[%u(r,w}Pa @] )

s

then the optimal parameter vector

Using 0,,, in equation 6 gives the decision rule for the best-
performing ideal observer over the free-parameter space.

The concepts and basic formulas of Bayesian ideal
observer analysis are relatively straightforward. However, in
specific applications, it can be very difficult to determine or
compute the likelihoods, prior probabilities, utility functions,
or sums over possible states of the environment. Indeed,
there are many situations for which it is not vet possible to
determine the performance of the ideal observer. Nonethe-
less, the number and range of successes have been growing
over the years, and the prospects for continued success are
good.

Detection, discrimination, and identification

Detection, discrimination, and identification are fundamen-
tal visual tasks that have been investigated extensively since
the beginning of vision science. In the detection task, the
observer is presented with cither a background pattern or a
background pattern plus a target pattern, and must decide
whether or not the background pattern contains the target.
The background pattern can range from a simple, uniform
field of light to a complex natural scene. Similarly, the target
can range from a simple, uniform patch of light to a complex
natural object. In the discrimination task, the observer is
presented with either a background plus a target or a back-
ground plus a modified target, and must decide whether the
background contains the modified or unmodified target.
Formally, detection and discrimination tasks are equivalent,
because the discrimination task can be regarded as a detec-
tion task, where the “background” is the background plus
the unmodified target and the “target” is the difference
between the modified and unmodified targets. In the ident-
fication task, the observer is presented with a background
plus one of n possible targets and must decide which target
is contained in the background. Thus, the discrimination
task is a special case of the identification task where the
number of possible targets is two.

During the last half century, ideal observer analysis has
played an important role in the development of our under-
standing of the physical, physiological, and cognitive factors
that underlie detection, discrimination, and identification
performance. Before discussing these applications of ideal
observer analysis, I introduce the ideal observer for detec-
tion and discrimination tasks, where all sources of informa-
ton that the ideal observer receives are statistically
independent. Many of the results described later are based
on this simple kind of ideal observer.

Orrmvar DiscriMINATION GIVEN STATISTICALLY INDEPEN-
DENT SOURCES OF INForMATION On each trial of a detec-
tion or discrimination task, a stimulus, 8, from one of the
two categorics is received by the ideal observer, and it must
pick a category. Irom equation 4, we see that the optimal
decision rule is to compute the likelihood ratio, p(S|e.}/ p(Sle),
and compare this ratio to a criterion, ple,)/p(c;), which is the
ratio of the prior probabilities of the two categories. If the
likelihood ratio exceeds this criterion, then the ideal observer
picks ¢;; otherwise, it picks ¢,. For present purposes, suppose
that the prior probabilities are equal (criterion = 1.0).
Consider a situation where the stimulus consists of a
set of stimulus components or information sources, § =
(S, ..., S). For example, S; might represent the number of
photons entering the pupil from the ith pixel on a video
monitor or the number of spikes generated by the ith gan-
glion cell in the retina. If all the components are statistically
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independent, then the probability of the whole stimulus is
the product of the probabilities of the individual com-
ponents. In this case, the performance of the ideal observer
can be determined by considering the performance of the
idcal observer scparately for each component. Assuming
approximate normality, an ideal observer that uses only the
ith component will perform with an accuracy (percent

dl
PC, = & ®
d{ 2 ) ®)

, |E(S;le;) = E(S.-'iﬁut_)l
o JV&T(S‘- 1(q)+ Var(S, Ej
2
and @(') is the standard normal integral function. The quan-
tity in equation 9 is called d-prime, and it is the absolute value
of the difference in the expected values (means) for the two

correct) of

where

©)

categories divided by the square root of the average of the
variances for the two categorics. Intuitively, d-prime is a
signal-to-noise ratio; the signal is the difference in the means,
and the noise is the square root of the average variance.
These formulas for ideal obscrver performance are often
quite accurate, even when the probability distributions
for components deviate substantially from the normal dis-
tribution (although formulas become inaccurate for severc
deviations).

It can be shown (e.g, Green and Swets, 1966) that the
accuracy of an observer that optimally combines all the
stimulus components is given by

PCis =¢[d‘*—2') (10)

By = I S (@)’ (11)
i=1

In words, the d-prime for an ideal observer combining inde-
pendent sources of information is simply the square root of

where

the sum of the squared d-primes for each source alone.

