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SUMMARY

1. Y-type ganglion cells in the cat's retina were stimulated with bars of light and
grating patterns at photopic luminances. Stimuli were stationary, and luminance at
each point was varied sinusoidally in time at 2 Hz. Impulse rates were recorded from
single cells.

2. When the stimulus was a narrow bar of light, the impulse rate approached a
sinusoidal function of time as contrast was reduced. The linear behaviour of each
cell was therefore characterized by taking the limit ofresponse parameters as contrast
approached zero.

3. The ratio of surround strength to centre strength varied widely between cells
but the two strengths were approximately equal on average. The difference between
surround phase and centre phase averaged 168 deg.

4. As contrast increased, responses became rectified. Rectifier output was well
described by a power law of stimulus amplitude, where the power was usually 1-4
or 1@5.

5. Response phase advanced with increasing contrast, and at high response
amplitudes grew less than proportionally with contrast. These effects were assumed
due to the contrast gain control described by Shapley & Victor (1978).

6. Gratings in which luminance varied sinusoidally with distance were used to
determine Y cell spatial resolution. The second-harmonic amplitude of the response
diminished rapidly with increasing spatial frequency: the radius of the best-fitting
Gaussian mechanism was about 025 deg for a cell at 10 deg eccentricity.

7. This spatial resolution is close to the linear resolution of X cells as determined
by Linsenmeier, Frishman, Jakiela & Enroth-Cugell (1982).

8. A receptive field model incorporating both linear and non-linear elements is
described. The model consists of an array of subunit pathways, each of which has
a centre-surround organization followed by a rectifier; a pool weights and sums
subunit outputs, and signals are then passed through a contrast gain control.

9. The model accounts qualitatively for the over-all centre-surround organization
of Y cell linear responses, the dependence of frequency-doubled responses on spatial
frequency, and impulse rate as a function of time for a variety of bar and grating
stimuli.
* To whom all reprint requests shotild be sent: Physiology Department F13, University of

Sydney, NSW 2006, Australia.
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INTRODUCTION

It is clear that non-linearities play an essential role in visual function. Adaptation,
for instance, is an inherently non-linear process since it involves a change in the
sensitivity of the visual system when the ambient level of illumination changes. The
subject of this paper is a population of cells in the retina, Y-type ganglion cells, which
operate in a characteristically non-linear fashion on the visual stimulus. The Y cell
was first distinguished from other ganglion cell types by a test which shows that
signals from one part of its receptive field cannot be made to cancel signals from
another part, regardless of the spatial configuration of the stimulus (Enroth-Cugell
& Robson, 1966). Another expression ofnon-linearity in Y cell function is the contrast
gain control described by Shapley & Victor (1978). At low temporal frequencies, this
mechanism results in response amplitudes that grow less than proportionally, and
in advancing phase, with increasing contrast.
Given the importance of non-linear processes for vision, it is desirable to know how

the Y cell operates. Previous studies (e.g. Enroth-Cugell & Robson, 1966; Cleland,
Dubin & Levick, 1971; Linsenmeier et al. 1982; Derrington & Lennie, 1982),
particularly those of Shapley and his colleagues (e.g. Hochstein & Shapley, 1976a, b;
Shapley & Victor, 1978; Victor & Shapley, 1979; Shapley & Victor, 1981), have
described various facets of contrast processing in Y cells. It cannot be said, however,
that contrast processing in this population of cells is completely, or even well,
understood. If it were, it would be possible to predict the response of a Y cell to an
arbitrary spatiotemporal pattern of luminance on the retina. Current knowledge of
Y cell mechanisms, however, is not sufficient to attempt such a synthesis. Our aim
in this paper is to use existing data and new observations to construct a model for
spatial mechanisms in the Y cell receptive field at low temporal frequency and a
photopic adaptation level. Further, we aim to show that this model can qualitatively
account for the response of a Y cell to a limited set of spatial patterns under these
experimental conditions.
A preliminary report of this work has been published (Freeman & Enroth-Cugell,

1985).

METHODS

Animal preparation. Adult cats were anaesthetized with halothane while two venous catheters
were inserted. One catheter was used for infusing anaesthetics: sodium thiamylal was used until
preparatory surgery was completed, and urethane thereafter. The loading dose for the latter was
200 mg kg-', while the steady infusion rate, 20-30 mg kg-' h-1, was more than six times higher than
one that maintains light anaesthesia in unparalysed cats (Cleland & Enroth-Cugell, 1966), and about
the same as that used in a recent study of paralysed animals (Enroth-Cugell, Robson, Schweitzer-
Tong & Watson, 1983). Heart rate and blood pressure were carefully monitored for changes that
may be associated with painful stimuli; if such changes occurred, the urethane infusion rate was
increased. The other catheter was used to infuse 20-30 mg gallamine triethiodide kg-' h-'; together
with bilateral transection of the cervical sympathetic trunk, this minimized eye movements.
Respiratory stroke volume was adjusted to maintain end-tidal CO2 at 4 %, rectal temperature was
kept at 39 'C. Locally applied phenylephrine and atropine retracted the nicitating membranes, and
dilated the pupils, respectively. Contact lenses with 4 mm diameter pupils were fitted to both eyes.
Electrical recordings from the right optic tract were made with glass-insulated tungsten micro-
electrodes.

50



RECEPTIVE FIELDS OF RETINAL Y CELLS

Stimulation. Stimuli were presented on a cathode-ray tube with a P31 phosphor (Joyce
Electronics, Cambridge, U.K.). The tube face measured 31 cm horizontally by 21 cm vertically and
was placed 114 cm from the cat so that it subtended 16 x 10 deg. The raster stimulus was
composed of thirty lines per degree of visual angle, and was presented at 160 frames s-1. Mean lumin-
ance was fixed at 420 cd m-2; with 4 mm diameter pupils, this produces a retinal illumination in the
photopic range (Enroth-Cugell, Hertz & Lennie, 1977). One-dimensional spatial patterns were
generated on the tube face by holding the luminance constant along an individual raster line, but
varying the luminance from line to line. During each frame, line luminances were read from a
digital-to-analogue converter (d.a.c.) with memory (Cambridge Electronic Design, Cambridge,
U.K.) in which the required spatial pattern had been previously stored. Lines ran vertically, so
that the displayed pattern was modulated horizontally. Temporal variation in the stimulus was
obtained by multiplying the signal from the memory d.a.c. by the output of another d.a.c.; the
signal from the second d.a.c. was constant during a frame, but varied from frame to frame. For
the bar and grating stimuli described in the Results section, the temporal wave form used was a
2 Hz sinusoid. Contrast was determined by subtracting the mean luminance from the maximum
luminance in a temporal cycle, and dividing that difference by mean luminance. The highest
contrast used was 0 9.

