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Frechette, E. S., A. Sher, M. I. Grivich, D. Petrusca, A. M. Litke,
and E. J. Chichilnisky. Fidelity of the ensemble code for visual
motion in primate retina. J Neurophysiol 94: 119–135, 2005. First
published December 29, 2004; doi:10.1152/jn.01175.2004. Sensory
experience typically depends on the ensemble activity of hundreds or
thousands of neurons, but little is known about how populations of
neurons faithfully encode behaviorally important sensory information.
We examined how precisely speed of movement is encoded in the
population activity of magnocellular-projecting parasol retinal gan-
glion cells (RGCs) in macaque monkey retina. Multi-electrode record-
ings were used to measure the activity of !100 parasol RGCs
simultaneously in isolated retinas stimulated with moving bars. To
examine how faithfully the retina signals motion, stimulus speed was
estimated directly from recorded RGC responses using an optimized
algorithm that resembles models of motion sensing in the brain. RGC
population activity encoded speed with a precision of !1%. The
elementary motion signal was conveyed in !10 ms, comparable to the
interspike interval. Temporal structure in spike trains provided more
precise speed estimates than time-varying firing rates. Correlated
activity between RGCs had little effect on speed estimates. The spatial
dispersion of RGC receptive fields along the axis of motion influenced
speed estimates more strongly than along the orthogonal direction, as
predicted by a simple model based on RGC response time variability
and optimal pooling. ON and OFF cells encoded speed with similar and
statistically independent variability. Simulation of downstream speed
estimation using populations of speed-tuned units showed that peak
(winner take all) readout provided more precise speed estimates than
centroid (vector average) readout. These findings reveal how faith-
fully the retinal population code conveys information about stimulus
speed and the consequences for motion sensing in the brain.

I N T R O D U C T I O N

An essential function of sensory systems is to extract spe-
cific information about the environment efficiently from the
activity of peripheral neurons. Current understanding of this
process is based mostly on examination of how faithfully the
activity of an individual peripheral or central neuron represents
a sensory variable, such as the number of incident photons or
the direction of movement (e.g., Barlow et al. 1971; Baylor et
al. 1979; Bialek et al. 1991; Britten et al. 1992; Copenhagen et
al. 1987). However, in peripheral sensory structures, behavior-
ally important information is usually represented not by the
activity of an individual neuron but by the concerted activity of
many neurons. For example, visual motion, form, and texture
are encoded by the ensemble activity of hundreds or thousands
of retinal ganglion cells (RGCs) that do not individually signal
these stimulus attributes. Yet little is known about how faith-
fully stimulus information is conveyed by sensory population
codes, what limits the fidelity of the encoding, and what

computations are required to extract the information efficiently
downstream.

Approaching these problems poses a major challenge: re-
cording from the entire population of cells relevant for a
behaviorally important sensory task. Although modern tech-
niques allow recording from several dozen neurons simulta-
neously, in most experimental systems it is unclear how to
target the cells responsible for a specific neural computation
and record from the entire population. A system with unusual
promise is the encoding of visual motion in the primate retina
(Chichilnisky and Kalmar 2003). Waves of activity in the
population of parasol (magnocellular-projecting) RGCs carry
information about visual motion to circuits in the brain respon-
sible for motion sensing, and it has recently become possible to
record from !100 parasol cells with receptive fields that tile
almost completely a significant region of visual space (Chich-
ilnisky and Kalmar 2002; Litke et al. 2004). Because parasol
cells are not individually direction selective, visual motion
information is carried by population activity. The fidelity of
this population code places the ultimate limits on cortical
motion processing and behavioral motion sensing, which have
been examined extensively in monkeys and humans. Finally,
the wave of activity traversing the retina is an elementary
representation likely to be recapitulated in other sensory struc-
tures. For these reasons, the encoding of motion in the primate
retina provides an opportunity to understand fully a behavior-
ally important population code and the problems faced by the
brain in reading it out.

Here we focus on estimating the speed of a moving object
from retinal responses, which is required for visually guided
behaviors such as tracking eye movements and target intercep-
tion. To study the fidelity of the population code, we estimated
stimulus speed directly from the responses of !100 ON and OFF

parasol RGCs simultaneously recorded, using an efficient pro-
cedure. We then examined how the precision of speed esti-
mates depended on several aspects of the retinal representation:
the number and spatial arrangement of cells, detailed temporal
patterns of spiking, correlated activity between cells, noise in
retinal circuits, and the relative efficiency and independence of
signals in different cell types. We provide a theoretical frame-
work to explain the observed speed estimate precision in terms
of optimal pooling of RGC responses with a given temporal
precision. Finally, we examine the limits to motion sensing that
would be imposed by different readout architectures in the
brain. Together, these results reveal how retinal processing and
signaling limit the fidelity of visual motion sensing and how
downstream structures can most efficiently exploit the retinal
population code for perception and behavior.
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M E T H O D S

Recordings

Eyes were obtained from two deeply and terminally anesthetized
macaque monkeys (Macaca mulatta, M. radiata) used by other
experimenters, in accordance with institutional guidelines for the care
and use of animals. Immediately after enucleation the anterior portion
of the eye and vitreous were removed in room light and the eye cup
was placed in bicarbonate buffered Ames’ solution (Sigma, St. Louis,
MO) and stored in darkness at 35–36°C, pH 7.4, for !20 min prior to
dissection. Under infrared illumination pieces of peripheral retina 3–5
mm in diameter, isolated from the retinal pigment epithelium, were
placed flat against a planar array of 512 extracellular microelectrodes,
covering an area of 1,890 " 900 "m, that were used to record action
potentials from retinal ganglion cells (Litke et al. 2004). The prepa-
ration was perfused with Ames’ solution bubbled with 95% O2-5%
CO2 and maintained at 35–36°C, pH 7.4.

Retinal eccentricity was measured with a precision of #2 mm.
Eccentricity was converted to a temporal equivalent value because the
contours of constant RGC density (and thus presumably dendritic and
receptive field size) in the macaque monkey retina are approximately
semicircular in the temporal half of the retina, but elliptical with an
aspect ratio of 0.61 in the nasal half (Perry and Cowey 1985;
Watanabe and Rodieck 1989). Thus a location X mm nasal and Y mm
superior (or inferior) to the fovea was assigned an equivalent eccen-
tricity of [(0.61X)2 $ Y2]1/2 A location X mm temporal and Y mm
superior (or inferior) to the fovea was assigned an equivalent eccen-
tricity of (X2 $ Y2)1/2. Visual angle, A, in degrees, was computed from
temporal equivalent eccentricity, E, in mm, using the relation A %
0.1 $ 4.21E $ 0.038E2 (Dacey and Petersen 1992; Perry and Cowey
1985). The temporal equivalent eccentricity (visual angle) of each of
the three pieces of retina examined was: 9.7 mm (45°); 9.0 mm (41°);
8.4 mm (38°).

Voltage waveforms recorded from each electrode were digitized at
20 kHz and stored for off-line analysis (Litke et al. 2004). Spikes were
identified using a threshold equal to three times the typical noise level
on each electrode, and spikes from different cells were segregated as
follows (Litke et al. 2004). For each recorded spike on the reference
electrode, the waveform of the spike and the simultaneous waveforms
on six surrounding electrodes in the array were used as a signature of
the spike. These signatures were reduced to five dimensions using
principal components analysis, and clusters in this space were iden-
tified by fitting a collection of N-dimensional Gaussian distributions
using expectation maximization. Duplicate cells were identified by
temporal coincidence. The accuracy of spike sorting was checked by
verifying the presence of refractoriness 0.5–1.0 ms after the spike.

Data from ON and OFF parasol cells recorded from three preparations
are presented in RESULTS. ON and OFF populations were analyzed
separately, because of their different response kinetics (Chichilnisky
and Kalmar 2002). The following numbers of cells were analyzed:
retina 1: 40 ON, 49 OFF; retina 2: 56 ON, 35 OFF; retina 3: 63 ON, 68 OFF.
To exclude the possibility that a small number of unstable or sub-
sampled cells would influence the results, a small number of addi-
tional cells with response properties differing substantially from other
cells of the same functional type were identified and excluded as
follows. Spike trains of all cells of the same type were aligned in time
by circularly shifting by an amount equal to the location of the center
of the receptive field divided by the stimulus speed. The inner product
of the response of each cell with the mean response across all cells
was computed. Cells for which the inner product was &2 SDs from
the mean were excluded from further analysis (7, 12, and 10 cells in
the 3 retinas examined).

Stimuli

The retina was stimulated with the optically reduced (2.9 mm diam)
image of a cathode ray tube display refreshing at 120 Hz, focused on

the photoreceptor layer by a microscope objective, and centered on the
electrode array. Stimuli were attenuated to low photopic light levels
using neutral density filters. Stimuli were presented as modulations
around a mean gray background. The background photon absorption
rate for the long (middle, short) wavelength-sensitive cones was
approximately equal to the rate that would have been caused by a
spatially uniform monochromatic light of wavelength 561 (530; 430)
nanometers and intensity 9,200 (8,700; 7,100) photons!"m'2!s'1,
incident on the photoreceptors.