In psychophysical experiments, the measurcd perfor-
mance accuracy can be converted into a d-prime value, &',
One useful measure of the difference between real and ideal
performance is the “efficiency” M, which is defined as the
square of the ratio of the real and ideal values of d-prime
(Tanner and Birdsall, 1958):°

" This is a generalization of Tanner and Birdsall’s definition.
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Puoron Nowise The first useful applications of ideal
observer analysis in vision were dirccted at understanding
the limits to visual performance imposed by the randomness
of light and then determining how closely the human visual
system approaches those limits (Barlow, 1957, 1958b; De
Vries, 1943; Hecht et al., 1942; Rose, 1948). It was well
known at the beginning of the twentieth century that the
number of photons emitted by a light source (or absorbed
by a material) in a fixed time interval is generally described
by the Poisson probability density:

a

¢ at

plz)= (13)

z!
where z is the specific number of photons emitted {or
absorbed) and a is the mean number of photons emitted
{or absorbed).

In one of the earliest studies of how photon noise might
affect visual performance, Hecht et al. (1942} measured
threshold for detection of a spot of light in the dark. In this
detection tagk, one stimulus category (¢)) is a completely dark
background and the other {¢,) is a spot of light against the
dark background. The investigators chose conditions likely
to yield the lowest possible thresholds: a small spot with a
wavelength at the peak of the rod spectral sensitivity fune-
tion {307 nm), presented briefly at the eccentricity where rod
receptor density is greatest. They found that threshold for
this stimulus was approximately 100 photons at the cornea.
Depending on one’s estimates ol the transmittance of the
ocular media, light collection area of the rods, optical
density of the rod photopigment, and isomerization proba-
bility given photon absorption, this threshold translates into
something like 10 to 20 effective photon absorptions scat-
tered among a few hundred rods (Barlow, 1977; Hechtetal,
1942). If' this is the average number of effective photon
absorptions at detection threshold, then the probability of
absorbing no photons is quite small, and hence the human
observer must be performing considerably below the level of
the ideal obscrver (whose performance is given by combin-
ing cquations 4 and 8). Nonetheless, this threshold is small
enough to imply that photon noise may be an important
factor limiting human vision.

It was realized that if photon noise does limit human
vision, then intensity discrimination (i.c., contrast detection)
should follow the squarc-root relation implied (approxi-
mately) by the photon-noise-limited idcal obscrver (DeVries,
1943; Rose, 1948):

Aa = ke (14)




where a is the average number of photons received from the
background, Ae + a is the average number of photons
received from the background plus target, and k is a con-
stant determined by the percentage of correct responses
used to define threshold. The symbols in Figure 52.1 show
the exact performance of the photon-noise-limited ideal
observer for a number of background intensities expressed
in units of quanta. The symbol at a background of 0.0 shows
the absolute threshold of the ideal observer. The straight line
is the approximation to the ideal observer given by equation
14, which is accurate for backgrounds above a few quanta.
The solid curve is the approximation to the 1deal observer
obtained using the normality assumption described in the
section “Optimal Discrimination Given Statistically Inde-
pendent Sources of Information.”

A number of human psychophysical studies have demon-
strated that there is a substantial range of background inten-
sities and target shapes where contrast detection follows
the square-root relation both under rod-dominated (sco-
topic) conditions (e.g, Barlow, 1957;
Rushton, 1965) and under cone-dominated {photopic) con-
ditions (e.g., Banks et al., 1987; Barlow, 1958a; Kelly, 1972).
For example, the symbols in Figure 52.2 show the contrast
sensitivity (1 /contrast threshold) measured in the human
fovea as a function of the spatial frequency of sine wave

Blakemore and

10
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Figure 52.1.  Performance of the photon-noisc-limited ideal
chserver in a single-interval, two-alternative, forced-choice inten-
sity discrimination task where the presentation probabilities for
background and background plus target are equal and the crite-
rion for threshold is 75% correct. The solid symbols show the exact
predictions for a number of background energies {in units of
quanta). The lumpiness of the predictions is due to the discrete
nature of the Poisson probability density. The sofid straight line shows
the prediction of cquation 14, which is reasonably accurate for
background encrgies above a few quanta. The solid curve is based
on the normal approximation that is commonly used in comput-
ing ideal observer predictions. It is quite accurate for background
energies above 0.5 quanta, and for most purposes it is sufficiently
accurate down to absolute threshold.

targets for three background intensity levels. The spacing
between the solid curves equals the value (V‘f 10 ) predicted by
the square-root law.