Experimental protocol. At the beginning of a recording session, the visual stimulus was focused
on both retinas by placing spherical spectacle lenses in front of the eyes. Lens powers were adjusted
to obtain the maximum response from a ganglion cell to a high spatial frequency grating presented
on the cathode-ray-tube face. A reference map for plotting receptive-field locations was produced
by illuminating the retina via a fibre-optic light guide held at the cornea. The reflected image of
the optic disk and blood vessels was then drawn on a tangent screen. The location of the area
centralis (relative to the disk) was estimated by the method of Nikara, Bishop & Pettigrew (1968),
and receptive field eccentricity measured from the point so determined. After obtaining the
eccentricity of a unit, a mirror in front of the cat was used to image the face of the cathode-ray
tube on the retina. A contradt-reveraing edge stimulus on the tube face, that is, a stationary edge
stimulus for which luminance at each point varied sinusoidally in time, was centred over the
receptive field by turning the mirror until the linear component of the response was reduced to
zero.
The coarseness of the electrodes used here (tip length greater than 10 sam) biased against the

recording of cells with thin axons. It can therefore be safely assumed that cells fell into the X and
Y ganglion cell categories of Enroth-Cugell & Robson (1966), or equivalently, the bri8k category
of Cleland & Levick (1974). X and Y cells were distinguished by stimulating each cell with a
1 cycle deg-' sinusoidal grating successively presented at a number of spatial phases distributed
evenly across half a spatial cycle. The grating was stationary and contrast-reversed at 4 or 8 Hz.
A sinusoidal function of stimulus spatial phase was fitted to the fundamental Fourier response
amplitude, while the amplitude of the second harmonic was averaged across phases (Hochstein &
Shapley, 1976a). Cells were classified as Y-type when the second-harmonic amplitude determined
in this way exceeded the fundamental amplitude. One cell (0602) that failed this test is also
included; for this cell the ratio of second-harmonic amplitude to fundamental amplitude was 0 9,
but the radius of its centre mechanism (1-25 deg at 28-7 deg eccentricity) indicated classification as

Y-type (see Linsenmeier et al. 1982).
A correction for eye movements was made while recording from each cell. Every 10 to 15 min,

a 0-25 deg wide bar was slowly swept five times across the receptive field, and the impulse rate
computed as a function of time during a sweep. The result was compared with the time course
obtained in the same way immediately following the centring and classification of the receptive
field. A shift in the response peak to either side was interpreted as due to eye movements, and stimuli
delivered thereafter were shifted by the amount required to compensate for the eye movements.
Data collection and analy8is. Impulse occurrence times from single cells were detected with a

trigger circuit, and interimpulse intervals recorded digitally with a resolution of 10,us. Data
collection periods were organized into trials of 7 s or longer in length. Stimuli were presented for
at least a second before the beginning of a trial to allow the cell's activity to stabilize. For each
spatial configuration ofa stimulus, at least four contrast levels were used. The contrasts were chosen
to be multiples (1, 2, 3,...) of the contrast that yielded a root mean square variation of impulse
rate about the mean rate of approximately 5 impulses s-1. All stimuli were periodic in time, and
the response could therefore be characterized with a Fourier series. The amplitude and phase of
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the first eight Fourier components of the impulse rate were computed for each trial by convolving
sine and cosine functions of time with a series of delta functions representing the impulse train.
Impulse rate as a function of time during the stimulus cycle was determined in two steps. First,
the Fourier series representing the frequency-domain response was multiplied by a Gaussian
spectrum that reduced the eighth harmonic to 13% of its original amplitude; multiplication by this
Gaussian spectrum in the frequency domain is equivalent to smoothing in the time domain using
a temporal Gaussian profile with a standard deviation of 0-04 stimulus cycles. Secondly, an inverse
Fourier transformation was performed to obtain the time-domain response. The frequency-domain
procedure used here avoids the loss of temporal resolution inherent in a binning method.

Terminology. The term responsivity is used for the amplitude of the fundamental Fourier
response component divided by contrast (Enroth-Cugell et al. 1983). We use impulses s-' contrast-
unit-' (rather than impulses s-') as its unit to help distinguish between responsivity and the
amplitude of the fundamental. Response phase is measured as the difference between the phase
of the fundamental Fourier component and that of the stimulus, in units of degrees. The
responsivity vector is the vector with magnitude equal to the responsivity, and with the phase of
the response. Since all stimuli were periodic, the phase relationship between any two signals evoked
by a stimulus (for instance, the centre and surround signals described below) can be given as a
specific number of degrees to which is added an arbitrary integral multiple of 360 deg. We therefore
avoid the statement that one signal leads or lags another signal, specifying instead the phase
difference between the two signals; the phase value used is that which lies between - 180 and
180 deg.
Gaussian centre-surround model. The Gaussian centre-surround model used here to describe the

linear spatial characteristics of the Y cell receptive field is functionally identical to that used by
Enroth-Cugell et al. (1983), with some differences in conventions. Briefly, the model's response is
defined to be a vector (or equivalently, a complex number) since it has both magnitude and phase.
The model's responsivity vector is assumed to be the sum of two other vectors, the signals from
the centre and surround mechanisms. (The centre and surround signals that best fit experimental
results at low temporal frequency are nearly out of phase, so the vector sum approximates a
difference of scalars.) Each of the two mechanisms is described by three parameters: (1) the radius
of the Gaussian function giving the mechanism's amplitude at each spatial location; (2) a strength,
which is the fundamental amplitude of the signal evoked in that mechanism per unit of contrast
of a spatially uniform stimulus covering the receptive field; (3) the temporal phase shift of the
mechanism's signal relative to the stimulus. Since centring of the receptive field on the cathode-
ray-tube face during an experiment was rarely exact, a seventh parameter, the location of the
receptive field middle, is included here. These seven parameters were estimated for each cell by
placing narrow contrast-reversing bars of width, b, at a number of locations, x, across the receptive
field and recording the fundamental amplitude and phase of the cell's response at each location.
From the quotient Fp(w)/c in eqn. (21) of the Appendix, the model's responsivity vector is

Rg(x) = S, erfb(x-xo, b, rc)+SS erfb(x-xo, b, rs), (1)

where erfb is a difference of error functions defined in the Appendix, S, and Ss are vectors giving
the centre's strength and phase and surround's strength and phase, r, and rs are the radii of the
centre and surround mechanisms, and xo is the location of the receptive field middle. The model
was fitted to the experimental data, and parameters estimated, in two steps. First, the radii r, and
rs and the location xo were assigned fixed values. The error vector between model and experimental
data was defined to be the difference between the cell's and the model's responsivity vectors, divided
by a weighting proportional to the standard deviation of the measurement, the cell's responsivity
(Enroth-Cugell et al. 1983). Eqn. (1), a linear regression equation in the vector parameters Sc and
SS, was then solved by choosing those parameter values that minimized the sum of squared error
magnitudes across bar placements. Secondly, rc, rs and xo were varied within the ranges in which
they were most likely to fall, and the linear regression performed for each combination. The
combination that gave the minimum error not only provided estimates for rC, rs and xo but also
for the vectors SC and Ss.

RESULTS

The data were collected from thirteen on-centre and three off-centre Y cells from
ten cats. We first describe the Y cell response to a spatially localized stimulus, and
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to a grating stimulus. These experimental observations are then used to construct
a model for the receptive-field spatial structure.

Responses to spatially localized stimuli
The stimuli used in the first part of the study were stationary, vertical, contrast-

reversing bars presented against an otherwise uniform field. Bars were 10 deg long,
usually 0-25 deg wide, and bar luminance varied sinusoidally at 2 Hz about the mean
luminance of the whole screen. Fig. 1 shows the responses of two on-centre cells and
one off-centre cell to a bar placed close to the receptive-field middle, and the responses
when the stimulus was placed well away from the middle. Impulse rate (calculated
by the procedure described in the Methods section) is plotted as a function of time
during a stimulus cycle. Responses to five stimulus contrasts at each receptive-field
location are shown. Several features of these responses are to be noted. First, when
the stimulus is sinusoidally modulated in time, the response can deviate significantly
from a sinusoidal function of time. In particular, at the higher response amplitudes,
impulse rate during one-half of the stimulus cycle increases much more than it drops
during the remainder of the cycle. This process of rectification, an aspect of Y cell
non-linearity, can occur whether the bar is situated at the receptive-field middle or
away from it. Secondly, at low response amplitudes, the impulse rate approximates
a sinusoidal function of time. Thus the signal pathway approaches linear behaviour
as contrast is reduced. The third feature of interest in Fig. 1 is the response phase.
When the receptive field is stimulated at low contrasts at its middle, firing rate
increases more or less in phase with the increase in bar luminance for the on-centre
cells. For stimulation away from the middle, the response is shifted by approximately
half a stimulus cycle, a reflexion of centre-surround organization. The off-centre cell
is approximately half a cycle out of phase with the on-centre cells. Finally, equal
contrast increments do not result in equal response indrements: at high response
amplitudes the response increments are smaller than at low amplitudes. Also,
increasing contrast tends to advance response phase. Shapley & Victor (1978)
described a contrast gain control which was responsible for reducing response
increments and for advancing phase at low temporal frequencies (such as 2 Hz) and
high contrast. The contrast gain control is assumed to be responsible for the effects
seen here.

