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My assignment is to talk about pattern vision and natural scenes
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Pattern Vision

The study of pattern vision is concerned with understanding the eye and 
brain mechanisms underlying detection, discrimination and encoding of 
spatial patterns.

Before, getting down to details there are a few general points to make, most of 
which have been presented earlier in the course, either implicitly or explicitly.
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Overarching Principle

Vision systems evolve to obtain information about the environment that 
is relevant for the tasks the organism must perform in order to survive 
and reproduce.

Corollary:  The design of a vision system is constrained by the tasks it 
performs, by the physical/statistical properties of the environment, and 
by various biological factors. 
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Approaches to Understanding Vision

Natural scene statistics and natural tasks

Anatomy

Responses of individual neurons

Responses of neural populations

Perceptual/behavioral performance

Mathematical and computational modeling
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Why Measure Natural Scene Statistics?

Characterize natural stimuli

Identify sources of stimulus information available for performing 
natural tasks

Determine the dynamic range, reliability and utility of the stimulus 
information

Generate hypotheses for visual mechanisms that might exploit the
stimulus information

Design experiments to test for the hypothesized mechanisms
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Two Types of Natural Scene Statistics

It is useful to distinguish between two general types of natural scene statistics, which can be 
measured at various levels along the pathway from environment to behavior.  Absolute 
statistics are useful for understanding coding and representation.  However, they say 
nothing about the relationship between the different levels and hence they are not as useful 
for understanding the information relevant for specific tasks.  In most natural tasks the goal 
is to use the retinal image or some neural representation of the retinal image to make 
inferences about properties of the physical environment.  In other words, the statistics one 
needs to know is the probability of different states of the environment given the image.  
These are what I am calling Bayesian statistics.
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Five Difficult Problems for Vision Systems

Illumination problem
The illumination of scenes is highly variable and complex.

Depth problem
The images in the eyes are two-dimensional projections of the three-
dimensional environment.

Context problem
Objects often appear in a complex and varying context of other objects.

Viewpoint problem
Objects are rarely seen from the same viewpoint.

Category complexity problem
The specific objects that define a category are often quite different.

Fundamental Biological Constraints
Limited neural resources, dynamic ranges, and physical space

Most natural tasks involve dealing with one or more of these difficult general 
problems.  Furthermore, the solutions that the visual system can come up with in 
natural tasks are constrained by various fundamental biological factors.
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Approach to Handling 
Many of the Difficult Problems

1. Efficiently encode the attributes of retinal images in small regions with 
a foveated visual system.

2. Combine the measured local attributes into groups, categories or 
objects using mechanisms based on the physical laws and statistical 
facts of natural scenes, and on past experience.

The first lecture will say a little about how the initial encoding of retinal images 
contributes to pattern vision.  The second lecture will describe a little about how 
local image properties are combined (grouped and segmented) and interpreted, with 
a focus on the measurement of relevant natural scene statistics (because relatively 
little is known about the relevant brain mechanisms).
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The visual pathway from the eye to the primary visual cortex.
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Competing Goals for Eye Design

Maximize spatial resolution

Maximize field of view

Minimize neural resources
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Solution

High resolution foveal vision

Low resolution peripheral vision

Rapid eye movements

(Gaze contingent display demo.)



12

Ganglion cell density falls precipitously with eccentricity; faster than the falloff in 
cone density (based on data from Curcio & Allen 1980).
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Croner & Kaplan (1995)

Ganglion cell receptive fields have a center-surround organization and scale in size 
so that retinal image is fully covered.  As described earlier in the course, this 
organization helps to reduce the redundancy in the neural representation of natural 
stimuli, and helps (along with other adaptation mechanisms) to prevent the loss of 
information by keeping neurons within their operating range.
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Croner et al. (1993)

Sclar et al. (1990)

P cells

M cells

Retinal ganglion cells respond in a non-linear way with contrast.  As described 
earlier in the course, this may reflect relatively efficient coding that is roughly 
matched to the typical distribution of contrasts in natural scenes.  The nonlinear 
properties include point nonlinearities and contrast gain control.
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1.  Optical point-spread function (Campbell & Gubisch, 1966)

2.  Ganglion cell sampling lattice (Curcio & Allen, 1980)

3.  Receptive field properties of P cells (Derrington & Lennie,
1984; Croner & Kaplan, 1995):

a.  Center diameter of one cone in fovea

b.  Center diameter increasing in proportion to GC density

c.  Surround diameter 4-6 times larger than center

d.  Surround strength 50%-80% of the center

4.  Response noise (Croner et al., 1994):

a.  Constant additive noise

Retinal/LGN Model

What are the consequences of this retinal processing for pattern vision?  One way to 
proceed is to put the pieces together from the anatomical and physiological studies 
of the macaque retina (and LGN) in order to simulate the responses of the retina in 
pattern vision experiments.  From these simulations one can compute performance 
in pattern vision experiments assuming the output of the retina is used with perfect 
efficiency by the brain.  This ideal performance (if simulation components are 
correct) precisely measures the limitations imposed by the eye. Comparison with 
behavioral performance measures the efficiency of brain mechanisms.  This is what 
some of us call an ideal observer analysis.
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2AFC Detection Task