There is additional evidence that photon noise may play
a role in contrast detection. For example, in psychophysical
studies, the shape of the receiver operating characteristic
(ROC) for increment and decrement targets is often consis-
tent with photon noise (Cohn and Lasley, 1986), and in elec-
trophysiological studies, individual primate rods (Baylor et
al., 1984} and cat ganglion cells (Barlow et al., 1971) produce
reliable responses to the absorption of single photons.
However, none of this evidence is definitive. Humans gen-
erally perform considerably worse than the photon-noise-
limited ideal observer, making it quite possible that other
factors (e.g., Poisson-like neural noise) are responsible for
those visual performance characteristics that appear to be
consistent with photon noise {Graham and Hood, 1992;
Kortum and Geisler, 1995),

Orrics anp Puortoreceprors The optics of the eye,
photoreceptor lattice, and absorption spectra of the pho-
topigments are relatively well understood in humans and
macaques, making possible a relatively rigorous ideal
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Froure 52.2. Contrast sensitivity functions measured in two
human observers at three background intensity levels for sine wave
targets having a fixed number of cycles. The targets were presented
for 0.1 second in the center of the fovea. The solid curves are the
performances of an ideal observer limited by photon noise, the
optics of the cye, the photoreceptor lattice, and the absorption
spectra of the cone photopigments. The quantum efficiency of the
ideal observer has been adjusted so that the solid curves align opti-
mally with the data. The spacing between the solid curves is duc
to photon noisc and corresponds to the square-root law. The lower
panels show the ratio of ideal threshold to real threshold, when
there is no adjustment of quantum efficiency. {(Adapted from Banks
ct al., 1987).
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Fioure 52.3.  Computing the mean number of photons absorbed
in cach photoreceptor. First, the image is convolved with appro-
priate point spread functions. Second, the chromatic spectral
cnergy distribution at each image location is attenuated by the
ocular transmittance function. Third, the blurred and attenuated

observer analysis of how these factors limit detection and
discrimination performance (Banks and Bennett, 1988;
Banks et al., 1987; Beckmann and Legge, 2002; Geisler,
1984, 1989). The number of photons absorbed in a pho-
toreceptor is described by a Poisson probability density
{equation 8}, and the number of photons absorbed in each
receptor is statistically independent of the number absorbed
in any other receptor {across presentations of the same stim-
ulus). Thus, performance of the ideal observer can be easily
calculated using the formulas in the section “Optimal
Discrimination Given Statistically Independent Sources of
Information™ if the parameter (mean) of the Poisson distri-
bution is known for ecach photoreceptor for the two stimuli
being discriminated.

Typical steps for calculating the mean number of photons
absorbed in each photoreceptor are illustrated in Figure
52.5: (1) convolve with the optical point spread function, {2}
attenuate across wavelength using the ocular transmittance
function, (3) sum the light across the aperture of each pho-
toreceptor in the lattice, and (4) multiply by each photore-
ceptor’s absorption spectrum and integrate across the
wavelength. In terms of the general terminology of the
section “Constrained Bayesian Ideal Observers,” these pro-
cessing steps constitute a constraint function gy(8) that maps
the stimulus into an intermediate signal—the pattern of
photon absorptions in the photoreceptors—although in this
case without any free parameters.

Suppose that after applying these steps the mean number
ol photon absorptions in the ith photoreceptor is g; for stim-
wlus @ and 1s b; for stimulus b. Since the variance of the Poisson
probability distribution is equal to its mean, the d-prime for
the ideal observer using only the ith photoreceptor 1s
— lbf "ail

bta

2

d! (15)
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spectral energy distribution is summed over the aperture of each
photoreceptor. Fourth, the spectral energy distribution entering
cach photoreceptor is multiplied by the effective absorption spec-
trum for that receptor, integrated, and converted to units of quanta,

and hence, by equation 11, d-prime for the full ideal observer
is

s =23, 07

i=1 bl‘ +a"

(16

To determine the discrimination threshold for the ideal
observer, the difference between stimulus @ and stimulus b is
varied (along the dimension of interest) until the diyy
reaches a value corresponding to the chosen criterion level
of accuracy (typically 75% correct).” The solid curve in
Figure 52.1 shows the thresholds obtained with equation 16
for an intensity discrimination task where stimulus a and stim-
ulus b are identical except for intensity {i.e., a scale factor).
Ideal observer analyses at the level of the photoreceptors in
humans have been carried out for a number of different
detection, discrimination, and identification tasks.