Non-linear aspects of the response
Fig. 2 shows the effect of the contrast gain control on the fundamental Fourier

response component. The symbols give the amplitude and phase of the fundamental
component as a function of contrast for two bar placements on the receptive fields
oftwo on-centre cells. The fitting of the curves to these points will be described below.
For a linear system, the fundamental amplitude would grow linearly and the phase
would stay constant as contrast increased. The experimental data show that the
fundamental amplitude of the response grows but the gradient decreases with in-
creasing contrast, while the phase of the fundamental component advances with
increasing contrast. These were standard findings across all the cells examined.
There is a non-linear aspect of the responses in Fig. 1 that is evident not only with

increasing contrast, but also at a fixed contrast: positive-going excursions of impulse
rate are greater than negative-going excursions. To explore the form of this
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Fig. 1. Impulse rate profiles for a bar stimulus. The luminance of a thin (0-25 deg) bar
of light was modulated about an otherwise uniform field of fixed luminance (420 cd m-2).
The bar was placed at the middle and outer receptive field, as shown at the top of the
Figure; the inner and outer dashed circles have radii that roughly approximate the centre
and surround radii, respectively, of a Y cell. The distance of the bar's mid-point from the
middle of the receptive field was: B, 2-5 deg; D, 2-5 deg; and F, 2 deg. Bar luminance was
a sinusoidal function of time, as shown by the wave form below the circles. Temporal
frequency was 2 Hz. Five contrasts (shown by dashed lines of different types) were

presented at each bar placement for each of the three cells. The contrasts were integral
multiples (1, 2, 3, 4 and 5) of the following minimum contrasts: A, 005; B, 016; C, 003;
D, 0-16; E, 0-05; and F, 0-16. The data collection period was 60 s at each contrast.
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Fig. 2. The effect of contrast on the fundamental response component. Fourier com-
ponents were determined for the responses of the on-centre cells shown in Fig. 1. Funda-
mental amplitude and phase are shown as functions of contrast when a contrast-reversing
bar is placed at the middle (circles) and outer (triangles) receptive field. The curves through
the experimentally determined points are the results of a least-squares linear regression
in which the model was a quadratic function of contrast for the amplitude data, and a
linear function for the phase data.

non-linearity it is useful to plot the Y cell's output (impulse rate) at each instant of
time during a stimulus cycle against its input (instantaneous stimulus amplitude) at
the same instant. Fig. 3A and B, replots of the data in Fig. 1 A, are of this form,
with one difference. Impulse rate is plotted against the instantaneous value of the
fundamental response component, rather than against instantaneous stimulus
amplitude, since the contrast gain control affects both impulse rate and its
fundamental component in a similar fashion; plotting one against the other therefore
reduces the effect of the contrast gain control on the plotted results. In Fig. 3A,
results at different contrasts have been displaced vertically by arbitrary amounts to
show the form of the individual curves; curves in Fig. 3B have not been shifted. Each
curve in Fig.3A has two arms, one traced as impulse rate increases to its maximum
value during a cycle (continuous line), the other traced as impulse rate decreases from
the maximum (dashed line). If the non-linearity whose form is illustrated in the figure
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were static, the two arms would superpose (a static non-linearity is one for which
output at a particular time depends only on input at that time, and not at any other
time), and the curves obtained at different contrasts would also superpose. Since there
is approximate superposition in Fig. 3B, it appears that the signal pathway from
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Fundamental response (impulses 1)

Fig. 3. The static non-linearity in a Y cell's input-output relationship. In A and B, data
from Fig. I A are shown in a different form. Impulse rate at each instant of time during
a stimulus cycle is plotted against the instantaneous amplitude of the fundamental
response component. Data collected at five stimulus contrasts are shown. They have been
displaced vertically in A to show the forms of the individual curves (from the top, the
contrasts are 0 05, 0 1, 0-15, 0-2 and 0-25), but are superposed in B. In A, the curve traced
out as impulse rate rises to its peak value is shown as a continuous line, and the curve
traced out as impulse rate falls is given by the dashed line. The dashed line in B shows
the input-output relationship expected of a linear mechanism. Results (obtained with the
same stimulus contrasts) from a second cell are shown in C and D.

stimulus to Y cell response includes not only a contrast gain control, but also a static
non-linearity with a positively accelerating input-output characteristic. Results for
a second cell are shown in Fig. 3C and D.
The average impulse rate during a stimulus cycle increases with contrast, since the

static non-linearity produces greater positive-going excursions than negative-going
excursions in the impulse rate. The static non-linearity is therefore a form of
rectification. Hochstein &; Shapley (1976b) suggested that the static non-linearity in
Y cells could be either half-wave or full-wave rectification. Fig. 3B and D show that
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it is neither; the input-output characteristic of the rectifier is a smoothly accelerating
function for which the vertical deviation from linearity (linear behaviour is repre-
sented by the dashed line) is much the same for positive and negative inputs of the
same amplitude. Not all units gave as clear a result as that shown in Fig. 3. In
particular, the two arms in the plot of impulse rate versus fundamental-response
amplitude did not always superpose as closely as they do in Fig. 3. There are at least
two possible reasons for this behaviour. First, when a bar stimulus is placed over the
receptive-field middle it stimulates signal pathways at the middle of the receptive
field, and pathways away from the middle. The phase shifts in these pathways differ
(see Fig. 4). Secondly, the static non-linearity might be followed by a linear process
that shifts response components of different temporal frequencies by differing phases.
However, the qualitative effects of rectification, as seen in Fig. 1, were clearly evident
in all sixteen units examined.

Linear behaviour
It is our aim in this paper to construct a model for the spatial structure of the Y

cell receptive field. To this end it is important to examine not only non-linear
behaviour, but linear behaviour as well. Using sinusoidal gratings, Linsenmeier et al.
(1982) demonstrated that a difference of Gaussians model can be used to fit the linear
response component obtained across a range of spatial frequencies when the temporal
frequency is 2 Hz. We adopt a similar approach here, with the following differences.
First, the spatial profile of the receptive field was determined by placing a narrow
bar at a number oflocations along a receptive-field diameter, rather than by changing
the spatial frequency of a grating. Secondly, the centre and surround components
are not constrained to be exactly out of phase with each other in the model we use;
it is therefore referred to as a Gaussian centre-surround model, rather than a
difference of Gaussians model. Thirdly, rather than using"the linear component of a
response that also contains non-linear components, a response that is presumed to
be entirely linear is analysed. It has already been shown that the Y cell's response
approaches linearity as stimulus contrast decreases. The required response measures
were therefore obtained from the fundamental Fourier component in the limit as
stimulus contrast approaches zero.
An example of the approach is shown in Fig. 2. To measure the cell's responsivity

for each placement of the bar, a quadratic function of contrast was fitted by
least-squares linear regression to the fundamental amplitudes; the lines in Fig. 2A
and B show the fitted functions. The regression equation used for these fits was
c+ 12 c2 where k1 and k2 are constants and c is contrast. The required measure of

responsivity is the gradient of the contrast-response function in the limit as contrast
approaches zero. This is given by the coefficient, k,, which has units of impulses s-1
contrast-unit-1. The second term, k2 c2, is included to account for the reduced slope
at high contrast. A similar approach is used for the phase of the cell's response. A
linear function of contrast, k3 + k4 c, where k3 and k4 are constants, was fitted to the
experimental points by least-squares regression. The parameter k3 is the intercept of
the phase curve with the zero-contrast axis; it provides the required measure of
response phase in the zero-contrast limit. It will be referred to in the following
discussion of linear responses simply as phase. We do not imply that the polynomial
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expressions for amplitude and phase are useful as general characterizations for the
dependence of the fundamental component on contrast. All that matters here is the
fit at low contrasts: the polynomials do a good job in this respect.

