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Overarching Principle

Vision systems evolve to obtain information about the environment that 
is relevant for the tasks the organism must perform in order to survive 
and reproduce.

Corollary:  The design of a vision system is constrained by the tasks it 
performs, by the physical/statistical properties of the environment, and 
by various biological factors. 
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Approach to Handling 
Many of the Difficult Problems

1. Efficiently encode the attributes of retinal images in small regions with 
a foveated visual system.

2. Combine the measured local attributes into groups, categories or 
objects using mechanisms based on the physical laws and statistical 
facts of natural scenes, and on past experience.
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Simple example demonstrating the consequences of context problem.
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If the problem is not solved (at least partially) recognition of previously 
encountered objects is blocked.  Perceptual grouping and segmentation mechanisms 
play a central role in solving the context problem for most natural stimuli.
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Gestalt Grouping Principles

Proximity

Similarity

Good continuation

Closure

Wertheimer and the other Gestalt psychologists were the first to fully appreciate the 
fundamental importance of grouping mechanisms for perception.   Proximity:  
objects that are nearby tend to be grouped together.  Similarity:  objects 
that are similar tend to be grouped together.  Good continuation:  contour 
elements that are consistent with a smooth contour tend to be grouped 
together.  Closure:  Contours that are consistent with a closed form tend to 
be grouped together.
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Similarity and Proximity

Using demonstrations similar to these they showed that grouping is based in part 
upon similarities along a number of stimulus dimensions.
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Wertheimer (1923)

Good Continuation

Good Continuation: contour elements that are consistent with a smooth curve tend 
to be grouped together.
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Closure

Gestalt principle of “closure.” Because of good continuation the two straight 
line segments in A tend to look like a pair of crossing “sticks”.  Because of 
“closure” the same two line segments tend to be split at the middle to 
become parts of two “butterfly wings.”
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Arrow junction

L junction

T junction

Fork junction

“Blocks World” Junction Cues

(e.g., Guzman 1969)

Perceptual grouping also makes use of principles that are based upon the 
three-dimensional properties of the environment.  For example, these line 
segments are grouped into two boxes and a cylinder.  Object corners 
occluding a background object tend to form an “L junction” or an “Arrow 
junction.” Object corners that do not occlude a background object tend to
form a “Fork junction.” Occluded contours of an object tend to form “T 
junctions” with the contours of the occluding object.
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Why are these grouping principles used by the brain?

What other grouping principles might the brain use?

How might the brain implement these principles?

A good starting point is to examine the statistical 
relationship between the natural environment and the 
images formed in the eye (i.e., measure Bayesian 
statistics).

Although Gestalt psychologists and early computer vision scientists recognized the 
importance of grouping principles, they did not explicitly try to make the link to the 
properties of natural environment.  Egon Brunswik was the first perception scientist 
to examine and think through the formal connection.
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Egon Brunswik
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Absolute Statistics:  The probability of specific 
image properties
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Bayesian Statistics: The probability of 
particular environment properties given the 
observed image properties

Two Types of Natural Scene Statistics

Bayesian statistics describe the probability of particular environmental properties given the 
observed image properties.  These statistics can be useful for characterizing the information 
relevant for natural tasks, where the goal is to make accurate inferences about the 
environment.  Unfortunately, Bayesian statistics are more difficult to measure than absolute 
statistics because ground-truth information about the environment must be obtained.
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Measuring Bayesian Statistics for a Given Task
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Select physical scene properties

Select image properties

Measure prior probability distribution

Measure the likelihood distributions

Measure amount of information and how to use it with Bayesian observer

After deciding on a natural task, select physical scene properties potentially relevant to that 
task (often the selected properties are the things one wants to estimate or identify in the 
performing task), select potentially relevant image properties, measuring likelihood and 
prior probability distributions.  To measure the quality of the information and how it might 
be used, determine performance of Bayesian (optimal) observer.
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Measuring Bayesian Statistics for a Given Task

One Approach:

Analyze natural images that have been hand segmented by human 
observers. 

(e.g., Brunswik & Kamiya 1954; Balboa & Grzywacz 2000; Geisler, 
Perry & Super 2001; Elder & Goldberg 2002; Konishi, Yuille, Coughlan
& Zhu 2003; Martin, Fowlkes, & Malik 2004)

Central assumption:

Humans can, under some circumstances, produce veridical 
segmentations of images to provide an approximate “ground-truth.”

One specific approach to measuring the Bayesian statistics is to analyze images that have 
been hand segmented by human observers.  I will describe a few examples of this approach 
from our lab.
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Some Pattern Vision Tasks

Contour completion and contour grouping

Contour classification

Foreground-background assignment

To motivate the natural scene statistics approach to the study of pattern vision, consider 
three example tasks.
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Contour Completion Task

same contour
different contour

= 
ω

?