One area that has received considerable attention is
spatial vision. Banks et al. (1987) measured the high-
frequency limb of the contrast sensitivity function in the
fovea for briefly presented sine wave targets with a fixed
number of spatial cycles. The symbols show the contrast sen-
sitivities measured at three background intensities. The solid
curves in Figure 52.2 show the performance of the ideal
observer shifted vertically on the log contrast axis. {The ver-
tical shifting, which is done to compare the shapes of the
real and ideal threshold functions, corresponds to scaling the
efficiency of the ideal observer down by a constant factor”)
The lower panels show the actual ratios of real to ideal

" For most stimulus conditions, these formulas for the ideal observer
at the level of the photoreceptors are slightly less accurate than
those described in Geisler (1989), but they are sufficiently accurate
for most purposes, and are simpler and more intuitive.

*For a photon-noise-limited ideal observer, scaling the efficiency
down by a constant factor is equivalent to placing a neutral density
filter in front of the eve.




thresholds. The fact that the ratios are approximately con-
stant as a function of spatial frequency and contrast suggests
that much of the measured variation in human performance
may be due to prencural factors. The fact that the ratios are
high {approximately 20) implies that the overall efficiency of
the neural processing subsequent to photon absorption in
the receptors is relatively low (less than 1%).

Banks and Bennett (1988) performed a similar analysis of
contrast sensitivity in human infants and found that a sub-
stantial fraction of the difference between adult and infant
contrast sensitivity is consistent with the optical and pho-
toreceptor immaturities that have been measured in the
infant eye. Davila and Geisler (1991) showed that detection
thresholds measured for spot targets as a function of target
area vary in a similar fashion, for human and ideal observers,
for targets up to several hundred square minutes of arc (Fig.
52.4). These results are consistent with the measurements
of the contrast sensitivity function measured by Banks et al.
(1987); cf. Figure 52.2.

Geisler (1984) and Geisler and Davila (1985} showed that
some of the dramatic differences in performance observed
across different types of acuity tasks are qualitatively consis-
tent with the performance of an ideal observer operating at
the level of the photoreceptors. In traditional acuity tasks,
humans {with normal vision) can resolve changes of approxi-
mately 45 to 60 seconds of arc in the spatial position of two
overlapping image features. This corresponds to a change in
spacing of two foveal cone diameters. However, in hyperacuity
tasks, humans can resolve changes in spatial position of a
few seconds of arc if the features are slightly separated {e.g.,
Westheimer, 1979). The ideal observer shows similar difler-
ences in acuity because of differences in the nature of the
discrimination information when features overlap on the
retina as opposed to when they do not. This difference in
the nature of the information also leads to rather different
performance as a function of intensity: the performance of
the ideal observer shows that the physical limit for resolving
two overlapping features decreases with the fourth root of
intensity, whereas the physical limit for resolving changes in
the position of two spatially separated features decreases
with the square root of intensity. This difference is also seen
qualitatively in psychophysical studies (Geisler and Davila,
1985).

Another area that has received considerable attention is
color vision. Once again, there are a number of examples
in which human performance is qualitatively, and sometimes
quantitatively, similar to that of an ideal observer at the level
of the photoreceptors. Wavelength discrimination functions
of humans are similar in shape to that of the ideal observer
(Geisler, 1989; Vos and Walraven, 1972). The high spatial
frequency limb of the chromatic contrast sensitivity function
in humans is similar in shape to that of the ideal observer
(Geisler, 1989; Sekiguchi et al., 1993). Some of the deficits
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Froure 52.4.  Detection threshold for spot targets in the central
fovea as a function of target area. The data points are thresholds
for a human observer, and the solid curves are the thresholds for
an ideal observer operating at the level of photon absorptions in
the receptors. The lower solid curve shows the thresholds of the ideal
observer; the upper solid eurve is the same curve translated vertically
for the purpose of comparing shapes. (Adapted from Davila and
Geisler, 1991.)

in color discrimination performance in human infants are
consistent with the performance of an ideal observer that
incorporates the known immaturities in the infant’s optics
and photoreceptors (Banks and Bennett, 1988).

The examples described above demonstrate that there
are many tasks where human discrimination performance
parallels the performance of an ideal observer limited by
prencural factors. Thus, some of the variation in human
performance in these tasks would seem to be explained by
preneural factors in the sense that subsequent neural mech-
anisms must be extracting the available information from the
photoreceptors with relatively constant efficiency. The
importance of this observation is that it moves physiological
research forward from the question of what mechanisms
are responsible for the variations in discrimination perfor-
mance for the stimuli entering the eye to the question of
what mechanisms are responsible for achieving the nearly
constant discrimination performance for the signals exiting
the photoreceptors.