Responsivity and phase for two on-centre cells are given as a function of location
within the receptive field by the circles in Fig. 4. Location here refers to the mid-point

Y-on 1508 Y-on 1711
1000
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40
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180

S~~~~~~~

ri 0

0.8

-180 . . . l . . I , . I
-3 0 3 -3 0 3

Location (deg)

Fig. 4. Receptive-field spatial profiles. A contrast-reversing bar was placed at eight
locations across the receptive field; the responsitivities and phases calculated from the
fundamental response at each location are shown by the symbols. The continuous curves
show the result of fitting a Gaussian centre-surround model to the data from each cell.

of a narrow bar shifted parallel to itself between recordings; the origin of the location
axis is placed at the receptive-field middle. For the cell on the left, recordings were
taken mostly on one side of the receptive field in order to reduce recording time. The
Figure shows that responsivity dies away as the stimulus moves further from the
receptive-field middle, but not monotonically. Further, response phase has one value
at the receptive-field middle and a quite different value away from it. These
observations reflect the well-established result that the Y cell's receptive field is
centre-surround organized. Thus, responses to a bar placed at the middle of the
receptive field are assumed to be due to a combination of signals from the centre and
surround mechanisms, and responses well away from the middle are assumed to be
almost entirely due to the surround mechanism. The lines in Fig. 4 were calculated
from the best-fitting Gaussian centre-surround model. The form of the model used
here and the method by which errors between experimental and model data were
minimized are described in the Methods section. The goodness-of-fit was measured
by dividing the sum of squared errors by the number of observations and taking the
square root. For the data sample of Fig. 4, this root mean squared error was 017.
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Since the error across all fits in fifteen Y cells was 0-23, the goodness-of-fit in Fig. 4
is slightly better than the average.

Discussion of the centre and surround radius values obtained in fitting the data
of Fig. 4 will be postponed until later. Here we describe the values obtained for centre
and surround strength and phase. Of particular interest here is the ratio of surround
strength to centre strength, since this ratio is one of the major determinants of a cell's
behaviour. The mean ratio across fifteen cells was 0'96, indicating that centre and
surround strengths were very similar on average. The ratio was quite variable,
though, since the standard deviation of the ratio across the same sample was 0 37.
This variation between cells can be seen directly in Fig. 5. Responses in this Figure
come from two on-centre Y cells, each of which was stimulated with a bar placed
close to the receptive-field middle, and also with a bar placed at least one centre radius
away from the middle. The Y cell at the top of the Figure had the second highest
surround/centre strength ratio (1-23) in the sample. Stimulation away from the
middle of this cell's receptive field produced only one response peak (which must
therefore have been largely due to the surround mechanism) while stimulation at the
middle produced two response peaks, for which the surround-dominated peak was
of similar size to the centre-dominated peak. In the lower part of the Figure is another
Y cell recorded from the same retina, at about the same eccentricity. This cell has
the lowest surround/centre responsivity ratio in the sample (0-32); the surround
response is not visible even when the cell is stimulated in the outer receptive field.

In twelve on-centre cells the phase difference between the centre signal and the
stimulus averaged -0 5 deg; for three off-centre cells this difference was -172 deg.
The closeness of the centre's phase angle to 0 and - 180 deg, respectively, is a
fortuitous result of choosing 2 Hz as stimulus frequency. The phase angles we have
determined for Y cell centres at lower and higher temporal frequencies (unpublished
results) are more and less positive, respectively, than those at 2 Hz. Like the ratio
of surround strength to centre strength, the difference in phase between the surround
and centre signals is an important determinant of the cell's linear behaviour. The
surround-centre phase difference in the thirteen cells examined (for two cells, the
surround signal was too small to obtain a reliable phase estimate) was always a little
less than half a stimulus cycle: mean = 168 deg, standard deviation = 14 deg. Again,
the responses of cell 0501 in Fig. 5 give some direct evidence for this result. The peak
of the centre-dominated response occurs between zero and one-tenth of the way
through a cycle. Ifthe surround signal were exactly out of phase with the centre signal
the surround-dominated peak would occur between the fifth- and sixth-tenths; in fact
it occurs later. These data on Y cell linear behaviour will be compared with previous
results in the Discussion.

Respon8es to gratings
It has been shown by Hochstein & Shapley (1976b) that the frequency-doubled

response of a Y cell to a contrast-reversing grating has a higher spatial resolution
than that of the linear response component. Any model of the receptive-field spatial
structure must obviously take this observation into account. Accordingly, we now
describe responses evoked by contrast-reversing gratings, with particular attention
to high spatial frequencies. The gratings used were constant in luminance in one
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Fig. 5. Demonstration that the strength of the surround mechanism relative to that of
the centre varies markedly from cell to cell. A contrast-reversing bar was placed at the
middle and outer receptive field of two cells. The mid-points of the bars were placed 2-2
and 05 deg from the receptive-field middle in B and D, respectively. The minimum
contrast presented was 0-2 for each set of axes; stimuli were presented at multiples (1,
2 and 3) of these minimum contrasts. The data collection period was 7 s for each contrast.

spatial dimension and modulated sinusoidally in the perpendicular spatial dimension.
Gratings were stationary, and luminance at each point was modulated as a sinusoidal
function of time with a temporal frequency of 2 Hz.

Fig. 6 shows the responses of two on-centre cells and one off-centre cell (the same
cells as in Fig. 1) to gratings oftwo spatial frequencies placed in even symmetry about
the receptive-field middle. Impulse rate as a function oftime during the stimulus cycle
is shown for four contrasts at each spatial frequency. These responses display some
of the properties already noted in the response to contrast-reversing bars. First, they
are rectified; positive-going impulse rate excursions are greater than negative-going
ones. Secondly, response peaks occur earlier in the cycle when contrast is increased.
Finally, the off-centre cell behaves similarly to the on-centre cells except that its
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Fig. 6. Impulse rate profiles for a grating stimulus. Luminance varied sinusoidally across
the grating and mean luminance was 420 cd m. Spatial frequencies of 034 and P24
cycles deg-' were used, as shown at the top of the Figure. The radii of the inner and outer
dashed circles roughly approximate the radii of the centre and surround, respectively, of
a Y cell. Gratings were placed in even symmetry about the receptive fields. Luminance
varied as a sinusoidal function of time at 2 Hz, as shown by the wave forms below the
gratings. Four contrasts (shown by dashed lines of different types) were presented at each
spatial frequency for each of the three cells represented. The contrasts were integral
multiples (1, 2, 3 and 4) of the following minimum contrasts: A, 0-025; B, 0-1; C, 0-025;
D, 0 1; E, 0 033; and F, 0 1. The data collection period was 10 s for each contrast.
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responses are shifted by about half a cycle. It is also clear that responses are
dominated by the fundamental Fourier component at low spatial frequencies, and
are frequency doubled at high. In what follows, we concentrate on the second-
harmonic component of the response, and its dependence on spatial frequency; this
analysis will provide a measure of the spatial summation area of the mechanism
responsible for frequency doubling.