RGCs were characterized and classified on the basis of their
responses to a spatiotemporal white noise stimulus presented for 30
min (see Chichilnisky 2001; Sakai et al. 1988). The stimulus was a
square lattice of randomly flickering pixels. Random flicker was
created by selecting the intensities of the red, green, and blue display
phosphors at each pixel location independently from a Gaussian or
binary (2-valued) distribution on each stimulus frame. The light
response properties of each cell were summarized by the average
stimulus on the display over 250 ms preceding a spike (spike-
triggered average, STA). The STA is a measure of how effectively
stimuli at different locations and with different colors are integrated
by the cell over time to control firing. The structure of each receptive
field was measured by fitting the STA with a difference of elliptical
Gaussians (center-surround) spatial profile, a difference of low-pass
filters temporal profile, and a relative sensitivity to modulation of each
phosphor. The product of these terms provided accurate fits to the
space-time-color STA (Chichilnisky and Kalmar 2002). The receptive
field diameter was defined as the geometric mean of the lengths of the
major and minor axes of the 1 SD ellipse of the center component of
the fit to the STA. The mean receptive field diameters for the parasol
cells in each of the three retinas recorded was 150, 128, and 109 "m,
respectively.

Moving bars were presented in blocks of trials with constant speed;
direction of motion (0, 90, 180, and 270°) and contrast (#96%) were
randomly interleaved within each block. The spatial profile of the bar
in the direction of motion was a Gaussian function with a SD of 97
"m. The spatial profile of the bar orthogonal to the direction of motion
was uniform and covered the entire area recorded. The speeds (num-
ber of trials) probed in each retina were: 7.3°/s (110–167 trials);
14.5°/s (144–214 trials); 29.0°/s (232–347 trials); 58.1°/s (338–505
trials). Stimulus dimensions and speeds were converted to degrees
using the approximation 200 "m/° for the peripheral macaque retina
(Perry and Cowey 1985).

The rasterization of the CRT display introduced a space-time
sampled approximation of a moving bar. For example, a bar nomi-
nally moving at 58.1°/s (the highest speed tested) was in fact redrawn
on the CRT every 8.33 ms displaced by 97 "m. The effect of this
discretization was probably small. First, the refresh interval of the
display was significantly shorter than the !60 ms excitatory portion
of the parasol RGC impulse response (Chichilnisky and Kalmar
2002). Second, the spatial displacement of the bar at the highest speed
tested was 1 SD of the bar profile and smaller than receptive field
diameter and separation of ON and OFF parasol cells (e.g., see Fig. 1A).

Comparison to in vivo recordings

The maintained firing rate (mean # SD across ON and OFF cells)
during exposure to spatially uniform background light was: 5.7 # 0.3
and 1.8 # 1.4, 4.6 # 2 and 0.2 # 0.2, and 2.1 # 1.6 and 1.8 # 1.7
Hz in each of the three retinas, respectively. These values were low
compared with 21 # 9 Hz reported for magnocellular-projecting
RGCs in anesthetized, paralyzed animals (Troy and Lee 1994). The
reason for the discrepancy is unclear. However, peak-evoked modu-
lations were comparable to those observed in magnocellular-project-
ing cells recorded in vivo. The peak firing rate (mean # SD across ON

and OFF cells) elicited by bars moving at 14.5°/s, measured in 25-ms
bins, was: 78 # 17 and 95 # 32, 80 # 21 and 77 # 23, and 95 # 26
and 84 # 30 Hz in each of the three retinas recorded, respectively. In
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a previous study (Kremers et al. 1993), as the contrast of a 1.22-Hz
squarewave modulation approached 100%, the peak firing rate (com-
puted in 25 ms bins and expressed as an increment above an assumed
maintained rate of 20 Hz) approached a maximum of !100 Hz.
Because the Gaussian bar used in the present experiments enters the
receptive field gradually and continues moving, it would be expected
to elicit a somewhat smaller peak response, as was observed.

R E S U L T S

To understand the retinal population code for visual motion,
we approach three main issues. First, we determine what neural
computation is required to extract the speed of a moving
stimulus efficiently from RGC population activity. Second, we
use this computation to characterize how faithfully the RGC
population code specifies stimulus speed, and provide a simple
explanatory model based on the timing precision of RGC
responses. Third, we examine how essential aspects of retinal
and central processing influence the precision of speed esti-
mates.

Extracting speed estimates from RGC population activity

The following four sections describe the foundation for
measuring the retinal population code for motion and effi-

ciently reading out the stimulus speed from measured spike
trains.

• Measuring the entire population code

A challenging step in understanding a sensory population
code is obtaining simultaneous recordings from the entire
collection of relevant cells. The principal signals used by the
visual cortex to sense motion are thought to be conveyed by the
morphologically defined ON and OFF parasol RGCs (Polyak
1941), the axons of which project to the magnocellular layers
of the lateral geniculate nucleus (see Merigan and Maunsell
1993; Van Essen 1985). The cell bodies of the ON and OFF

parasol populations each form a regular mosaic with dendritic
fields that tile the surface of the retina and thus uniformly
sample visual space (Dacey and Brace 1992). To examine
parasol cell population activity over a region of visual space,
multi-electrode recordings were performed in pieces of peripheral
primate retina. Visual responses of several hundred isolated
RGCs, with receptive fields collectively covering !5° "10° of
visual angle, were recorded simultaneously using a 512-elec-
trode system (Litke et al. 2004). Analysis was restricted to two
functionally defined cell types having receptive field tiling and
density, spectral sensitivity, response kinetics and contrast gain
that closely correspond to those of the ON and OFF parasol cells
(Chichilnisky and Kalmar 2002). These two cell types will be
referred to as parasol cells in what follows.

An example of the ensemble activity elicited by a moving
bar superimposed on a photopic background is shown in Fig. 1.
Figure 1A shows the receptive field outlines of a mosaic of 56
ON parasol cells obtained with white-noise stimulation and
reverse correlation (see METHODS), along with an image of a
moving bar with a Gaussian intensity profile. The nearly
complete mosaic of receptive fields provides strong evidence
that in this region of retina, nearly every ON parasol cell was
recorded, revealing the complete population code. Figure 1B
shows, in raster format, the spike trains obtained from these
cells in a single trial in which the bar drifted from left to right.
As the bar crossed the receptive field of each cell, it elicited
spikes in excess of background activity. The relative timing of
responses in different cells reflects a wave of activity in the
parasol cell population. This wave is the principal signal used
by the cortex to sense visual motion.

• Speed estimation

To probe how faithfully parasol RGCs signal visual motion,
a procedure was developed to estimate the speed of the moving
bar directly from the relative timing of responses in different
cells. The procedure, described in this section, was then ap-
plied to quantify the precision of speed estimates across trials.

The concept behind the speed estimation procedure is that if
all RGCs respond identically, then a translating stimulus
should on average produce the same response waveform in
each cell, shifted in time. Thus the evidence for movement at
a particular speed is given by the degree of alignment of spike
trains from different cells, after compensating for the response
time shift expected at that speed (see Fig. 1). This concept can
be implemented using the peak response in a collection of
detectors tuned for different speeds. The output of each detec-
tor is based on cross-correlation (Reichardt 1961), a central

FIG. 1. Ensemble motion signals. A: receptive fields of 56 ON-parasol
retinal ganglion cells (RGCs) simultaneously recorded in one retina. Outlines
represent 1.5 SD boundaries of elliptical Gaussian fits (see METHODS). Sche-
matic of moving bar stimulus is shown at left. Scale bar: 2°. B: responses of all
RGCs from A to moving bar. Each tick represents one spike, each row
represents the response of a different cell. Responses were sorted according to
the horizontal coordinate of the receptive field center. Bar speed: 58.1°/s. Bar
contrast: 96%. C: same data as B, with data from each cell circularly shifted by
an amount equal to the time required for a stimulus with the putative speed to
move from an arbitrary reference location to the receptive field (RF) center.
Shifted data are shown for 3 putative speeds.
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element of standard models of motion sensing, including mo-
tion energy algorithms that have been used to describe the
responses of direction-selective neurons in visual cortex (Ad-
elson and Bergen 1985; Emerson et al. 1992; Simoncelli and
Heeger 1998; Watson and Ahumada 1985). Note, however,
that this procedure is not intended to represent an explicit
model of motion sensing in the brain (see DISCUSSION).

The procedure proceeds as follows (Fig. 2). Consider the
case of two cells, A and B. A motion signal tuned for a
particular speed is computed from their responses by delaying
the spike train of one cell, smoothing both spike trains over
time with a filter, multiplying the resulting signals pointwise to
detect coincidences, and integrating the result over the duration
of the trial. Specifically, let rA(t) and rB(t) represent the firing
rate of each cell as a function of time during the trial. These are
obtained by representing the spike trains at floating point
resolution, convolving with a Gaussian filter f(t) % exp('t2/
2#2), and sampling the result at intervals of #. Denote by (x the
known separation of the receptive fields along the axis of
motion, computed using the parametric fit to the receptive field
profile of each cell (see METHODS). Then a motion signal
indicating the evidence for movement at speed s is obtained by
delaying the response of cell A by an amount (t % (x/s,
multiplying pointwise by the response of cell B, and summing
the result over all time points in the trial: R % )trA(t ' (t)rB(t).
Note that rA is circularly shifted in time—rather than cropped
from a longer response—to match the length of rB (circular
shifting provided a convenient and accurate approximation of
an extended period of background activity before and after the
response, to avoid having to record long periods of background
activity between trials). Finally, to minimize potential bias due
to spontaneous activity, a signal indicating the evidence for

motion at the same speed in the opposite direction is created
symmetrically, L % )trB(t ' (t)rA(t), and the net motion signal
N is given by the difference, N % R ' L.