Of course, there are many tasks where human perfor-
mance does not parallel the performance of the ideal
observer limited by preneural factors. For example, even
though the density of cones and the quality of the optics of
the eye decline with eccentricity from the fovea, the decline
in contrast sensitivity at high spatial frequencies is much
more precipitous than predicted by the ideal observer (Banks
et al., 1991). Similarly, the decline in letter identification per-
formance drops much more quickly than that predicted by
the ideal observer (Beckman and Legge, 2002). In these
cases, most (or all} of the variation in performance must be
due to neural mechanisms. These are also important results
because they localize the relevant mechanisms beyond the
photorecepiors.
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Nevrar Facrors N tHE Reriva anp Privary Visuav
The neural mechanisms in the early stages of the
visual pathway are less well understood than the preneural

CoORTEX

factors (optics, receptor lattice, photopigments); nonethe-
less, there is sufficient knowledge to carry out limited ideal
observer analyses, with the caveat that the analyses may
change substantially as new anatomical and physiological
knowledge accumulates. Banks et al. (1991} extended the
carlicr idcal observer analysis of Banks et al. (1987) to
include a more complete description of the preneural
factors, as well as a description the spatial pooling (summa-
tion) implied by the density of the ganglion cells and the sizes
of their center mechanisms. They found that the perfor-
mance of the ideal observer paralleled human performance
in several detection and discrimination tasks measured as
a function of retinal eccentricity. For example, Figure 52.5
shows grating acuity (solid squares) and vernier acuity
(solid cireles) as a function of retinal eccentricity. The /fI
panel shows human performance reported by Westheimer
(1982), and the right panel shows the performance of the
idcal observer. The open symbols show the performance
of an ideal observer that is limited only by preneural
factors. As can be seen, the ideal observer that includes
retinal spatial pooling parallels human performance consid-
erably better than one that does not. Further, the retinal
ideal observer displays the interesting property that vernier
acuity declines more rapidly than grating acuity as a func-
tion of eccentricity. This is a counterintuitive prediction that
further illustrates the value of ideal observer analysis for
understanding the information processing consequences
of the stimulus, task, and physiological/anatomical factors.
As Banks et al. point out, there are aspects of the variation
in human visual acuity with eccentricity unlikely to be
explained by retinal factors; however, an ideal ohserver
analysis (or something equivalent) is essential for determin-
ing those aspects.

Arnow and Geisler (1996} performed an ideal observer
analysis similar to that of Banks et al., but they included
some additional retinal factors based on the receptive field
properties of ganglion cells in the macaque monkey (Croner
and Kaplan, 1995; Croner et al., 1993). They found that
ideal observer contrast sensitivity, at the level of the ganglion
cell responses, parallels human contrast sensitivity fairly well
as a function of target spatial frequency, eccentricity, and size
(see also Geisler and Albrecht, 2000).

There are detection and discrimination tasks where
human performance does not parallel the performance of
the ideal observer at the level of the ganglion cell responses.
These tasks include contrast discrimination and spatial fre-
quency masking. Geisler and Albrecht (1997) performed an
ideal observer analysis of contrast discrimination and spatial
frequency discrimination at the level of the responses of
neurons in primary visual cortex. However, this analysis is
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Ficure 52.5. Grating acuity (squares) and vernier acuity {cindes)
as a function of retinal eccentricity. The left panel shows human
performance (Westeimer, 1982). The right panel shows the
performance of an ideal observer at the level of the photorecep-
tors (open symbols) and an ideal observer that also incorporates spatial
sumration consistent with the center sizes and spatial density of
the retinal ganglion cells. {Adapted from Banks et al., 1991.)

more tentative because of the vast number of neurons in V1,
their highly heterogeneous receptive field properties, and the
potential for long-range interactions within V1 and from
other cortical areas. The strategy was to measure (with
single-unit electrophysiology) the spatial frequency tuning
functions, contrast response functions, and noise character-
istics of a large population of cortical neurons. From these
response functions and noise measurements, Geisler and
Albrecht determined the ideal contrast discrimination per-
formance and spatial frequency discrimination performance
of each cortical neuron in the population using equation 9,
Finally, they determined the ideal performance for the whole
population under the assumption of statistical independence
equation 1 1. The solid curves in Figure 52.6 show the shapes
of the contrast discrimination and spatial frequency dis-
crimination functions from the ideal observer analysis. The
open symbols show the data from several different studies in
humans and monkeys (see figure caption). For comparison,
note that the contrast discrimination function of an ideal
observer at the level of the photoreceptors is flat; that is, con-
trast threshold is constant independent of the background

contrast.