In Fig. 7 the amplitude of the second Fourier harmonic in eight Y cells is plotted
against stimulus contrast for the response to a contrast-reversing grating; the spatial
frequency ofthe grating is around 2 cycles deg-' in all cases. The slopes ofthese curves

100

4 -o o~10{

GI

E

0.01 0.1 1
Contrast

Fig. 7. Effect of contrast on the second-harmonic response component. A contrast-
reversing grating with a spatial frequency close to 2 cycles deg-' was used to stimulate
eight Y cells. The grating was placed in even symmetry about the middle of the receptive
field (at the spatial frequency used, the placement did not affect the response). Lines
connect the points recorded from an individual cell.

are between 1-2 and 3-5 at low response amplitudes, with most of them equal to 1-4
or 1-5; slopes are reduced at higher amplitudes. The regression function used to fit
these data was ki c2 + K2 C3, where k1 and k2 are constants and c is contrast. The second-
power term is included to provide an approximate match with low-amplitude points
(since it implies a slope of 2), and the third-power term to account for the reduced
slope at higher amplitudes. As contrast approaches izero, the regression function
reduces to the term involving the square ofcontrast, and the dependence ofthe second
harmonic on contrast can be characterized by the coefficient, k,, which has units of
impulses s-' contrast-unit-2. As with the analysis of linear responses, use of the
low-contrast coefficient means that the measurement is independent of the contrast
gain control and the effects of clipping at 0 impulses s-1. Fig. 8A gives the amplitude
of the second harmonic per squared contrast-unit, kl, as a function of spatial
frequency for a total of seven Y cells. The frequency-doubled response of a Y cell
decreases rapidly with increasing spatial frequencies in the region of 1-4 cycles deg-'.
It needs to be stressed that the forms (though not the vertical location) of the curves
in Fig. 8 are largely independent of the regression function used to fit contrast-
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Fig. 8. Spatial tuning of the second-harmonic response component. The growth of
second-harmonic amplitude with contrast was fitted with a function proportional to the
square of contrast at low contrast. This Figure plots the coefficient of squared contrast
in the fitted function against the spatial frequency of the grating used. Gratings were
placed in odd symmetry about the receptive field at low spatial frequencies, but were
placed in either odd or even symmetry at higher spatial frequencies, where the response
did not vary with the spatial phase of the stimulus. A, lines join the experimentally
determined points from each cell, with seven cells represented. B, circles show the
experimental points from one cell (Y-on 1712). The line in B shows the result of fitting
the pooled subunits model by least-squares non-linear regression.

.esponse curves. The other functions tested were k c+ k2 c2 (which yields a contrast-
response coefficient with units of impulses s-1 contrast-unit-') and k1 c2/(1 + k2 c2).
The range of spatial frequencies in which the frequency-doubled response decreases

rapidly can be conveniently characterized with a single number by fitting a Gaussian
function of spatial frequency, k exp [- (rTrfdu)2], to the curves in Fig. 8A. In this
formulation k is a constant, u is spatial frequency, and rfd is the spatial parameter
used to characterize the point of rapid decrease; rfd will be termed the frequency-
doubling radius. Fig. 8B shows data from one unit (circles) along with the function
fitted to it (continuous line). The actual function fitted was the response of the
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complete receptive-field model, described by eqn. (16) in the Appendix. This function
approaches k exp [- (fTrfd U)2] as spatial frequency increases. Fitting was performed
by minimizing the sum of squared errors; the error at each spatial frequency was
computed by finding the difference between the contrast-response coefficient of the
cell's second-harmonic component and that of the model's second harmonic, and
dividing that difference by the cell's coefficient.

Spatial parameters of the Y cell receptive field
Estimates of the frequency-doubling radius, rfd, obtained by fitting a Gaussian

function of spatial frequency to the second-harmonic response are shown by the
circles in Fig. 9A. Each point gives the estimate for one cell; seven Y cells in total
are represented. Points are plotted against receptive-field eccentricity, as estimated
by the procedure described in the Methods section. The results are represented this
way because of the finding that spatial scales become larger as distance from the area
centralis increases (e.g. Wiesel, 1960; Enroth-Cugell & Robson, 1966; Peichl &
Waissle, 1979). However, our sample is probably too small to be able to say whether
the spatial summation area of the frequency-doubled response increases with
eccentricity. The dashed line in Fig. 9, taken from the work of Linsenmeier et al.
(1982), gives the regression line for the radius of the centre mechanism across a large
population of X cells. So & Shapley (1979) showed that linear responses of X cells
in the lateral geniculate nucleus have approximately the same spatial resolution as
frequency-doubled responses of lateral geniculate Y cells. It is apparent from Fig.
9A that the same is true of X and Y cells in the retina.
Above the dashed line are plotted two more sets of points, both of which were

obtained earlier in the paper from the analysis of Y cell linear responses. They are
the centre radii and the surround radii obtained across a larger sample -of cells than
those represented by the frequency-doubling results> Since the centre and surround
radii were obtained by fitting a Gaussian centre-surround model to Y cell linear
responses, they give an estimate of the spatial resolution of the linear response. When
the resolution of the X cell (linear) response is compared with that of the Y cell linear
response, the finding (e.g. Cleland, Harding & Tulunay-Keesey, 1979) that X cells
operate on a spatial scale finer than that of Y cells is borne out. Again comparing
results with those ofLinsenmeier et al. (1982), our Y cell centre radii are slightly larger
than theirs; the reason for this discrepancy is not clear. An explanation of Fig. 9B
must wait until the receptive-field model has been described.

A model for the spatial structure of the receptive field
We now have the observations required to test a new receptive-field model.

Hochstein & Shapley (1976b) showed that the Y cell receptive field can be described
as containing a number of parallel channels called subunits. A subunit is defined by
two essential properties: a small spatial spread compared with the complete receptive
field, and a rectifying input-output function. The receptive-field model to be used
here is shown in Fig. 10. The model contains a number oflocalized, rectifying channels
which, by analogy with Hochstein & Shapley's terminology, will be called subunits.
Each subunit pathway has a centre-surround spatial organization followed by a
rectification element. Subunit signals across the receptive field are weighted and
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Fig. 9. Spatial scale of receptive-field mechanisms. A, the radius of the Gaussian
mechanism that best fits the decrease in the frequency-doubled response with increasing
spatial frequency (as shown in Fig. 8) is plotted by 0. Centre and surround radii,
determined by fitting a Gaussian centre-surround model to linear responses (see Fig. 4)
are shown by A and 0, respectively. A total of sixteen Y cells is represented, but
for some cells, only one or two of the radii were determined. The dashed line shows the
regression line determined by Linsenmeier et al. (1982) for the centre radius in a large
population of X cells. B, radius values in the pooled subunits model, as determined by
substituting the radii in A into eqns. (5) and (10). Subunit centre and subunit surround
radii are shown by 0 and A respectively. Pool radii are shown by EL

summed by a pool mechanism, and the pool is followed by a contrast gain control
element. The model performs spatial processing on the stimulus through the subunit
centre-surround and pool elements, and it performs temporal processing through the
subunit centre-surround and contrast gain control elements. For ease of reference,
and in order to distinguish it from other possible models, the model of Fig. 10 will
be referred to as the pooled subunits model.
Four assumptions are made in the model which are not explicitly shown in the

Figure. The model is assumed to be unaffected by the mean level of the stimulus.
All data used in this study were collected at a single adaptation level and no attempt
has been made to build an adaptation mechanism into the model. Secondly,
neighbouring subunits are assumed to overlap, and the retinal distance between their
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Subunit
* * * centre-surround

Fig. 10. Pooled subunits model. L represents the fundamental component of the stimulus.
F represents the Fourier components of an element's output signal; Fp, for example,
represents the pool's output, and Fp(O) the d.c. component of that output. The remaining
upper case letters represent the frequency responses of individual elements. The input-
output relationships for all elements are given below. For some, this relationship is not
easily expressed as a frequency response and is instead given in terms of the output signal
as a function of time, f(t). Thus, for instance, the output of element R is given as fR(t).