If the speed of the stimulus matches the separation of the
receptive fields divided by the delay, the delay aligns the
stimulus-elicited activity in cell A with the stimulus-elicited
activity in cell B, causing the product of the signals and thus
the net motion signal to be large. Thus the preceding compu-
tation was repeated for a number of different detectors, each
tuned for a different speed s. The speed estimate was the value
of s that maximized N (or, for leftward stimuli, 'N). The
maximum was obtained using an iterative search (Powell’s
method) (Press et al. 1988) over the range 0.5–500°/s (for
comparison, the range of speed tunings of neurons in area MT
is roughly 2–256°/s) (Maunsell and Van Essen 1983).

The net motion signal for a collection of cells was obtained
by adding the net motion signals obtained from all distinct
pairs. This pairwise computation is mathematically equivalent
to an approach that measures the alignment of shifted re-
sponses from all cells, by summing, squaring, and integrating
shifted responses over time (Chichilnisky and Kalmar 2003).
Specifically, the response ri(t) for the ith cell is delayed by an
amount (ti % xi/s, where xi is the position of the receptive field
along the axis of motion, yielding a right-shifted response
ri(t ' (ti) and a left-shifted response ri(t $ (ti). The net
motion signal is N % )t [)i ri(t ' (ti)]

2 ' )t[)i ri(t $ (ti)]
2.

To illustrate how the procedure works, Fig. 1C shows spike
trains from a single stimulus presentation delayed according to
several speed tuning (putative speed) values, and the net
motion signals for detectors tuned to these speeds. When the
putative speed was near the correct speed (middle), the delayed
spike trains were maximally aligned. Thus the detector tuned to
the correct speed yielded the largest motion signal. Figure 3A
shows the net motion signal as a function of speed tuning for
a single stimulus presentation. The peak of this function—the
extracted speed estimate—was close to the true speed.

Importantly, the preceding approach provides veridical
speed estimates for any stimulus because, in general, shifting
according to an incorrect speed cannot cause spike trains to
align more accurately than the shifting according to the correct
speed. Thus the procedure yields a true speed signal and avoids
the known bias in the speed tuning of a single, two-input
Reichardt detector (see Dror et al. 2001). Also, the large
collection of irregularly spaced inputs avoids aliasing that
occurs in a single, two-input Reichardt detector with periodic
stimuli.

• Measuring the precision of speed estimates

To quantify how faithfully the retina transmits information
about speed, the variability of speed estimates across trials was
examined. A histogram of speed estimates for one condition is
shown in Fig. 3B, along with a Gaussian distribution with the
same mean and SD.

In this case and most others examined, a Gaussian distribu-
tion provided a reasonable approximation. A test statistic ($2)
was computed by summing the squared deviations of observed
counts from those expected of a Gaussian distributed variable
with the same mean and SD (Rice 1988; p. 226) divided by the
expected counts. In the null hypothesis of Gaussian-distributed
speed estimates, the distribution of $2 is approximately chi-

FIG. 2. Motion readout procedure. The algorithm for estimating bar speed
from ensemble RGC activity is depicted schematically, operating on hypothet-
ical spike trains (black ticks) obtained from 2 cells in response to a bar moving
from left to right. Each spike train is low-pass filtered in time (gray traces). The
filtered response from cell A is delayed by a fixed amount corresponding to the
speed tuning and is multiplied pointwise by the filtered response from cell B.
The result is summed over time to yield a rightward motion signal. A leftward
motion signal is obtained by delaying the response from cell B instead. For
multiple cells, all pairwise net motion signals are summed. The speed tuning
that yields the maximum net motion signal is used as an estimate of stimulus
speed.
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square with N ' 3 degrees of freedom, where N is the number
of bins. Using a filter width # % 0.01 s, $2 was below the 99th
percentile of the chi-square distribution in 83% of cases tested.
Thus the accuracy and precision with which the population of
RGCs signaled stimulus speed were reasonably well summa-
rized by the mean and SD of the distribution, respectively. If $2

exceeded the 99th percentile of the chi-square distribution, the
condition was excluded from certain analyses (a condition
refers to ON or OFF cells in a particular retina, tested with a
specific stimulus speed and contrast).

Speed estimation from real spike trains would be expected to
exhibit random deviations from the true speed due to noise in
phototransduction or retinal processing, but could also exhibit
systematic errors. Figure 3C shows a histogram of the mean
speed estimate minus the true speed (i.e., bias) expressed as a

fraction of the SD, for all conditions examined. The mean of
the distribution shown is '0.3, indicating a weak tendency to
underestimate speed. In 85% of conditions examined, the ratio
of the absolute value of bias to SD was *2, indicating that bias
was on the order of the variability. Because the bias is small
and because bias in principle can be compensated by down-
stream calibration, whereas trial-to-trial variability cannot, in
what follows the SD of speed estimates will be taken as a
measure of the fidelity of retinal speed signals and the bias will
not be considered further.

• Optimal temporal filtering for speed estimation

The temporal filter applied to spike trains to estimate speed
(see Fig. 2) permits efficient detection of alignment in delayed
spike trains while allowing for some spike timing jitter from
trial to trial. Such filtering might be expected to occur in the
synapses on to direction-sensitive neurons in the visual cortex
and is an essential consideration for precise speed estimation.
Although the optimal temporal filtering for left-right direction
discrimination was determined in a previous study (Chichilni-
sky and Kalmar 2003), a fine-grained task such as speed
discrimination could in principle utilize much finer filtering.
The remainder of this section shows that a filter width of !10
ms produced maximum speed estimate precision over the range
of conditions examined, so a filter width of 10 ms will be used
in sections that follow.

Optimal filtering was determined empirically, by finding the
filter width that minimized the SD of speed estimates. An
example is shown for one condition in Fig. 4A. A filter width
of 15 ms minimized speed estimate SD; much narrower or
wider filters produced SD values up to threefold higher. The
optimal filter width was in the range of tens of milliseconds
over a wide range of conditions. The E in Fig. 4B show the
optimal filter width for all conditions examined, determined by
computing the SD of speed estimates across trials as a function
of filter width over the range 1–100 ms, fitting the results with
a polynomial, and extracting the minimum of the fit. Optimal
filter width declined with stimulus speed to a minimum of !7
ms at the highest speeds probed (Chichilnisky and Kalmar
2003). The dependence on speed was approximated by the
function #s % #+ $ %/s, where s is the speed, #s is the optimal
filter width for speed s, #+ is the optimal filter width for
asymptotically high speeds, and % is a constant.

For the analysis of speed estimate variability in what fol-
lows, a fixed filter width of 10 ms was used, rather than a filter
width which varied with stimulus speed. This provided speed
estimates with nearly minimum variability for all speeds tested
(e.g., see Fig. 4A) and may provide a more realistic approxi-
mation of downstream processing than a stimulus-dependent
filter width. Note that filter widths much larger or smaller than
10 ms gave rise to more outliers in speed estimate distributions,
resulting in greater deviations from Gaussian statistics (not
shown).

Optimal filter width could be systematically overestimated
by two experimental limitations: misestimation of receptive
field locations due to spatial discretization of the stimulus and
limited recording time, or discretization of the moving bar
image in space and time due to temporal refresh of the display.
These possibilities were tested by computing effective recep-
tive field locations directly from responses to moving bars.

FIG. 3. Speed estimates and variability. A: the net motion signal obtained
from the responses of the cells of Fig. 1 in one trial is shown as a function of
the detector speed tuning. The location of the peak of this function provides a
speed estimate of 56.0°/s for this trial; the true speed was 58.1°/s. Filter width:
0.01 s. B: distribution of speed estimates across 169 presentations of a moving
bar. Smooth line is a Gaussian fit with a mean of 56.7°/s and an SD of 0.98°/s.
C: distribution of speed estimate bias, expressed in units of speed estimate SD,
across 80 conditions tested. These values were accumulated from a total of 159
ON and 152 OFF parasol cells from 3 retinas, each stimulated with moving bars
of #96% contrast moving to the left or right at speeds of 7.3, 14.5, 29.0, and
58.1°/s, for a total of 96 conditions. 16 conditions in which the Gaussian $2

statistic was greater than the 99th percentile were excluded.
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Average responses across trials were used to determine delays
between cells that resulted in maximum response alignment.
These delays were multiplied by the stimulus speed to deter-
mine effective receptive field locations, which were then used
for trial-by-trial speed estimation. The optimal filter width
obtained with this procedure, shown with F in Fig. 4B, was
similar to that measured using locations extracted from direct
receptive field measurements, for all speeds tested. Using a
filter width of 10 ms, the median ratio of the SD of speed
estimates obtained with the modified and standard procedure
was 0.98. These findings suggest that discretization and finite
data effects had little effect on speed estimates or optimal filter
width.

The optimal filter width can be used to infer the number of
spikes from each cell that typically contribute to the elementary
motion signal (Chichilnisky and Kalmar 2003). If the inter-
spike interval (ISI) is always much larger than the optimal filter
width, optimal motion sensing preserves the distinction be-
tween sequential spikes and motion information is effectively
conveyed by individual spike times. Conversely, if the ISI is
always much smaller than the filter width, optimal motion
sensing integrates over many spikes and motion information is
effectively conveyed by variations in firing rate. The ratio of
ISI to optimal filter width, accumulated across the period in
each spike train when the bar overlapped the receptive field of
the cell, is shown in Fig. 4C. The modal ratio was near unity:
the median was 0.62, and 72% of values were *1. Although
the ratio of ISI to optimal filter width spans a wide range, the
concentration of values near unity indicates that optimal speed
estimation typically requires integrating over one to a few
spikes from each cell.