( )distance, direction, orientation, contrast polarity= ∆s

Do contour elements intersecting an occluding 
surface belong to the same or different contour?
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Our first step in measuring these Bayesian statistics was to extract small-scale edge 
elements from natural images with an automatic algorithm.  20 representative 
images (close-ups, distant shots, forests, mountains, ocean, sky, water, fields, 
animals).  Each image analyzed separately.
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Each red pixel in the right image is a edge element location. The orientation of each 
element was measured but is not shown here.  Two observers then assigned edge 
elements to physical contours (sources); observers regarded boundary contours, 
lighting contours and surface marking contours as distinct.  This assignment 
information was assumed to provide approximate ground truth.
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Decimated edge samples with orientation shown.
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The geometrical and contrast-polarity relationship between two edge elements is 
given by 4 parameters.  Once images are hand segmented it is straight forward to 
estimate the likelihood and prior probability distributions.  In the specific task we 
consider next, the prior probabilities are forced to be equal, so the relevant function 
is the likelihood ratio distribution which is plotted on the right.  The reference is in 
the middle; distance is given by the ring, direction by the angle around the ring, 
orientation difference by the orientation of the plotted line segment, polarity by the 
particular half of the diagram, and likelihood ratio by the color of the plotted line 
segment.
For an earlier version of this analysis (without contrast polarity) see Geisler, Perry, 
Super & Gallogly (2001) Vision Research, 41, 711-724.
These average Bayesian pair-wise statistics make it to possible to determine optimal 
performance in the contour completion task.
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In the contour completion task, a pair of edge elements is selected at random from a 
natural image and an occluder is placed between them.  The task (the display is 
shown in B) is to indicate whether the pair of elements is from the same or different 
physical contour, where the prior probability is 0.5.  

Three occluder diameters.  No feedback is given for the first 600 trials, then 600 
trials with feedback, then 600 trials with no feedback.
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Comparison of human (symbols) and ideal (solid curves) performance, with (green) 
and without (red) contrast polarity information.  Human efficiency is high and 
parallel to ideal.  Average data for four observers (two experienced, two naïve).
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Practice with feedback does not lead to improvements in performance.  If anything 
performance gets worse.  Unpracticed observers have excellent knowledge of the 
contour statistics of natural scenes.  When they get feedback they may try to make 
trial-to-trial adjustments to their decision criteria which leads to non-optimal 
performance.
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2.5o

The pair-wise natural scene statistics can also be used to generate predictions for 
contour integration experiments (although it is not an ideal Bayesian observer).  
Here is an experiment we carried out several years ago to compare with the 
predictions from natural scene statistics.  Computer vision researchers (e.g., Parent 
& Zuker 1989; Sha’ashua & Ullman 1988; Jacobs 1996) proposed algorithms for 
solving the contour integration problem.  Hayes Field, Hess & Hayes (1993) were 
the first to do careful psychophysical work using this kind of task, and they raised 
awareness of the importance of the task in the biological vision science community.
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Made parametric measurements for all four dimensions.
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Groups obtained using pair-wise natural image statistics.
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A Bayesian grouping rule based on natural scene statistics predicts human contour grouping 
performance quite well (correlation of about 0.9, as shown in next slide).
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Contour Classification Task

surface boundary contour
surface marking contour

shadow contour

= 

ω

( )intensity, contrast, phase= ∆ ∆ ∆s

What is the physical source 
of a given contour?

Image contours can occur for a number of entirely different physical reasons.  They can be 
the result of surface boundaries, surface markings or shading.  There can be little doubt that 
many perceptual tasks depend critically upon identifying whether a contour is a surface 
boundary, a marking or a shadow.
We have recently begun a systematic program to measure Bayesian statistics in the world of 
close-up foliage.
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Why Close Up Foliage?

“Divide and conquer”:  Foliage is a major component of the natural 
environment; other components will be studied later

Foliage comprises almost all of the natural environment of monkeys such 
as the macaque—the primary animal model for human vision

Close up foliage images are easy to hand segment accurately, making it 
relatively easy to measure Bayesian statistics

Statistics of distance foliage can be measured/inferred by reducing 
image scale
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Calibration of 36-bit Camera

The statistics were measured from 2D (monocular) images obtained with a calibrated 36-bit 
camera.  The camera is calibrated so that it gives us images where each pixel is described by 
the L, M and S cone responses.  I won’t describe the details of the calibration, but mention 
that it is sufficiently accurate for our purposes. foliage images using a 36-bit-per-pixel 
camera that allowed us to estimate L and M cone responses with a precision of 0.2% and S 
cone responses with a precision of 1%.  (Usually, the variation in the image properties 
swamps the variation due to camera error.)
We have obtained close up images for large variety of foliage.  There are a very large 
number of possible perceptual tasks we can consider using this image database.  We have 
just considered a few so far.
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log log logl L M S= + +

log 0.5log 0.5logby S L M= − −

log logrg L M= −

achromatic

blue-yellow

red-green

Ruderman, Cronin, & Chiao [1998, JOSA-A 15(8):2036]

L, M, and S values were log transformed and converted 
to the color opponent space of Ruderman et al. (1998).