S C [(x Ub)2 +(yySUb)2] rS2]D(x,y,xS7b'lr.Sexp- i 'rX8exsub-C
-2S exp r-[(x-Xsub)2 + (Ysub)2] rd2],

fR(t) = fD(t) +qf2(t), P(x, y) = vf lr-2 exp [-(X2+y2) r-2],
H(w) = (1 +i27TTW)-', C(w) = [1 +gFp(O)H(w)]-', fM(t) = m+fC(t),

where: fM = model output; g = coefficient of gain-changing signal in contrast gain
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mid-points is assumed to be infinitesimally small in order to simplify the model and
its mathematical analysis. This assumption is justified so long as receptive-field
spatial profiles do not show any small-scale bumpiness. Thirdly, while the Figure
implies that the output from a subunit centre-surround combination is obtained by
subtracting the subunit surround signal from the subunit centre signal, no such
requirement is made in the model; the phase difference between the two components
can differ from 180 deg, if necessary. The final assumption is that the (continuously
variable) output of the contrast gain control is fed to an integrate-and-fire mechanism
which yields an impulse train with a non-zero resting level (the maintained discharge).
When the input to the integrate-and-fire mechanism is negative, no impulses are
generated. We now discuss the basis for the model by describing its linear and
non-linear behaviour, and show how these relate to the experimental findings.

Linear behaviour of the model
Given the result that the linear component of the Y cell's response to different

spatial stimuli can be described by a Gaussian centre-surround model, it needs to
be shown that the pooled subunits model reduces to a Gaussian centre-surround form
when only its linear component is considered. When stimulus contrast is low enough,
signals in the subunit pathways of the pooled subunits model fall on the approxi-
mately linear portion of each rectifier's input-output function. Also at low contrast,
the time-invariant d.c. component in the pool's output is small and the feed-back
signal in the contrast gain control (which is controlled by the pool's d.c. output)
approaches zero. In the limit as contrast approaches zero, therefore, the rectifiers and
contrast gain control can be neglected; the model is then equivalent to a sum of
subunit centre-surround spatial profiles, where each profile is weighted by the gain
of the pool mechanism at the location of the subunit in question. This pooling
produces a centre mechanism that is wider than both subunit centre and pool, and
a surround mechanism wider than subunit surround and pool. It turns out that when
the subunit centre, subunit surround and pool mechanisms have Gaussian spatial
profiles, the pooled centre and surround mechanisms are also Gaussian. The linear
part of the model is thus Gaussian centre-surround in its spatial form.

In the terminology of linear systems analysis, the linear part of the pooled subunits model has
a spatial impulse response equal to the space convolution of the subunit centre-surround and pool
impulse responses. In the spatial frequency domain, this means that the model's frequency response
is the product of the subunit centre-surround and pool frequency responses. Denote spatial
frequency by u, the frequency response of the subunit centre-surround combination by D(u) and
the pool frequency response by P(u). Fourier transformation of the spatial impulse responses defined
in the legend of Fig. 10 gives

D(u) = Sc exp[-(Trscu)2]+ S. exp[-(nr, U)2], (2)

P(u) = exp[-(irp u)2]. (3)

control; i = V -1; m = maintained discharge (impulse rate for a steady, uniform
stimulus); q = coefficient of rectifier non-linear component; rse, rss, rp = radii of subunit
centre, subunit surround and pool; Sc, S. = vectors with strength and phase of subunit
centre, and subunit surround; t = time; r = time constant of contrast gain control;
w = temporal frequency; (x, y) = location on retina relative to receptive field middle;
(xsub, Ysub) = location of middle of subunit.

3-2
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Thus, the model's frequency response is

D(u)P(u) = S. exp [-(ffr u)2] + Ss exp [-(7Trs U)2], (4)

where the pooled centre and pooled surround radii are given by

r2 = r2c + rp; r2 = r.2. + rp.(5

This result shows that, like the spatial organization of the subunit, the frequency response of the
complete model is Gaussian centre-surround in form; the model's centre has a radius of
-=V(r2 +rC) and the model surround's radius is rs = V(r. + rp).
In the following, the pooled centre and pooled surround will be referred to simply

as the centre and surround.

Non-linear behaviour of the model
The features that make the pooled subunits model non-linear are the rectifiers and

contrast gain control; the rectifiers are considered first. Suppose that the input to
a rectifier isf(t), a function of time, and that its output is g(t). The form used for the
rectifier is

g(t) =f(t)+qf2(t), (6)
where q is a constant. There are three major reasons for this choice.

(1) Apart from the maintained discharge, the input-output relationship for the
static non-linearity shown in Fig. 3B and D is adequately modelled by eqn. (6).
The dashed line represents the term f(t) in the equation. Subtraction of values on
the dashed line from the recorded impulse rate give a remainder corresponding to the
term qf 2(t). The approximately parabolic form of the computed differences indicates
that the power of two in qf 2(t) is justified.

(2) The fundamental Fourier component and second harmonic are responsible for
almost all the time-varying a.c. power in the responses recorded in this study. As
an example of this, the responses of cell 1508 in Figs. 1 and 6 were analysed; this
cell was chosen since its responses are not clipped at 0 impulses s-1. The data recorded
at the largest contrast on each set ofaxes were used since they are the most non-linear.
The summed power in the fundamental and second-harmonic components
contributed 92% ofthe total a.c. response power. The number ofharmonics generated
by the model can be determined directly from eqn. (6). The subunit pathway preceding
a rectifier is linear, so that the input to the rectifier can be put in the form
f(t) = kc cos (27Twt +p) where k is a constant, c is contrast, w is temporal frequency
and p is phase. Then, by standard trigonometry,

9(t) =f(t)+qf2(t)
= kc cos (2awt +p) + qk2c2[1 + cos 2(2Twt +p)]
= qIO2c2 + kc cos (2rwt +p) +qk2c2 cos 2(2awt +p). (7)

The first term is the d.c. response of the rectifier since it does not vary in time, the
second is its fundamental Fourier component, and the third, which has a temporal
frequency twice that of the stimulus, is the second harmonic. The model, then,
predicts that all the response power is in the d.c. response, fundamental and second
harmonic. Adding a term of power three or higher to the input-output relationship
for the rectifier would add third or higher harmonic terms to eqn. (7). The experimental
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results show that if there are terms of higher order than two in the input-output
relationship for the static non-linearity, their coefficients must be small compared to
the other coefficients.

(3) Eqn. (7) requires that a log-log plot of the second harmonic's amplitude versus
contrast yield a slope of two. The slopes obtained from the eight Y cells represented
in Fig. 7 were mostly 1-4 or 1-5. A power of two is used in the model since an integral
value results in a simpler analysis, and there is reason to believe that a more detailed
experiment would yield a higher power than that determined here (see the
Discussion).
The other source of non-linearity in the model is the contrast gain control. The form

used for this element is taken in part from the modelling work of Shapley & Victor
(1981); it is assumed to be a feed-back loop in which there is a temporal low-pass
filter in the feed-back arm. The gain of the feed-back path is here assumed
proportional to a low-pass filtered version (in practice, the d.c. component) of the
signal leaving the pool mechanism; the feed-back gain therefore increases with
contrast. This choice for the gain-changing signal is justified in the Discussion.
Increasing contrast has two effects in the resulting model: a relatively larger feed-back
signal is subtracted from the input to the contrast gain control and the gain of the
system therefore falls; since the low-pass filter delays the feed-back signal relative
to the input, subtraction of the feed-back signal advances the phase of the output
signal.
The model's spatial parameters
The results in Fig. 9A can be rearranged to obtain direct estimates of radii in the

pooled subunits model. Consider first the subunit centre radius, rSc. This quantity
determines the range of spatial frequencies in which the frequency-doubled response
to a contrast-reversing grating decreases rapidly, since these spatial frequencies are
higher than the spatial resolutions of the subunit surround and pool mechanisms. In
this range, the model therefore approaches a limit in which it looks like a single
subunit centre mechanism followed by a rectifier. The second harmonic then has
amplitude proportional to

(exp L-(nrS u)2])2 = exp -2(7Trsr u)2]. (8)
Equating this to the function already used to fit the curves in Fig. 8 yields

exp [-2(7rrsc u)2] = exp L-(nTrfd U)2], (9)

and 2r2c = r2d (10)

Thus the subunit centre radius of the model can be obtained by dividing the
experimentally determined frequency-doubling radius by V/2.