• Efficiency of speed estimation procedure

The variability of extracted speed estimates accurately re-
flects the precision of retinal signals if and only if the estima-
tion procedure efficiently extracts information about stimulus
speed. To test the efficiency of the procedure, its performance
was compared with four alternative approaches. The remainder
of this section demonstrates that each alternative procedure
exhibited speed estimate variability similar to or higher than
the correlation procedure, consistent with the idea that the
correlation procedure is efficient.

For each alternative procedure, as with the standard corre-
lation procedure, the speed estimate was selected to maximize
the alignment of spike trains, after delaying each spike train by
an amount equal to the receptive field position along the axis of
motion divided by the speed tuning of the detector. As alter-
natives to cross-correlation, four measures of alignment were
tested, and the rightward motion signal was computed as
follows.

FOURTH-ORDER CORRELATION. Pointwise products of responses
considered in groups of four. The shifted response vectors
ri(t ' (ti) were summed pointwise, yielding m(t) % )iri(t '
(ti). The motion signal was given by )tm(t)p, with p % 4. This
is a generalization of the multi-cell equivalent of the cross-
correlation procedure (see preceding text), in which p % 2.

SEPARABILITY. The fraction of the variance of a collection of
responses explained by the first principal component. The
shifted response vectors ri(t ' (ti) were placed in the rows of
a matrix. The singular value decomposition was computed,
yielding singular values {s1. . .sK}. The motion signal was
given by s1

2/(s1
2 $. . .$ sK

2 ).

ENTROPY. Temporal dispersion of the summed responses. The
shifted response vectors were summed, and the result m(t) %
)iri(t ' (ti) was normalized to unit integral, n(t) % m(t)/
)tm(t). The motion signal was given by the negative of the
entropy of the result, i.e., )tn(t) log2 n(t).

DISTANCE. Summed pairwise difference in Euclidean dis-
tances between responses from different cells. The motion
signal was ')i,j"ri(t ' (ti), rj(t ' (tj)", where " ! " indicates
Euclidean distance between vectors.

FIG. 4. Optimal filter width for speed estimation. A: speed estimate SD as a
function of the width of the filter used in computing the motion signal (see Fig. 2),
for 35 OFF parasol cells from a single preparation. Smooth curve shows a 4th-order
polynomial fit used to estimate the filter width that yielded least variability, 15 ms.
Bar speed: 29.0°/s. Bar contrast '96%. B: E, optimal filter width as a function of
bar speed for ON parasol cells stimulated with positive contrast bars and OFF parasol
cells stimulated with negative contrast bars; 45 conditions. Fit parameters (see
RESULTS): #+ % 4.4 ms, % % 0.20°. F, optimal filter width obtained with delays
fitted to mean moving bar responses (see RESULTS); 41 conditions. C: ratio of
interspike interval to optimal filter width accumulated from portions of all spike
trains in which the center of the bar (2 SD region of Gaussian profile) overlapped
the RF of the cell (2 SD region of Gaussian profile); 48 conditions: 96% contrast
for ON cells, '96% contrast for OFF cells.
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Leftward motion signals were computed analogously based
on left-shifted response vectors ri(t $ (ti), and the net motion
signal was used for speed estimation as in the preceding text.
Figure 5A shows the optimal filter width for each measure as a
function of that for the correlation measure, across all condi-
tions tested. In each case, the optimal filter width was similar
to that obtained with the correlation measure. For each mea-
sure, overall speed estimate variability was obtained using the
optimal filter width for that measure. Figure 5B shows the
performance of each alternate procedure compared with that of
the standard procedure. In all cases, alternate procedures ex-
hibited speed estimate varibility similar to or higher than the
standard procedure.

Note that nonopponent speed estimation (using individual
motion signals L and R for estimating speeds of leftward and
rightward targets, respectively) produced results very similar to
opponent estimation (using the net motion signal N). The
median ratio of speed estimate SD obtained with nonopponent

and opponent procedures across all conditions examined
was 0.97.

Precision of retinal speed estimates

The procedures in the preceding text provide a measure of
how precisely the retina transmits speed information to the
brain. Because this precision may depend on stimulus speed—
due to the kinetics of RGC responses, spike train statistics, and
accumulation of information over time—speed estimate vari-
ability was examined for a range of bar speeds.

Figure 6 shows fractional speed estimate variability (SD of
estimates divided by true speed) as a function of speed, for all
conditions tested. Each point represents data obtained from 35
to 68 ON or OFF parasol cells in one retina. Across the range of
speeds examined, fractional speed estimate variability was on
the order of 1% of the stimulus speed, increasing roughly in
proportion to speed at the highest speeds tested.

• Simple model of speed estimate precision

The trend in Fig. 6, as well as the dependence on the number
and spatial arrangement of cells, can be understood in terms of
the timing precision of RGC responses. This section provides
a theoretical prediction for speed estimate variability based on
the following assumptions. 1) Each RGC signals only the time
of arrival of a stimulus at its receptive field. 2) Speed estimates
from different cell pairs are combined optimally. 3) The
variability of RGC timing signals is inversely related to speed.
The derivation proceeds as follows.

Consider the simplest speed estimate obtained from two
RGCs, each of which signals only the time of arrival of a
stimulus at the receptive field. Assume the cells are separated
by a distance (x, and stimulated with a bar moving at speed s.
The time required for the bar to move from one cell to the next
is (t % (x/s. If each RGC provides a noisy signal indicating
the time of arrival of the stimulus, denote the time difference
signal from the pair of cells by (t $ &, where the noise & has
SD denoted by 't. A simple speed estimate from the pair is:
e % (x/((t $ &). The variability of e can be approximated by
the SD of the response time difference multiplied by the

FIG. 6. Dependence of speed estimate variability on speed. Fractional
speed estimate variability (SD divided by stimulus speed) as a function of
stimulus speed. Data from 3 retinas are shown, using stimuli of matched
contrast polarity (96% for ON cells, '96% for OFF cells). Filter width 0.01 s;
41 conditions. Smooth curve is the function given in Eq. 4. In the case of an
array of 50 cells filling the 5° " 10° recorded region (e.g., Fig. 1), the
denominator in Eq. 4 is 28.9°. Using this value, the curve was computed with
parameters '+ % 8 ms and % % 0.05° fitted to the data.

FIG. 5. Motion sensing algorithm comparison. A: comparison of optimal
filter width obtained from 4 alternative measures of alignment between spike
trains after time shifting (see RESULTS). In each panel, the optimal filter width
for the alternate algorithm is shown as a function of the optimal filter width
obtained in the same condition using the cross-correlation algorithm. B:
comparison of speed estimate variability for 4 alternate alignment measures.
Each value was obtained using the filter width that minimized variability for
the specific algorithm and condition.
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absolute value of the derivative of the estimate with respect to
the time difference (the approximation is valid for 't ** (t)
(see Bevington and Robinson 1992). Hence to first order, the
speed estimate variability from the pair is

'e ( s2't /(x (1)

Now assume that speed estimates are obtained by optimally
pooling information from all cell pairs. Assume that only
disjoint pairs are used and that these provide statistically
independent speed estimates. Denote the speed estimate from
each pair by ei, with SD given by 'ei % s2't /(xi as in the
preceding text. A speed estimate from the collection may be
obtained by computing the weighted sum: epool % ()ei /' ei

2 )/
()1/' ei

2 ). This weighting causes epool to have minimum vari-
ance, 'pool

2 % 1/)(1/' ei
2 ), in the case of independent data (see

Bevington and Robinson 1992). Substituting for 'ei yields

'pool ( s2't-)(xi
2.'1/2 (2)

To determine how the variability of the pooled estimate, 'pool,
depends on the number of cells and their spatial arrangement
along the x and y dimensions, consider only the term that
depends on the locations of the cells: S % )(xi

2. Consider the
case of a lattice of cells with density p filling a rectangular
region of area xy, where x specifies the dimension along the
axis of motion, and y the dimension along the orthogonal axis.
The specific pairings of cells used for speed estimation influ-
ence 'pool (see below). So, consider an optimal pairing rule in
which the first pair consists of the two cells most widely spaced
in the x dimension, the second pair consists of the next two
most widely spaced cells (distinct from the first 2 cells), and so
on (note that S is independent of the y coordinates). For a small
increase )x in x, the number of cells added is py)x, and half as
many cell pairs are added. By the pairing rule, each new pair
consists of cells at both extremes along the x dimension, hence
each pair produces an increment (xi

2 / x2 in the sum S.
Therefore the increase in S is )S % x2yp)x/2. This yields
)S/)x % x2yp/2; integrating with respect to x gives S % x3yp/6.
Substituting the preceding yields

'pool ( s2't-x
3yp/6.'1/2 (3)

Note the stronger dependence on x than on y. Also note that a
suboptimal choice of pairings yields higher speed estimate
variability. For example, consider the case where all pairs are
nearest neighbors in the x dimension. Then the sum S is the
square of the neighbor spacing, (xi

2 % 1/p, multiplied by the
total number of pairs, pxy/2. Hence 'pool % s2't(xy/2)'1/2,
which is a factor of x(p/3)1/2 higher than the value obtained
with the pairing rule in the preceding derivation.