Prxer Noise, NEvrar Noisg, AND CenTraL Erriciexcy In
the tasks considered so far, photon noise was the only source
of stimulus noise {other than the random selection of the
stimulus category on each trial). However, in natural and
artificial environments, signals of interest are often embed-
ded in complex, randomly varying background patterns
which act as a source of stimulus noise. Thus, an important
class of ideal observer analyses is those directed at tasks
where pixel noise is added to the stimulus display. For
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Foure 52.6. 4, Contrast discrimination threshold as function of
base contrast. Open symbols are data from psychophysical studies
feveral in humans and onc in monkey). B, Spatial frequency
discrimination threshold as a function of base frequency. Open
symbols are data from several psychophysical studies in humans.
The solid curves show the relative performance of an ideal observer
that combines the responses of a population of neurons whose con-
trastresponse functions, spatial-frequency-tuning functions, and
noise characteristics were measured one at a time in monkey V1,
The efficiency of the ideal observer was reduced by the same factor
in both plots to allow comparison of shapes.

example, Figure 52.7 shows human and ideal performance
for amplitude discrimination of small targets (spots and
grating patches) in white noise as a function of noise spec-
tral power density (Burgess et al., 1981). The solid line of
slope 1.0 shows the absolute performance of an ideal
observer operating at the level of the cornea. Thus, the
difference between real and ideal performance represents
all losses of information within the eye, retina, and central
visual pathways. For these conditions, efficiency ranges from
about 20% to 70%, much higher than the efficiency for
smilar targets in uniform backgrounds (<1%). In other
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Ficure 52.7.  Comparison of rcal and ideal performance for the
discrimination of simple localized targets in white noise. The diag-
onal line of slope 1.0 shows the performance of the ideal observer;
the symbols show the performances of human observers for several
different spot and sine wave grating targets. (Adapted from Burgess
et al.,, 1981.)

words, the human observers are performing much more
closely to ideal in the pixel noise tasks. One possible expla-
nation for this difference between tasks is that the pixel noise
dominates the photon noise, and other sources of noise in
the early levels of the visual system, effectively sidestepping
inefficiencies of the peripheral visual system. Thus, the dif-
ference in performance between real and ideal observers in
Figure 52.7 may reflect primarily the inefficiencies of central
decision mechanisms (c.g,, Barlow, 1978).

Pixel noise experiments, in conjunction with appropriate
ideal observer analyses, have been used to isolate and
measure central mechanisms that limit discrimination per-
formance (Barlow, 1978; Burgess et al., 1981; Kersten, 1987;
Pelli, 1990}, to evaluate neural noise levels in the early visual
system (Legge et al.,; 1987; Pelli, 1990), and to develop
models relevant for understanding the detection and dis-
crimination of targets in the noisy images created by radio-
logical devices and image enhancers {(Barrett et al., 1992;
Burgess et al., 1982; Myers and Barrett, 1987; Myers et al.,
1985).

Recently, new insights into the efficiency of central
pooling and decision mechanisms have been gained by ana-
lyzing the samples of noise on each experimental trial, con-
tingent upon the observer’s response on that trial (Abbey
et al., 1999; Ahumada, 1996; Beard and Ahumada, 1999;
Gold et al., 2000). Specifically, suppose that there are two
possible targets, @ and 4, and that on each trial one of the
targets is randomly selected and then added to a random
sample of white noise. By averaging together all samples of
noise when the observer responded “4,” averaging together
all the samples of noise when the observer responded “a,”
and then subtracting these two average noise images, one
obtains a classification image. If a sufficient number of such
trials are run, the classification image provides a detailed
map indicating the weight the observer placed on each pixel
location in making the decision. This classification image
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can be compared with the one generated by the ideal
observer to give detailed information about inefficiencies in
the real observer’s central pooling and decision mechanisms.
Measurements of classification images show that observers
tend to make use of only a subset of the pixel locations that
contain useful information, and sometimes use locations that
contain no useful information (e.g., locations where target
contours are occluded; Gold et al., 2000),

Natural scene statistics and natural selection

The introduction to this chapter began with the truism that
the proper study of a visual system must include an analy-
sis of those specific tasks that the system evolved to perform.
However, as we have seen, ideal observer analyses have been
largely confined to tasks involving relatively simple stimuli
generated in the laboratory. Recently, measurements of
statistical properties of natural environments have become
available, allowing ideal observer analyses for tasks involving
more naturalistic stimuli, This is an important direction for
research because the results can speak more directly to the
relationship between the statistics of natural environments
and the design of perceptual systems.