Eqns. (5) and (10) together provide the transformations required to derive the
model radii in Fig. 9B. For each Y cell, the three known values, frequency-doubling
radius) rfd, centre radius, rC, and surround radius, rs, were used to determine the three
unknowns, subunit centre, subunit surround, and pool radii, rsc, r5s5 and rp,
respectively. For nine cells, grating stimuli were not presented and no direct estimate
of the frequency-doubling radius obtained. For these cells, the estimate used for the
frequency-doubling radius is from a regression line through the frequency-doubling
results in Fig. 9A. The estimates of subunit surround radius in the lower graph are
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scattered, but subunit centre and pool radii have quite consistent values across the
sample.

Reconstruction of the Y cell response
The ability of the pooled subunits model to account for either Y cell linear or

non-linear behaviour has been discussed. It is of obvious interest to see how well the
model can predict responses containing both linear and non-linear components. A
difficult test for the model is a prediction of impulse rate versus time for a specific
spatial configuration; this test requires the prediction of not only a single Fourier
component of the response, but of all components and their correct combination. The
analysis in the Appendix provides equations for the response of the model to a
contrast-reversing grating with variable spatial frequency and phase, and the
response to a contrast-reversing bar at an arbitrary location in the receptive field.
Those equations are used in the following reconstruction (the integration in eqn. (21)
was performed numerically).
Model parameters were obtained from various sources. The radii are those depicted

in Fig. 9B, subunit centre and surround strengths and phases were obtained by fitting
the Gaussian centre-surround model to linear responses, as previously described, and
the maintained discharge was estimated from the impulse rate recorded when the
stimulus was modulated neither in space nor time. The time constant (r) in the
contrast gain control was set so that rw took the arbitrary value of 1 radian; temporal
frequency was not varied and there was therefore little basis for optimizing its value.
The two remaining parameters, q and g (coefficient of the rectifier's non-linear
component, and coefficient for the gain-changing signal in the contrast gain control,
respectively) were adjusted to obtain the best match between cell and model
responses, as judged by eye. The uppermost graphs in Figs. 11 and 12 were generated
with a single set of model parameters, that estimated for cell 1508, and are to be
compared with the responses of cell 1508 in Figs. 1 and 6. Similarly, there are
comparisons between experimental and model responses for two other cells. It should
be realized that the model parameters have not been optimized to obtain the best
fit of the model to the displayed experimental results; rather, the parameters have
come from a variety of sources.

In Fig. 11, the model qualitatively accounts for: the way in which impulse rate
as a function of time changes from a sinusoidal function to a rectified function as
contrast increases; the change in response phase when the bar is shifted from the
receptive-field middle to a location in the outer field; some of the phase advance that
occurs with increasing contrast, and the small response increments at high response
amplitudes. Similarly, in Fig. 12, the model accounts qualitatively for the way in
which the impulse rate profile changes with increasing contrast, and it reproduces
the frequency-doubled response that occurs at the higher spatial frequency. Finally,
there is an important property of the Y cell receptive field that the model must satisfy
if it is to be considered realistic; the property is not illustrated in Figs. 11 or 12. At
high spatial frequencies, the Y cell's frequency-doubled response is independent of
spatial phase (Hochstein & Shapley, 1976 a). The analysis in the Appendix shows that
the model reproduces this behaviour. Response features for which the model cannot
account are taken up in the Discussion.
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Fig. 11. Reconstruction of the Y cell response to a contrast-reversing bar. The Figure is
the same as Fig. 1 except that impulse rates predicted by the pooled subunits models for
cells 1508, 1711 and 1504 have been substituted for experimentally determined impulse
rates in those cells. The parameter values used were: cell 1508: ISJI = 1170 impulses s-I
contrast-unit-'; phase (S) =-2 deg; r5c= 021 deg; ISI = 1020 impulses s- contrast-
unit-'; phase (S.) = 155 deg; r = 20 deg; q = 00040s impulse-1, rp = 0-77 deg;
r = 80 ms; g= 011; m = 25 impulses s-'; cell 1711: 78800, -18, 0-20, 78300, 162, 0-42,
80x 10-6, 1P3, 80, 0-080, 12; cell 1504: 212, -171, 0-13, 123, -23, 2-9, 0-020, 0-84, 80,
0030, 40.
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Fig. 12. Reconstruction of the Y cell response to a contrast-reversing grating. The
stimulus conditions are the same as those in Fig. 6. The impulse rates were generated by
the same three sets of model parameters as in Fig. 11.

DISCUSSION

We first compare our experimental results with previous work. Then the structure

and adequacy of the pooled subunits model are discussed in some detail.
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Linear responses

The contrast gain control has at least two effects on the responses of both X and
Y cells in the cat retina; response amplitude grows less than proportionally with
stimulus amplitude at low temporal frequencies of stimulation, and response phase
is advanced (Shapley & Victor, 1978). Because of these effects, the parameters
describing Y cell linear behaviour were determined in the present study at the limit
as contrast approached zero, where the effect of the contrast gain control is presumed
to be absent. Previous studies of X and Y cell linear behaviour (Derrington & Lennie,
1982; Linsenmeier et al. 1982; Enroth-Cugell et al. 1983) used a different approach.
For each spatial configuration of the stimulus, contrast was adjusted to obtain a
constant response criterion, typically a fundamental Fourier component of about 10
impulses s-1. Because the contrast gain control was active, it can be expected that
the contrast sensitivities and responsivities determined in those previous studies
would be lower and the responses more advanced than would be the case for a
determination at the zero-contrast limit.

Since the contrast gain control seems to act in similar fashion on both centre and
surround mechanisms (see the centre- and surround-dominated responses in Fig. 1),
comparisons between the centre and surround strengths found here and in previous
studies will be facilitated by comparing the surround strength/centre strength ratio,
rather than the absolute strengths. In our limited sample of cells, we find that for
stimuli temporally modulated at 2 Hz, centre and surround strengths are about equal
on average. This is a conclusion quite different from that of Derrington & Lennie
(1982), who determined a surround/centre strength ratio of 0-56 (average across eight
Y cells stimulated at 2 6 Hz), and Linsenmeier et al. (1982) who found a strength ratio
of 073 in a sample of eighty-nine cells that included both X and Y cells. The
discrepancy is probably at least partly due to the fact that response phase is taken
into account in our estimate, whereas response phase was not measured in the
previous determinations. In the present sample, the average difference between the
phase angles of the surround and centre signals is 168 deg. When a cell with equal
centre and surround strength and a surround-centre phase difference of 168 deg is
stimulated with a spatially uniform stimulus, it will produce a fundamental amplitude
that is 0 21 times the amplitude of the centre signal. Interpreting this observation
in terms of a model with a surround-centre phase difference of 180 deg, as used by
Derrington & Lennie and Linsenmeier et al. would lead to a surround/centre strength
ratio of 1 -0f21 = 0 79, which is in the direction of their determinations.
The model used by Enroth-Cugell et al. (1983) to describe spatiotemporal inter-

actions in cat retinal X cells, the Gaussian centre-surround model, assumes that the
signal in the surround pathway is not only inverted relative to that in the centre
pathway but is also delayed. Their data were best fitted when the surround signal
was delayed relative to the centre signal by intervals from 1P2 to 7 7 ms. The average
difference between the surround and centre phases found here for Y cells stimulated
at 2 Hz, 168 deg, translates into a time delay of 1000 x (180- 168)/(360 x 2) = 17 ms.
The disparity between these two results indicates that the dynamic behaviour of X
and Y cells differs markedly, at least at photopic adaptation levels and frequencies
around 2 Hz.
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Non-linear responses
Fig. 1 confirms that there is a rectifier present in the Y cell signal pathway; we

chose to represent the non-linear part of the rectifier with a square law device, g = f2.
Victor & Shapley (1979) suggested instead that the most appropriate form for the
rectifier was a power of the input magnitude, g = If IP, where the power, p, is close
to one. Since both functions are of the form If IP, the question reduces to the correct
value for p: is the power closer to one or two? Probably the best data with which
to settle this issue are recordings of the amplitude of the Fourier second harmonic
as a function of stimulus contrast. When this function is plotted on log-log axes, its
gradient as contrast approaches zero is equal to the power p. Hochstein & Shapley
(1976b) found that a power of one suited their data, and Victor & Shapley (1979)
used a power of about 0 9. We find, as in Fig. 8, that the power is usually 1-4 or 1-5.
There are two confounding factors in the measurement of this quantity. At high
contrast levels, the contrast gain control comes into action, and the gradient of the
contrast-response function falls. At low contrast levels, data collection periods have
to be long to avoid contamination of the data with noise. It is possible that we found
a higher power for the contrast-response function than did the previous studies
because the contrast gain control was less influential in our determination. It is also
possible that stimulus-response powers higher than ours could have been demon-
strated if longer data collection periods and lower contrasts had been used.