Finally, the timing variability 't would be expected to
depend on parameters of the stimulus, such as stimulus speed.
The inverse dependence of optimal filter width on speed (Fig.
4B) suggests a similar dependence for timing variability: 't %
'+ $ %/s. Substituting above yields

'pool ( s-% * s'+.-x3yp/6.'1/2 (4)

This prediction for the dependence of speed estimate variabil-
ity on speed, with parameters % and '+ fitted to the data, is
shown in Fig. 6. The accuracy of the fit is consistent with the
idea that speed estimate precision is governed by the timing

precision of RGC responses. As will be shown in the following
text, the same model also provides accurate predictions for the
dependence of speed estimate precision on the number and
spatial arrangement of RGCs.

In summary, the results in Fig. 6 reveal the limits to
behavioral speed estimation imposed by the population code in
parasol RGCs, and are consistent with a simple model. What
follows is an analysis of the factors that contribute to speed
estimate precision and consequences for readout of the popu-
lation code in the brain.

Retinal limits on speed estimation

Several major features of retinal processing may influence
speed estimate fidelity. Correlated activity, known to be signifi-
cant in adjacent RGCs of like type, may reflect common signal
and noise and thus may influence performance. Timing structure
of retinal spike trains may transmit motion information differently
than expected from simple variations in firing rate. The number
and spatial arrangement of cells would be expected to influence
the fidelity of motion signals. Finally, ON and OFF parasol cells,
with receptive fields that tile the same area of the visual world,
may convey motion signals with different efficiency, and may
exhibit redundancy due to common photoreceptor inputs. These
contributions to the precision of retinal motion signals are exam-
ined in turn.

• Correlated activity

Correlated firing at rates significantly higher than expected
by chance has been described in pairs of nearby cells of like
functional type in cat and rabbit retina (DeVries 1999; Mas-
tronarde 1983); in salamander retina correlated firing has been
proposed to be important for visual signaling (Meister et al.
1995). Similarly, adjacent pairs of ON parasol cells and OFF

parasol cells in primate retina fire synchronized spikes (#5 ms)
at rates roughly twice that expected by chance in the recording
conditions used here (Chichilnisky and Baylor 1999). This
synchronized firing, as well as other forms of response covaria-
tion between cells, could influence how precisely ensembles of
RGCs transmit information about stimulus motion.

To probe the effects of correlated activity, the observed
speed estimate variability was compared with the variability
obtained from artificially shuffled ensemble responses consist-
ing of spike trains from a different trial for each cell. This
manipulation removes covariation, enforcing statistical inde-
pendence between spike trains from different cells while pre-
serving the response statistics of each cell. Figure 7 shows the
speed estimate variability obtained with shuffled data as a
function of the speed estimate variability obtained with un-
shuffled data, across all conditions tested. The data cluster near
the identity line. Shuffled data displayed a statistically signif-
icant (P * 0.001, Wilcoxon signed-rank test) but very weak
(median ratio: 0.96) tendency toward more precise speed
estimates. In summary, eliminating correlated activity in RGC
spike trains had very little effect on speed estimates.

• Timing structure in spike trains

Many models of visual processing assume that information
is communicated from retina to brain by the firing rates of
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RGCs, specifically, that RGC spikes are generated approxi-
mately independently of one another over time according to a
Poisson process with a time-varying rate. A Poisson model
fails to account for phenomena such as action potential refrac-
toriness, and the non-Poisson intrinsic timing structure of RGC
spike trains has been the subject of several recent studies
(Berry et al. 1997; Reich et al. 1997; Uzzell and Chichilnisky
2004). However, it is unclear whether the intrinsic structure of
retinal spike trains plays an important role in communicating
behaviorally relevant visual signals or whether the firing rate
model provides an approximation adequate for understanding
downstream processing.

To distinguish these possibilities, the speed estimate vari-
ability obtained with RGC spike trains was compared with the
variability obtained from artificial spike trains generated by
Poisson spiking with the observed time-varying rate. The
artificial spike train for a given cell and trial was created by
sampling spike times, with replacement, across all trials for
that cell and stimulus. The number of spikes in the resampled
spike train for each trial was on average equal to the number of
spikes in recorded spike trains. Figure 7B shows the compar-
ison of speed estimate variability obtained with real and Pois-
son spike trains for all conditions tested. The data lie system-
atically above the identity line, particularly for the lower
fractional SD values. The median ratio of the SD obtained from

resampled data to that obtained with the original data was 1.50.
The higher variability obtained with resampled data could not
be attributed to nonstationarity of responses over the course of
the experiment, because the shuffling analysis of Fig. 7A did
not produce such an effect. Thus the intrinsic timing structure
of RGC spike trains allows them to convey stimulus speed
information more faithfully than would be expected from a
Poisson model of RGC spiking.

• Spatial arrangment of receptive fields

Because motion is represented in a wave of activity in the
parasol RGC population, the spatial arrangement of the cells
used for readout could influence the fidelity of speed estimates
extracted by the brain. For example, Fig. 8A shows the recep-
tive field outlines of a collection of ON parasol cells, with
receptive fields that clustered in a region of retina, and a
collection of the same number of ON parasol cells (simulta-
neously recorded, partially overlapping), with more dispersed
receptive fields. The distributions of speed estimates obtained
from each of these ensembles in one stimulus condition are
shown in the histograms. The variability of speed estimates
obtained from the clustered cells was substantially larger than
that from the dispersed cells. Pooled data in Fig. 8C for all such
conditions tested (E) show the same trend.

The difference in speed estimates obtained from clustered
and dispersed cells could arise from redundancy due to corre-
lated activity in nearby cells. To test for this possibility, the

FIG. 8. Clustered and dispersed RFs. A: RFs of 2 collections of 14 ON-
parasol cells in one retina, one with dispersed RFs and the other with clustered
RFs. Scale bar: 2°. B: speed estimate distributions across trials for clustered
cells (SD: 0.19°/s) and dispersed cells (SD: 0.09°/s). Filter width: 0.01 s. Bar
speed: 7.3°/s. Bar contrast: 96%. C: E, comparison of speed estimate variability
for clustered and dispersed collections of cells accumulated across all condi-
tions tested. F, same comparison, obtained using shuffled responses. Diagonal
line indicates equality; 31 conditions.

FIG. 7. Effect of correlated activity and spike timing structure. A: fractional
speed estimate variability (SD divided by stimulus speed), obtained using
responses from different cells shuffled across trials, is shown as a function of
that obtained using raw data. Diagonal line indicates equality. Filter width
0.01 s; 76 conditions. B: fractional speed estimate variability obtained using
resampled spike trains is shown as a function of that obtained using real spike
trains. Filter width 0.01 s; 55 conditions.
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same comparison was performed with shuffled responses (F).
The similarity of the shuffled and unshuffled results indicates
that response covariation did not account for the effect of
spatial arrangement.

An alternative possibility is that speed estimates obtained
from cells more dispersed along the axis of motion are less
sensitive to response timing jitter. To illustrate this possibility,
consider the simple model in the preceding text in which speed
estimate precision for a given cell pair is limited by how
accurately individual RGCs signal the time of stimulus arrival.
Distant cells are relatively less affected by response timing
jitter (Eq. 1) because of the large temporal separation in
responses to the moving stimulus.

To test for this possibility, the variation of speed estimates
was examined using a stimulus that moved either in a direction
that created large temporal separation of responses or in a
direction that created small temporal separation of responses,
using the same collection of cells, as shown in Fig. 9A. Results
are shown for one example in B; pooled results are shown in C.
Larger temporal separations resulted in more precise speed
estimates (E). This was not affected by shuffling responses
across trials (F).

These findings may be understood in terms of the simple
model. The increased precision obtained with responses widely
separated in time is reflected in the fact that the predicted SD
of speed estimates of the pool of RGCs declines as the 3/2
power of distance along the direction of motion, and as the 1/2
power of distance orthogonal to the axis of motion (Eq. 3).

Thus for an array of cells in 2:1 aspect ratio, the SD for motion
along the long axis should be roughly half that for motion
along the short axis, as was observed (Fig. 9).

These findings suggests that temporal separation of re-
sponses is the primary determinant of how spatial arrangement
affects speed estimation. Note that the use of widely spaced
cells in speed estimation implicitly assumes constant speed
over the duration required for the stimulus to travel from one
cell to the other; this assumption is valid in the present task but
may not be for more natural stimuli (see DISCUSSION).

• Number of cells

Large receptive fields of motion-sensitive neurons in extra-
striate cortex (Albright and Desimone 1987) may provide more
accurate estimates of stimulus speed by integrating over many
inputs. However, the benefits of such pooling depend on the
spatial arrangement of input signals (see preceding text). To
examine the potential benefits of pooling many RGC inputs for
motion sensing, speed estimate variability was examined for
subsets of recorded RGCs.

Figure 10A shows a collection of ON parasol cells as well as
two subsets of this collection obtained by discarding cells
sequentially, orthogonal to the axis of motion. Figure 10B
shows speed estimate variability as a function of the number of
cells in these subsets on a double logarithmic scale. As ex-
pected, the variability of speed estimates decreased with the
number of cells. The steepness of this relation was estimated
by fitting a line to data such as those in Fig. 10B and extracting
the slope. Results accumulated across all conditions tested are
shown in the histogram of Fig. 10C, which reveals slopes near
'1/2. Figure 10D shows the dependence of variability on the
number of cells pooled across all conditions tested; data have
been normalized (vertically shifted) for each condition inde-
pendently. These normalized data fall roughly on a common
line, suggesting a lawful relationship between speed estimate
variability and the number of cells used.