The opponent space values are Gaussian distributed and 
statistically independent (they were extracted via PCA).

Conversion to Opponent Space

This step does not add or subtract information, but makes the distribution of values more 
Gaussian and the dimensions a bit more statistically independent.
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Here is a typical image captured with the calibrated camera.  To obtain approximate ground 
truth, all the objects within or touching a region of interest were hand segmented.  The 
region of interest (orange circle) was picked so there would be about 40 objects from each 
image.  
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Here is an example of the segmentation for 1 image.  All the leaves and branches are 
segmented as separate objects, occlusions are marked, and even though some occluded 
objects have many detachments, the detachments are all linked together as single objects.
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Close up of a leaf showing segmented surface boundary contours, shadow contours, and 
surface marking contours. These segmentations are assumed to provide approximate ground 
truth, the necessary ingredient for measuring Bayesian statistics.
We currently have over 2000 leaf objects segmented from over 60 images.  The results I 
will describe next are based on all of the more than 2000 segmented leaf objects.



36

Intensity Difference
The change in intensity across the two sides of the contour

Contrast Difference
The change in contrast across the two sides of the contour

Phase Difference
The degree to which the contour is step-like or bar-like

Local Image Measures for Contour Classification

For the contour classification task, we measured Bayesian statistics for three local image 
measures.  In general, the power of these statistics depend upon the length of contour that is 
analyzed. Here I focus on short contours, 32 pixels in length, which correspond on average 
to about 15% of the median length of a leaf’s perimeter.  There are many stimulus attributes 
that could be examined we are starting by looking at the simplest static monocular 
attributes.
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Intensity Difference
The change in intensity across the two sides of the contour

Surface Boundaries
vs.

Surface Markings

Surface Boundaries
vs.

Shadow Contours

Surface Markings
vs.

Shadow Contours
77% 67% 82%

Side 1 Side 2

lI∆

(69% with by)rgI∆

lI∆

rgI∆

lI∆

rgI∆

“Ribbon”
32 pixels

Here are the results for the intensity difference measure.  For simplicity I have plotted the 
joint distributions for only the luminance and red-green signals (blue-yellow signals are not 
shown).
The black line shows the optimal linear classification boundary.
The numbers indicate the percent classification accuracy.  These give a lower bound on how 
useful the intensity difference information is the world of foliage for classifying contour 
boundaries.
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Contrast Difference

The change in contrast across the two sides of the contour

Surface Boundaries
vs.

Surface Markings

Surface Boundaries
vs.

Shadow Contours

Surface Markings
vs.

Shadow Contours
77% 66% 66%

Side 1 Side 2

lc∆

rgc∆

lc∆

rgc∆

lc∆

rgc∆

lc∆

rgc∆

In the world of foliage, contrast changes are larger across surface boundaries than across the 
other two categories, and larger across shadow contours than 
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Phase Difference

The degree to which the contour is step-like or bar-like

Surface Boundaries
vs.

Surface Markings

Surface Boundaries
vs.

Shadow Contours

Surface Markings
vs.

Shadow Contours
78% 61% 82%

Phase = -

Bar Step

lφ

rgφ

lφ

rgφ

lφ

rgφ

In the world of foliage, surface markings are more bar-like than the other two categories.
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Surface Boundaries
vs.

Surface Markings

Surface Boundaries
vs.

Shadow Contours

Surface Markings
vs.

Shadow Contours

83% 71% 83%

Combined Measures

Performance when all the measures are combined and when using single linear decision 
bound.  Apparently, in the world of foliage it is possible to use three simple measures (at a 
small scale—32 pixels length) and obtain fairly good classification performance.  The 
toughest problem is distinguishing shadow contours from surface boundary contours.  We 
have not yet tested whether humans (or monkeys) can perform better with short contour 
segments.  They may very well perform better, and we are currently exploring other 
potential sources of information. 
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Foreground–Background Task

Which side of a surface boundary contour is the foreground 
occluding surface?

Foreground Background

occluding surface side
background side

= 
ω

( )contrast, curvature= ∆s
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95%
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Performance

Length

16

32

64

128

81%

87%

93%

97%

Accuracy

*The median length of a continuous surface boundary is
97 pixels

Performance ranges from 81% for contours 16 pixels long to 97% for contours 128 pixels 
long.  Contiguous surface boundary contours have a median length of 97 pixels, so in the 
world of foliage it is possible to largely solve the foreground-background problem with 
these two rather simple image measures.
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