One topic that has received considerable interest is color
identification. For example, Regan et al. (1998, 2001) mea-
sured the wavelength distributions of primary food sources
(fruits) of several New World monkeys and the wavelength
distributions of the surrounding foliage. They then used an
ideal observer analysis to determine optimal placement of
the M and L cones for identifying food sources in the sur-
rounding foliage. Interestingly, optimal placement corre-
sponds fairly well with actual placement, although, as Regan
et al. pointed out, other factors (such as minimizing chro-
matic aberration) may also contribute to actual placement.
Osorio and Vorobyev (1996) have made a similar case for
placement of the cone photopigments in Old World
primates. Similarly, the two cone pigments in dichromatic
mammals appear to be nearly optimally placed for discrim-
inating between natural leaf spectra (Chiao et al., 2000;
Lythgoe and Partridge, 1989).

Another topic that has received some attention is contour
detection (Elder and Zucker, 1998; Geisler et al.,, 2001;
Sigman et al.,, 2001). For example, Geisler et al. (2001)
extracted edge elements from images of diverse natural
scenes and then computed co-occurrence probabilities for
different possible geometrical relationships between the edge
clements. (Note that the geometrical relationship between a
pair of edge elements is described by a vector in three
dimensions: distance, direction, and orientation difference.)
Two different co-occurrence probability distributions were
measured: one for edge elements that belong to the same
physical contour f{ie., the same surface boundary,
shadow/lighting boundary, or surface-marking boundary)
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and one for edge elements that belong to different physical
contours. Using these two probability distributions, Geisler
et al. derived an ideal observer for detecting contours
embedded in complex backgrounds and compared its
performance to human performance on the same tasks.
Remarkably, the performance of the ideal observer based
on natural image statistics was quite similar to human
performance across all conditions—the correlation between
human and ideal detection accuracy was approximately 0.9.
"This result suggests that there is a close relationship between
contour grouping mechanisms in humans and the statistics
of contours in natural images.

These two examples, and a number of the examples
described earlier, demonstrate that there can be a close cor-
respondence between real and ideal observers. Nonetheless,
there are many reasons to expect real observers not to reach
the performance of the ideal observer:

1. In the laboratory, the task (including the stimulus
likelihoods and prior probabilities) is defined by the
experimenter, and may not correspond well with the tasks
that the organism has evolved or learned to perform in the
natural environment.

2. Organisms evolve or learn to perform many different
tasks, and hence there may be compromises in design that
lead to nonideal performance in a given task.

3. There are limits to the range of materials that organ-
isms can synthesize and exploit, and limits on the possible
structure of organic molecules, but there are not similar
limits on the ideal observer,

4. Perceptual systems (and the learning mechanisms that
shape them) are designed through natural selection, and thus
the intrinsic utility function is fitness (birth and death rates),
which may imply an ideal observer rather different from the
one implied by the utility function specified in a laboratory
task.

5. Evolution through natural selection is an incremental
process in which each change must produce an increase in
fitness; thus, the real observer may correspond to a local
maximum in the space of possible solutions, whereas the
ideal observer corresponds to the global maximum in the
space of possible solutions.

6. In general, evolution lags behind changes that occur in
environmental likelihoods and prior probabilities; thus, a
real observer may not even correspond to a local maximum
in the space of possible solutions.

Maxmvum Frrness Ipear OBSERVERS
understanding the differences between real observers and

One way to begin

ideal observers is to measure properties of the natural envi-
ronment (€.g., natural scene statistics) and, from these, design
more naturalistic laboratory tasks. The most appropriate
ideal observers for analyzing such tasks are those where the
measure of utility is fitness (birth and death rates), although



this may often not be practical. The fitness utility function
can be represented as a growth factor function, ¥ (r, @),
which equals 1 plus the birth rate minus the death rate for
each possible response and state of the environment (Geisler
and Diehl, 2002). Thus, given a particular stimulus 8, the
maximum-fitness ideal observer will make the response that
maximizes the growth factor averaged across all possible
states of the environment. In other words, the maximum-
fitness ideal observer will make the response

R =arg maxl:z ¥{r, m}p(S!o))p(m)} (17)

This equation is identical to the standard Bayesian ideal
observer equation 5, except that the utility function is the
growth-factor function.