The same analysis was performed on subsets obtained by
discarding cells sequentially parallel to the axis of motion, as
illustrated in Fig. 10E. In this case, the dependence of speed
estimate variability on cell number was steeper (roughly '3/2)
as shown in Fig. 10, F–H. The steeper slope is consistent with
the preceding observation that cells widely dispersed along the
axis of motion provide more precise speed estimates, so that
removing the cells most widely dispersed along the axis of
motion has the largest effect on speed estimates.

These trends can be understood quantitatively with the
simple model. Because the SD of the pooled speed estimate
declines as the 3/2 power of distance along the axis of motion
and as the 1/2 power in the orthogonal direction (Eq. 3), the
data in Fig. 10, A–D, should exhibit a slope of '1/2 and the
data in Fig. 10, E–H, should exhibit a slope of '3/2, similar to
the values observed. The regular dependence of speed estimate
variability on cell number, along with the model, provides a
basis for predicting the precision of speed estimates obtained
with smaller or larger ensembles of RGCs.

• Relative efficiency of ON and OFF speed estimates

ON and OFF parasol cells, which are primarily excited by
increments and decrements of light respectively, may be spe-

FIG. 9. Short and long axis of motion. A: RFs of a collection of 56 ON

parasol cells, in the left with a schematic bar moving top to bottom (short axis),
in the right with a schematic bar moving left to right (long axis). Scale bar: 2°.
B: speed estimate distributions for long-axis motion (SD: 0.03°/s) and short-
axis motion (SD: 0.06°/s). Filter width: 0.01 s. Bar speed: 7.3°/s. Bar contrast:
96%. C: E, pooled comparison of speed estimate variability for long- and
short-axis motion; 28 conditions. F, same analysis, shuffled across trials; 38
conditions. Diagonal line indicates equality.
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cialized to signal motion more accurately for stimuli of
matched polarity (positive contrast for ON, negative contrast for
OFF). Furthermore, due to spatial, kinetic and contrast-response
asymmetries (Chichilnisky and Kalmar 2002), one pathway
could convey to the brain higher fidelity speed estimates for
both kinds of stimuli. Such asymmetries could determine how
ON and OFF signals are used downstream for speed estimation.

The variability of speed estimates obtained from equal
numbers of ON and OFF cells was compared using moving bars
of positive and negative contrast. The three panels in Fig. 11
show the comparison for positive contrast stimuli, negative
contrast stimuli, and matched contrast stimuli (positive for ON

cells, negative for OFF cells). ON cells signaled the speed of
positive contrast stimuli more faithfully than OFF cells, and OFF

cells signaled the speed of negative contrast stimuli more
faithfully than ON cells. This would be expected from response
rectification elicited by nonmatched stimuli that strongly sup-

press firing. For matched polarity stimuli, ON and OFF cells
exhibited similar speed estimate variability. Thus the circuits
converging on ON and OFF parasol cells represent motion
information with similar precision.

• Statistical independence of ON and OFF speed estimates

Given that the ON and OFF parasol cells provide motion
signals of comparable precision, cortical neurons may pool
speed information transmitted by these populations to obtain
faithful speed estimates. However, because ON and OFF cells
sample the same region of space and thus receive inputs from
the same photoreceptors, ON and OFF circuits may exhibit
significant common noise. Such redundancy could limit or
eliminate the benefits of pooling. The degree of redundancy in
ON and OFF motion signals was examined by measuring the
degree to which pooling ON and OFF signals reduced the
variability of speed estimates.

Figure 12A shows the receptive fields of a group of ON cells
and a group of OFF cells simultaneously recorded. These recep-
tive fields covered approximately the same area of retina,
therefore the two cell groups received inputs mostly from the
same photoreceptors. Figure 12B shows histograms of speed
estimates obtained from the two cell groups in one stimulus
condition. A pooled estimate of speed from both populations
may be obtained by taking a weighted sum of ON and OFF

estimates with weights that minimize variance across trials in
the case of independent data: sP % (sON'OFF

2 $ sOFF'ON
2 )/

('ON
2 $ 'OFF

2 ), where sON and sOFF represent the speed
estimates from ON and OFF cells, and 'ON and 'OFF represent
the SD of speed estimates across trials for ON and OFF cells,
respectively (Bevington and Robinson 1992).

FIG. 10. Dependence on number of cells. A: examples of spatial arrangement of subsets of cells obtained by removing cells in a sequence determined by RF position
orthogonal to the axis of motion. Scale bar: 2°. B: speed estimate variability as a function of the number of cells used for the cells and subsampling procedure shown
in A. Curve indicates power law function, log ' % % $ + log n, fitted to data (+ % '0.4). Filter width: 0.01 s. Bar speed: 14.5°/s. Bar contrast: 96%. F, data obtained
from the entire collection of cells. C: distribution of fitted values of +; 45 conditions. Median: '0.58. D: normalized speed estimate variability as a function of
number of cells used. Normalization was performed separately for each condition by fitting a line with slope '0.5 to data such as those shown in A, and shifting
the data vertically such that the fitted line passed through the point indicated by the F. E: examples of spatial arrangement of subsets of cells obtained by removing
cells in a sequence determined by RF position parallel to the axis of motion. Scale bar: 2°. F: same as B for parallel subsampling (+ % '1.6). G: same as C
for parallel subsampling; 44 conditions. Median: '1.42. H: same as D for parallel subsampling. Data shifted according to a fit with slope '1.5.

FIG. 11. ON-OFF comparison. Left: speed estimate variability obtained from
collections of equal numbers of ON parasol cells and OFF parasol cells, using
stimuli of positive contrast. Diagonal line indicates equality; 16 conditions.
Median ratio: 0.5. Middle: speed estimate variability using stimuli of negative
contrast. 17 conditions. Median ratio: 1.2. Right: speed estimate variability
using stimuli of matched polarity (positive for ON cells, negative for OFF cells);
20 conditions. Median ratio: 0.9. Filter width: 0.01 s.
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The distribution of the pooled speed estimate sP across trials
is shown in Fig. 12C, left. This distribution had a lower SD
(0.047°/s) than either of the individual distributions (0.054 and

0.076°/s). To probe the statistical dependence of ON and OFF

population speed estimates, consider two extreme possibilities.
If sON and sOFF are statistically independent, the SD of the
pooled estimate sP across trials is 'I % ['ON

2 'OFF
2 /('ON

2 $
'OFF

2 )]1/2. If, instead, sON and sOFF are perfectly correlated
across trials, with sON 0 sOFF, then the SD of sP across trials is
'C % ('ON'OFF

2 $ 'OFF'ON
2 )/('ON

2 $ 'OFF
2 ). The SD of the

distribution in Fig. 12C was lower than would be expected
from perfectly correlated variability ('C % 0.061°/s) but was
similar to what would be expected from statistical indepen-
dence ('I % 0.044°/s). This suggests that speed estimates may
be primarily limited by independent noise in ON and OFF cells.

A further test was obtained by forcing the ON and OFF data to
be statistically independent, by combining ON cell speed esti-
mates from each trial with OFF cell speed estimates from a
different trial. The distribution of pooled speed estimates
across trials from the shuffled data, shown in the second panel
of Fig. 12C, was similar to the distribution of pooled estimates
from the original data, consistent with statistical independence
in the original data.

Pooled data from all conditions tested are shown in Fig.
12D. For each condition, an index of covariation was com-
puted: I % ('P ' 'I)/('C ' 'I), where 'P is the SD of the
pooled speed estimate, 'I is the expectation from independent
variability in ON and OFF cells, and 'C is the expectation from
perfectly correlated variability in ON and OFF cells. The index
should assume a value of 0 in the case of independent data or
1 in the case of perfectly correlated data. The observed distri-
bution of the index clusters near 0. The distribution of the same
index computed on shuffled data from ON and OFF cells (see
preceding text) is similar.

Taken together, these data indicate that the dominant source
of speed estimate variability is independent in ON and OFF

parasol cells receiving inputs from roughly the same popula-
tion of photoreceptors. Independence may result from neural
processing and/or noise downstream of the photoreceptors (see
DISCUSSION).

Central limits on speed estimation

While noise and processing in retinal circuits limit how
faithfully the brain can sense motion (see preceding text),
central processing could impose additional limits. For example,
if central circuits involved in motion sensing were to signifi-
cantly corrupt their inputs with noise, behavioral motion sen-
sitivity could be degraded. However, even in the absence of
additional noise, the organization of motion sensing circuits in
the brain could influence behavioral motion sensitivity. This
possibility was explored by comparing two simple models of
how signals from speed-tuned units may be combined to
produce speed estimates:

PEAK. Use the peak of the distribution of speed-tuned units as
an estimate of stimulus speed (see Figs. 2 and 3A).

CENTROID. Use the centroid of the distribution of speed-tuned
units as an estimate of stimulus speed (i.e., the mean of the
distribution of Figs. 2 and 3A). This approach, unlike the peak
approach, is guaranteed to provide an unambiguous result in all
stimulus conditions.