A sensible starting point for this analysis is detection tasks in uniform backgrounds.  
Standard behavioral measurements are contrast thresholds for localized targets.
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Optimal Performance in 2AFC Task
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It is relatively easy to compute the approximate optimal performance given the 
retinal outputs, if we assume the noise in different neurons is statistically 
independent (which will not be precisely correct; but appears to be approximately 
correct).
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Contrast sensitivity functions for sine wave gratings are an interesting case because 
they are known to be similar for humans and macaque monkeys (see DeValois & 
DeValois, 198x).
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Contrast sensitivity data of Robson & Graham (1980) compared with the one-
parameter (efficiency parameter) predictions of the retinal ideal observer analysis.  
(100 ms presentions with a fixed number of cycles)
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The predictions can also be plotted as contrast sensitivity functions at various 
eccentricities.
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Contrast threshold as a function of spatial frequency for brief stimuli (e.g., 100 ms) 
and for long stimuli (e.g., a couple of seconds).  Typically the eye jumps from one 
location to another 3-4 times per second, so the contrast sensitivity function that is
most representative of normal conditions does not have much roll-off at the low 
spatial frequencies.  The shape of the CSF also depends on the number of cycles of 
the grating—an inverted U is more likely with a fixed target area (i.e., variable 
number of cycles).
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Spatial Resolution Across the Visual Field

The resolution of the human visual system declines rather rapidly with distance 
from the center of the fovea, as you can see from this figure (explain diagram).  
The resolution is the period of the cutoff frequency of the CSFs.
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Watson (2000)

What happens when this analysis is applied to detection tasks other than sine wave 
gratings?  Here are targets used in the ModelFest project.
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Watson (2000)

Performance in simple detection experiments on uniform fields seems to be largely 
explained by retinal factors (uniformly efficient processing by the brain).  However, 
once we leave the realm of simple detection on uniform backgrounds, brain 
efficiency is no longer approximately constant.
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Measuring tuning functions of cortical neurons.



26

Quantitative characterization of cortical cell response properties using moving 
(drifting) sine wave gratings.
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Summary of cortical neuron responses to sine wave grating stimuli (Geisler & 
Albrecht 1997). 
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The behavioral contrast sensitivity function reflects the combined neural contrast 
sensitivity of many cortical neurons, each tuned to a particular range of frequencies.  
Similarly (but not shown), behavioral contrast sensitivity as a function of orientation 
reflects the combined neural contrast sensitivity of many cortical neurons each 
tuned to a particular range of orientations.  This “multiple channels” hypothesis is 
plausible if the neurophysiological description of primary visual cortex is accurate, 
but is there any independent behavioral evidence for this hypothesis?
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Pattern masking demo.  These masking effects cannot be explained by retinal 
mechanisms but are consistent with what one would expect from properties of 
neurons in the primary visual cortex.
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Vertical masker plus low contrast horizontal target grating.
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Vertical masker plus low contrast slightly tilted target grating.  The target contrast is 
the same as in the previous slide.
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Vertical masker plus slightly tilted low contrast grating two octaves higher in spatial 
frequency.  The target contrast is the same as in the previous slide.
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Cortical neurons respond in a nonlinear fashion; some of this nonlinear behavior 
they inherit from the retina, some is generated in the cortex.  One of their major 
nonlinear behaviors is consistent with a multiplicative contrast normalization 
mechanism (Heeger 1991; 1992; Albrecht & Geisler 1991; others); another is 
consistent with an expansive (accelerating) nonlinear point nonlinearity (Heeger
1991; 1992; Albrecht & Geisler 1991; others).
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Typical model of single neuron responses in primary visual cortex.  Add to this 
model selective surround suppression and you have the model that Tony described 
on Friday.  Such models predict some, but not all, pattern masking phenomena.  
There is a large literature on this that I will not attempt to summarize.
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To return to eye design implications.  Saccade lengths tend to be larger than 
decorrelation distances ( the distance over which contrast is correlated) in 
natural scenes.  The arrow indicates the average decorrelation distance in 
natural outdoor scenes.  We have measured saccade lengths in search 
experiments with fairly small displays and even then the mean saccade lengths 
is greater than 3 deg of visual angle.  Fixation lengths are typically 200-300 ms 
in many tasks.  The conclusion is that the time course of the rapid contrast gain 
control mechanisms (and some luminance gain control mechanisms) must be 
very fast if it is to be useful under natural conditions.  Albrecht, Geisler, Frazor
& Crane (2002) find that, in fact, contrast normalization is very fast (and 
should be clearly distinguished from slower contrast adaptation).