Geisler and Diehl (2002) have demonstrated that utility
functions based on fitness can yield ideal observers that
behave quite differently from those based on more tradi-
tional utility functions. For example, Figure 52.8 compares
the decision criterion of an ideal observer that maximizes
accuracy with one that maximizes fitness. In the hypotheti-
cal scenario they considered, a predator species is trying to
detect prey (its only food source). All other things being
equal, natural selection favors mutations that result in an
increase in the birth rate of the predator. However, when
birth rate increases, the result is a decline in the number of
prey and hence a reduction in the prior probability that a
prey is in the immediate vicinity. If' the utility function of the
ideal observer corresponds to maximizing prey detection
accuracy (the typically utility function in laboratory experi-
ments), then the optimal decision criterion equals the ratio
of the prior probabilities, which is shown by the dashed
curve in Figure 52.8. On the other hand, if the goal is to
maximize fitness, then the optimal decision criterion is
relatively invariant with birth rate (solid curve), because
the decrease in target prior probability is balanced by the
increase in payofl when a prey is captured. This example
demonstrates the potential importance of considering fitness
utility functions when evaluating the performance of real
observers.

Bavesian  NaTturar  SELECTION A complementary
approach to understanding the differences between real
observers and ideal observers is to measure properties of the
natural environment and incorporate those into a model that
represents the process of natural selection, which, unlike the
ideal observer, does not necessarily find the global optimum.
[t is possible to formulate a quantitative version of the theory
of natural selection that incorporates the same terms—prior
probability distributions, stimulus likelihood distributions,
and utility functions—as those in a Bayesian ideal observer
(Geisler and Diehl, 2002). This Bayesian formulation of
natural selection provides a convenient conceptual frame-
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Fioure 52.8. Comparison of an ideal observer having a utility
function based on maximizing growth rate (1 + birth rate — death
rate) versus a more standard ideal observer having a utility func-
tion based on maximizing detection accuracy. The dashed curve
shows the decision criterion of an ideal predator that is maximiz-
ing prey detection accuracy as a function of the predators” birth
rate (which causes a decrease in the prior probability of a prey
being within the local vicinity). The solid curve shows the decision
criterion of the ideal predator that is maximizing growth rate. The
lumpiness of the solid curve is due to noise in the simulation
process. (Adapted from Geisler and Diehl, 2002.)

work for understanding how natural scene statistics, and
other properties of the environment, influence the evolution
and hence design of a perceptual system.

Briefly, the fundamental equation of Bayesian natural
selection shows how the expected number of organisms of
a given species carrying a given vector of alleles a at time
£+ 1is related to the number of organisms carrying the same
allele vector at time £, the prior probability of a state of the
environment at time ¢, the likelihood of a stimulus given the
state of the environment, the likelihood of a response given
the stimulus, and the growth factor given the response and
the state of the environment:

0.(t+D)=0,(0X p.(@;02,v.(r,®) Y p. (rls)p. (slo)  (18)
w P o

The actual number of organisms at time ¢+ 1 is a random
number, O,(t + 1), that is obtained by sampling from appro-
priate probability distributions for births, deaths, mutations,
and sexual recombination. A separate fundamental equation
is set up for each allele vector in each species under consid-
eration, and the process of natural selection is represented
by iteration of these fundamental equations in parallel over
time. (Note that mutations and sexual recombination may
create new allele vectors and, hence, new fundamental equa-
tions, and that extinction of alleles or species will remove
fundamental equations.)

Using this formulation of natural selection and the cor-
responding maximum fitness ideal observer, Geisler and
Dichl (2002) explored the coevolution of receptor spectral
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sensitivities in a hypothetical predator species and camou-
flage in a hypothetical prey species. They found that there
are many starting conditions where the spectral sensitivities
{and decision criterion) of the predator species converge to
that of the maximum-fitness ideal observer. Further, they
found that there are different stable coevolutionary end
states, and that these different end states are not equally good
in terms of the average growth rate (fitness) for either the
predator or the prey. This may seem contradictory (how can
two different solutions both represent maximum fitness?),
but in fact, it is expected because in realistic evolutionary
scenarios the prior probability distributions change over
time, and hence the maximum-fitness ideal observer changes
over time. If the stable end-state prior probabilities are dif-
ferent, then the maximum-fitness ideal observer may be dif-
ferent. This example demonstrates the potential importance
of measuring natural scene statistics, and of considering the
incremental process of natural selection, when evaluating

the performance of real observers.
Conclusion

This chapter outlined the basic concepts and formulas of
ideal observer analysis as it has been applied in studies of
biological vision, and then illustrated the application of ideal
observer analysis in a number of cases involving detection,
discrimination, and identification tasks. Although real visual
systems are never ideal, deriving the performance of an ideal
observer can be very useful for understanding the computa-
tional requirements of a task and the limits to performance
imposed by specific anatomical and physiological factors.
The range of situations where ideal observer analysis can be
usefully applied has grown over the years, and it is likely to
become an even more central tool as we attempt to under-
stand natural scene statistics and their relationship to the
design and evolution of visual systems.
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