For both models, it was assumed that for each putative speed
s over the range 0.5–500°/s, the response N(s) of a unit tuned

FIG. 12. ON-OFF independence. A: RFs of ON and OFF parasol cells
selected to cover approximately the same area of retina. Scale bar: 2°. B:
distribution of speed estimates obtained from ON cells (SD: 0.054°/s) and
OFF cells (SD: 0.076°/s) with a single stimulus (speed: 7.3°/s, contrast
96%). C: distributions of speed estimates across trials obtained by com-
puting the weighted sum of speed estimates from ON cells and OFF cells that
minimizes variance. Left: speed estimates obtained with original data (SD:
0.047°/s); right: estimates obtained by artificially pooling the ON cell speed
estimate on each trial with OFF cell speed estimate from a different trial
(SD: 0.043°/s). D: index of covariation obtained by expressing the SD of
pooled estimates relative to the predictions from independent noise (0) and
common noise (1) for both original data (left) and shuffled data (right),
across all conditions tested. Filter width: 0.01 s; 28 conditions.
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to speed s is determined by an opponent cross-correlation of
delayed spike trains (Fig. 2), summed across all pairs of RGCs.
The peak speed estimate was the value of s which yielded the
maximal value of N(s), as in preceding analyses. The centroid
speed estimate was the weighted sum of speeds, with the
weight equal to the response of the unit tuned to that speed: )ss
N(s) /)s N(s) (64 logarithmically spaced samples of speed
were used). Here, ! represents clipping negative values to
zero.

Figure 13 (}) shows speed estimate variability obtained
with centroid readout, as a function of speed. For comparison,
variability obtained with peak readout is replotted from Fig. 6
(E). Two major trends are evident. First, centroid readout was
up to an order of magnitude less precise than peak readout.
Second, the difference in performance was largest at lower
speeds, for which peak readout was most precise. The median
ratio of speed estimate SD obtained with centroid readout to
that obtained with peak readout was 6.7.

Several aspects of the difference in performance were ex-
amined in more detail. First, the difference cannot be attributed
to coarse sampling of speed, because variability was asymp-
totic in the number of samples (not shown). Second, if centroid
readout were more robust to noise than peak readout, the
difference in performance could be diminished or reversed in
the case of weaker responses (e.g., low contrast stimuli). This
possibility was tested by artificially subsampling 1/2 or 1/4 of
recorded spikes from each cell, and repeating the comparison
using the subsampled data. The difference in performance was
only slightly reduced (median ratio: 5.4, 5.9). Third, the dif-
ference could arise because in centroid readout, all units—
including those carrying noise but little useful signal—contrib-
ute to the speed estimate, whereas in the peak readout only
units with speed tuning near the correct speed contribute. This
problem could be counteracted by broadening the speed tuning
curve of each unit. Increasing the filter width for centroid
readout to 100 ms, thereby increasing the speed tuning band-
width, reduced speed estimate SD, but still yielded much
greater SD than peak readout (median ratio: 5.3).

In summary, centroid readout provided less precise speed
estimates than peak readout. If such an architecture were used
in motion sensing circuits in the brain, these circuits could
place the dominant limit on behavioral motion sensitivity in the
conditions tested.

Controls

In the present experiments, parasol cells exhibited evoked
firing rates comparable to what would be expected from in vivo

studies, but low maintained firing rates (see METHODS). To
investigate the effects of low maintained firing rates, speed
estimation was performed with artificial spikes added to the
data at random times, at a rate of 20 Hz. In the presence of
artificially elevated background firing, the SD of speed esti-
mates was approximately doubled in all conditions tested
(median ratio: 2.1). Resampling of spike trains (Fig. 7B)
continued to produce a systematic increase in speed estimate
SD (median ratio: 1.2). Centroid readout (Fig. 13) continued to
produce higher speed estimate SD than peak readout (median
ratio: 12.3).

D I S C U S S I O N

We have established the limits to sensory performance
imposed by a neural population code in a behaviorally relevant
visual task. To systematically examine the entire visual signal
relevant for speed estimation, we performed large-scale simul-
taneous recordings from mosaics of ON and OFF parasol cells,
which provide the dominant inputs to motion-sensing circuits
in the primate brain. This approach illuminated some of the key
issues involved in reading a population code. Simple neural
computations (Figs. 2 and 3) at time scales optimized for
readout precision (Fig. 4) efficiently extracted information
about stimulus speed from RGC spike trains (Fig. 5). The
ensemble activity of !100 RGCs signaled speed with a preci-
sion of !1% (Fig. 6), much finer than previous estimates of
speed discrimination in human observers. Precision was not
influenced by correlated activity in RGCs but did depend on
the intrinsic timing structure of RGC spike trains (Fig. 7). The
effects of stimulus speed (Fig. 6) and the number and spatial
arrangement of RGCs (Figs. 8–10) were explained simply in
terms of the timing variability of RGC responses and optimal
pooling. This framework provided a basis for predicting the
speed estimate precision that would be obtained with stimuli of
different speeds covering different areas of retina. ON and OFF

cells with overlapping receptive fields provided signals with
similar precision that were nonredundant (Figs. 11 and 12),
probably due to neural processing downstream of the photore-
ceptors. Finally, simulations indicated that the architecture of
readout from populations of speed-tuned neurons in the brain
could profoundly affect how efficiently retinal motion signals
are exploited for visual perception and behavior (Fig. 13).

Extracting motion signals from the ensemble code

To interpret the precision of speed estimates as revealing
intrinsic limits of retinal signals, it is important that the readout
approach efficiently exploit the information about speed avail-
able in RGC spike trains. Previous work has indicated that
some approaches to motion estimation are more efficient than
others, depending on the signal-to-noise ratio at the encoding
stage (Potters and Bialek 1994). Speed estimates were obtained
from a population of speed-tuned sensors created by low-pass
filtering of RGC spike trains followed by delay and cross-
correlation. This estimation approach relies on the assumption
that the essential information about motion is given by align-
ment, after appropriate translation in time, of spike trains from
different cells; cross-correlation is one measure of alignment.
Various alternative measures of alignment exhibited similar
speed estimation performance, suggesting that the cross-corre-

FIG. 13. Centroid and peak speed estimation. Fractional speed estimate
variability obtained using centroid estimation (}) and peak estimation (E) as a
function of stimulus speed. Filter width: 0.01 s; 79 conditions.
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lation measure extracted most of the information available and
that the conclusions are likely to generalize to any motion
sensing algorithm that compares the timing of responses in
different cells. In addition, the dependence of speed estimates
on the number and spatial arrangement of cells (Figs. 8–10)
was consistent with optimal pooling of signals from all pairs of
cells. However, the possibility that entirely different speed
estimation procedures would yield more precise estimates
cannot be excluded.

Even if readout is efficient, the “ideal observer” approach
adopted here (e.g., Banks et al. 1987; Geisler 1989) carries
important caveats for interpretation of visual system function.
The readout procedure effectively incorporated several as-
sumptions: a one-dimensional pattern of light intensity and a
known axis of motion, trial duration, and relevant retinal area.
An organism rarely if ever has access to such prior knowledge,
and the visual system may be unable to exploit it. A full
assessment of the retinal limits on motion sensing may require
more realistic assumptions about how the signals are used
downstream. For example, motion sensing may be more spa-
tially localized than the readout approach adopted here. Inter-
estingly, a simple model of speed estimate variability (Eq. 3)
suggests a steep penalty for restricting the spatial extent over
which speed is computed (Fig. 10).

Note that the readout approach used here is not intended as
an explicit model of motion sensing in the brain. However,
cross-correlation and filtering are essential elements in com-
putational models of motion sensing (Adelson and Bergen
1985; see Clifford and Ibbotson 2003; Emerson et al. 1992;
Reichardt 1961; Simoncelli and Heeger 1998; Watson and
Ahumada 1985). For example, the input-output properties of
Reichardt detectors and motion energy sensors are in some
cases identical because they both rely on pairwise multiplica-
tion, or summing and squaring, of input signals filtered differ-
ently in time and space (Adelson and Bergen 1985). The
approach used here can also be described both ways (see
RESULTS).

Stimulus manipulations beyond those examined here (speed,
direction, contrast polarity) in future experiments could be
valuable. For instance, weaker stimuli (e.g., lower contrast) are
likely to increase the optimal filter width by creating sparser
spike trains, forcing longer temporal integration for faithful
motion sensing (see Chichilnisky and Kalmar 2003). Spatially
extended stimuli (e.g., moving textures) could improve the
fidelity of speed estimates by simultaneously stimulating all
cells in the region recorded. Different spatial patterns may also
have different effects on response synchrony, the stimulus
dependence of which is poorly understood. Finally, stimuli
with time-varying rather than fixed speed, and corresponding
time-varying speed estimates (Bialek et al. 1991), may more
closely approximate natural behavior.

Temporal structure of RGC motion signals

The elementary time scale of RGC speed signals is reflected
in the optimal filter width for readout (!10 ms), which roughly
matched that in an earlier study of left-right direction estima-
tion (Chichilnisky and Kalmar 2003). However, the earlier
study did not test the possibility that finer timing precision
sometimes observed in RGC spike trains (Berry et al. 1997;
Reich et al. 1997; Uzzell and Chichilnisky 2004) could be

exploited for fine-grained tasks such as speed estimation. A
prediction from the present results is that synapses on motion-
sensitive cortical neurons may temporally filter input spikes on
the time scale of !10 ms. Of course, the brain may perform
motion estimation with nonoptimal filtering.

Many models of visual processing implicitly assume a sim-
plified model of the time structure of RGC spike trains,
namely, that spikes are generated according to a Poisson
process with a time-varying firing rate determined by the
stimulus. The Poisson description is undoubtedly wrong in
detail (e.g., it does not allow for temporal patterns in spike
trains caused by refractoriness and bursting). However, the
importance of temporal structure for downstream computations
is controversial (see e.g., Shadlen and Newsome 1998; Victor
1999), and a Poisson approximation may suffice for under-
standing the limits on visual performance in some tasks (e.g.,
Dhingra and Smith 2004; but see J. W. Pillow, L. Paninski,
V. J. Uzzell, E. P. Simoncelli, and E. J. Chichilnisky, unpub-
lished data). In the present study, Poisson simulations, matched
for the time-varying firing rate of RGC data, yielded system-
atically less precise speed estimates. Thus the intrinsic tempo-
ral structure of RGC spike trains is important for signaling
speed information to the brain. Interestingly, exploiting the
intrinsic structure did not require an elaborate decoding pro-
cedure—instead, merely filtering and correlating responses,
effectively comparing the timing of responses in different cells,
sufficed. Thus the conclusions are likely to generalize to any
procedure that relies on comparison of responses in different
cells.

Correlated firing and the population code

A major open question in population coding is whether a
sensory signal conveyed by the collective activity of many
neurons can be understood based on sequential measurements
from individual neurons or whether simultaneous recordings
from multiple neurons are required. Significant departures
from statistical independence observed in RGC spike trains
(DeVries 1999; Mastronarde 1983; Meister et al. 1995) have
been proposed as evidence for the importance of simultaneous
recordings (Meister et al. 1994, 1995). Speed estimation with
shuffled responses to enforce statistical independence indicated
that covariation in responses of nearby RGCs does not funda-
mentally change retinal motion signals. As in the analysis of
temporal structure, this conclusion is likely to apply to any
downstream decoding procedure which compares responses of
different cells. Thus recordings from single neurons may in
some sense suffice for understanding the population code for
motion.

However, there are three major caveats to this conclusion.
First, the present results may not generalize to other tasks, and
for any given task, the importance of correlated activity can
only be examined rigorously using simultaneous recordings.
Second, synchronized spikes were not treated differently from
other spikes by the cross-correlation computation. It is con-
ceivable that a decoding algorithm could explicitly exploit
synchronized spikes to yield more precise motion sensing (Dan
et al. 1998; Warland et al. 1997). The present results can be
interpreted as showing that common input and noise to RGCs
reflected in synchronized spikes is not important for speed
estimation. Third, simultaneous recordings provide major tech-
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nical advantages, such as revealing the spatial arrangement of
receptive fields, response kinetics, and overall sensitivity,
which can be compared reliably between cells in a population.
Thus simultaneous recordings are crucial for examining the
fidelity of visual signals—such as motion—that rely on com-
parison of activity in different cells.

Retinal limits on motion signaling fidelity

The precision of speed estimates obtained by combining
estimates from ON and OFF parasol cells indicates that these cell
types carry motion information that is nearly statistically inde-
pendent, even when their receptive fields cover roughly the
same retinal area. Because the ON and OFF pathways diverge at
the cone-bipolar synapse, a possible explanation is that the
physiological noise that limits motion signal fidelity originates
downstream of the photoreceptors. However, a more parsimo-
nious explanation is that because of rectification downstream
of the photoreceptors, responses in ON and OFF cells are driven
primarily by different temporal components of the elementary
photoreceptor response, such as the hyperpolarizing and depo-
larizing phases respectively. Rectification could explain the
observed independence because different components of the
photoreceptor response exhibit independent noise (Schneeweis
and Schnapf 1999; but see Schnapf et al. 1990).

Irrespective of its origin, the independence of speed esti-
mates in the ON and OFF pathways suggests that it would be
advantageous for motion-sensitive neurons in the cortex to
pool motion signals derived from ON and OFF inputs. Such
pooling occurs in single neurons of cat visual cortex (Sherk and
Horton 1984).

Relation to central motion sensing

To determine whether retinal signals impose the main limit
on behavioral motion sensing, three experimental predictions
from the present work could be tested. First, behavioral speed
estimates using bars of matched intensity, contrast, eccentric-
ity, size, and duration should exhibit a fractional variability of
!1% (see Fig. 6). Second, fractional speed estimate variability
should increase with speed according to the relation predicted
from the temporal precision of RGC signals (see Fig. 6 and Eq.
4). Previously reported speed estimates in the periphery exhib-
ited variability nearly an order of magnitude higher and a
different trend with speed, but the stimuli used in those exper-
iments differed considerably (McKee and Nakayama 1984), in
particular, stimulus duration rather than extent of stimulus
travel was fixed across speeds. Third, behavioral speed esti-
mate SD should be lower for stimuli elongated in the direction
of motion than for stimuli elongated orthogonal to the direction
of motion (see Figs. 8 and 9) and should decline as the 3/2 and
1/2 power in these dimensions, respectively. This is qualita-
tively consistent with previous observations on human speed
discrimination, though those experiments were performed with
random-dot stimuli (Vreven and Verghese 2002). Note that the
preceding predictions rely on the assumption that observers can
integrate information efficiently over space and time. A rigor-
ous test of this assumption, as well as all predictions about
behavioral performance, will require psychophysical experi-
ments using stimuli matched for intensity, contrast, eccentric-
ity, size, and duration. Such experiments must also account for
eye movements, which alter image velocity on the retina.

If cortical networks involved in sensing motion add noise or
rely on few neurons, they could impose a limit to performance
more severe than that imposed by the retina. In addition, the
architecture of central motion readout could impose major
limits. In the present work, stimulus speed was estimated using
the peak of the activity in a collection of detectors tuned for
speed (see Fig. 3A). However, the brain may use a different
architecture. Several studies have indicated that behavioral
readout from speed-tuned neurons in visual area MT may rely
on the centroid of activity (vector average) rather than the peak
(winner take all) (Groh et al. 1997; Lisberger and Ferrera 1997;
Priebe and Lisberger 2004; but see Ferrera and Lisberger 1995;
Nichols and Newsome 2002). The centroid computation yields
unique speed estimates over a wide range of stimulus condi-
tions, which may be desirable for controlling essentially uni-
tary behavioral output such as an eye movement. The present
results show that centroid readout can yield much less precise
speed estimates. This may occur because all units contribute to
the speed estimate, whereas in the peak computation only
neurons with speed tuning near the true speed contribute
(Seung and Sompolinsky 1993). Centroid readout exhibited
performance more similar to peak readout at high speeds, a
regime in which variability was high for both procedures. This
suggests that different architectures may be appropriate in high
and low signal-to-noise regimes (Potters and Bialek 1994).
However, subsampling spike trains had little effect on the
increased precision provided by peak readout.

The fidelity of visual motion signals has been examined
most extensively in single neurons of area MT, which are tuned
for stimulus direction and speed (Albright et al. 1984; Dubner
and Zeki 1971; Maunsell and Van Essen 1983; Perrone and
Thiele 2001) and are important for motion perception and
behavior guided by motion (Newsome et al. 1985; Salzman et
al. 1990). Direction discrimination based on responses of
individual MT cells is on average comparable to the behavioral
direction discrimination (Britten et al. 1992), suggesting effi-
cient readout downstream. However, it is unclear how much
information is carried by the entire population of MT cells
covering a particular region of visual space (Britten et al. 1992;
Zohary et al. 1994). In the present work, the mosaic organiza-
tion of parasol cells provided strong evidence that nearly the
entire visual motion signal available to the brain from the
parasol population was recorded, over an area at least the size
of a V1 neuron at the same eccentricity. Parasol cells project to
the magnocellular layers of LGN (Perry et al. 1984; see
Rodieck 1998), and lesion experiments indicate an important
role of magnocellular neurons in motion perception (Merigan
and Maunsell 1990; Schiller et al. 1990; see Merigan and
Maunsell 1993; Van Essen 1985), suggesting an important role
for parasol cells. However, at least 13 distinct RGC types
project to the primate LGN and additional types project to
subcortical targets (Dacey et al. 2003; see Rodieck 1998;
Rodieck and Watanabe 1993). The coarse resolution of lesion
experiments, the possibility that cell types other than parasols
project to the magnocellular layers of the LGN, and the
unknown role of RGCs that project to targets other than the
LGN, leave open the possibility that other RGC types contrib-
ute to motion sensing. In spite of this caveat, it is clear that
parasol cells provide a major component of the visual motion
signals used by the cortex. Thus a direct comparison of the
present results to behavioral speed estimation in matched
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experimental conditions may provide insights into whether
retinal processing or downstream processing places the ulti-
mate limit on motion sensitivity.

Broader implications

Previous experimental studies of neural coding have focused
largely on individual neurons, an approach that has significant
limitations for systems in which information is represented by
the spatiotemporal activity of a population of neurons. Exam-
ples include the encoding of position, color, and texture in the
early visual system, object shape in the whisker barrel fields of
somatosensory cortex, frequency modulation in auditory nerve
activity, and prey location in the electrosensory system of
electric fish. Several conclusions from the present study may
extend to other systems. 1) The statistics of spike trains define
a natural time scale over which information is conveyed, which
in turn predicts the time scale for synaptic integration in
neurons that read out the population. 2) Intrinsic structure in
spike trains (such as refractoriness) may be used to convey
more information than would be expected from time-varying
firing rates alone. 3) Even if correlated activity is clear and
powerful, it may have little influence on downstream process-
ing. 4) The spatial arrangement of neural activity may influ-
ence the fidelity of the population code much more strongly
than the 1N improvements expected from averaging N inputs,
and this dependence may be explained by timing variability of
neural responses and optimal pooling. 5) Different populations
of cells may convey statistically independent information, thus
providing benefits to pooling, even if their inputs are common.
6) In addition to downstream noise, the architecture of down-
stream circuits can profoundly influence how efficiently the
population code is read out. These principles may help to
further elucidate the factors that limit the fidelity of other
population codes and the readout strategies employed by the
nervous system.
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