Previous models
In the model for Y cell receptive-field structure described by Hochstein & Shapley

(1976b) and Victor & Shapley (1979), linear and non-linear signals proceed along
independent sets of pathways. In the pooled subunits model, linear and non-linear
responses are assumed to derive from the same set ofpathways. Are these two views
reconcilable? Ignore the effect of the contrast gain control for the moment, since the
location ofthe rectifier is the main question here. Our model can be formally separated
into linear and non-linear pathways: since the rectifier is assigned the form g = f+ qf2,
wherefand g are input and output, respectively, the model's output can be expressed
as the sum ofa linear component, deriving from thefterm, and non-linear component,
deriving from the qf2 term. This does not help in interpreting physical mechanisms
in the retina, however, since the two components are assumed to undergo exactly
the same processing except within the rectifier.
The main piece ofevidence supporting the idea that linear and non-linear pathways

are independent in the Y cell receptive field comes from the work of Frishman &
Linsenmeier (1982). They showed that when picrotoxin is applied systemically, Y cell
second-harmonic responses to a contrast-reversing grating were reduced while the
fundamental response component due to a drifting grating was unaffected. If the
model we have proposed is to be consistent with this result, the non-linear component
of the rectifier would have to be reduced by picrotoxin without affecting the linear
component. That is, the rectifier would have to be straightened out by picrotoxin.
Some of the features of the pooled subunits model are present in a receptive-field

model suggested by Cleland (1983). In Cleland's model the linear centre and surround
mechanisms are both assumed to be composed ofa weighted array of spatially smaller
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mechanisms (subunits); the model therefore requires that linear and non-linear
responses be due to the same set of mechanisms. Cleland did not, however, specify
the model in sufficient detail to test its prediction against experimental data.

Model organization
Given the properties that a model for the Y cell receptive field has to incorporate,

centre-surround behaviour, rectification, pooling, and contrast gain control, the
elements giving rise to these properties can be arranged in more than one way. The
following observations limit the possible arrangements.

(1) Centre-surround antagonism must precede rectification, for two reasons. First,
depending on the centre type of a cell, there must be a sign inversion in the surround
pathway that is not present in the centre pathway, or an inversion in the centre
pathway that is not present in the surround pathway. If this extra sign inversion
followed rectification then it should be possible to find responses in which negative
excursions of the impulse rate exceed positive excursions: these were not observed.
Secondly, suppose that centre and surround signals pass through rectifiers before
being combined. Then a spatially uniform contrast-reversing stimulus will yield large
fundamental and second-harmonic signals in both pathways, of which only the
fundamental component will be reduced substantially by centre-surround antagon-
ism. Again, this is not observed. Responses to a low spatial frequency grating, as in
Fig. 6, are dominated by the fundamental component.

(2) As Hochstein & Shapley (1976b) have pointed out, pooling must occur after
rectification in order that frequency-doubled responses have a higher spatial resolu-
tion than linear responses.

(3) The contrast gain control need not be limited to its position after the rectifier.
Indeed, if gain controls occur at several levels in the retina (see Shapley &
Enroth-Cugell, 1984), then it is possible that the contrast gain control be distributed
across a number of locations in the signal pathway. All that is required here is that
some contrast gain control be present after the rectifier; the responses to the finer
grating in Fig. 12 show why. Suppose that there is no contrast gain control following
rectification. Since the linear component of the response to a fine grating is negligibly
small, only the components resulting from the squaring operation of the rectifier need
be considered. And since squaring is involved, the impulse rate must always be greater
than the maintained discharge. This prediction contradicts the experimental
observation. Suppose there is contrast gain control following the rectifier. Then the
squaring operation of the rectifier produces a d.c. response and second harmonic, and
because of the high-pass frequency response assumed for the contrast gain control,
the d.c. response is attenuated more than the second harmonic. Impulse rate in the
model can therefore fall below the level of the maintained discharge, as required.

(4) Gain along the feed-back pathway in the contrast gain control is assumed to
increase with contrast, and to be constant at a fixed contrast. The source of the signal
that changes feed-back gain was decided by the following argument. It is not
physically sound to make feed-back gain proportional to contrast, or any other
stimulus parameter, unless such a quantity can be extracted from the stimulus by
an analogue of a neural network. Thus the gain-changing signal is assumed
proportional to one of the signals within the model itself. The gain-changing signal
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is chosen here to arise from the d.c. signal present after rectification since it then
increases with contrast, and does not vary with time at a fixed contrast, as required.

Deficiencies of the model
There are at least two aspects of Y cell behaviour for which the pooled subunits

model cannot account. First, there is the presence of higher response harmonics than
the second. Victor & Shapley (1979) showed that there were significant higher
harmonics in the Y cell responses they recorded when the stimulus was a grating
modulated by a temporal sum of sinusoids. The model we have described cannot
produce harmonics any higher than the second. There are at least two alternatives
for improving the model in this respect. First, the polynomial used to represent the
rectifier could be expanded from second order to higher orders. Secondly, the
gain-changing signal in the contrast gain control could be allowed to vary in time
rather than assuming the d.c. signal used in the present model; this proposal remains
to be tested. Another deficiency in model behaviour can be seen in Figs. 11 and 12:
model responses do not advance with increasing contrast as much as do Y cell
responses. This failure could not be corrected by a simple adjustment of model
parameters. Rather, it suggests that the contrast gain control model used is deficient.
Indeed, there are few data in this study with which to test alternative models of the
contrast gain control: there are no data, for instance, collected at frequencies other
than 2 Hz. The implementation of the contrast gain control used here should
therefore be viewed as a rough approximation.

APPENDIX

In what follows, the output of the model for bQth grating and bar stimuli is
calculated. Lower case symbols, such as the time-varying signal f(t), are used to
represent scalar quantities and upper case symbols, such as the Fourier component
F(w), are used for vector quantities, which have both amplitude and temporal phase.
The nth Fourier component is shown as F(nw). All symbols are defined in Fig. 10,
or below.

Grating stimulus
Denote the fundamental component of the stimulus

L(x,w) = c cos (2nux-q0), (11)

where c is contrast, u is spatial frequency and qS is spatial phase. The output signal
from the subunit centre-surround located at (xsub, Ysub) is obtained by weighting the
stimulus with the centre-surround's spatial profile, and integrating across space:

FD(XSUbI W) = J L(x, w) D(x, y, Xsub, Ysub) dx dy

= fc cos (2irux-q0) (ar-r26-,S exp [-(x-xs) 2r-2]

+7Tir-rS exp [- (x -xSub)rs])dx
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= c cos (2lTuxb- ) cos [2ru(x-xSub)] (T-r-2r-S, exp [-(x -xsub)2rSC2]
+7Tr--IS5 exp [- (x-xSub)2r -2] ) dx

= c Cos (27Tuxsub-) (Sc exp [-(7rsc U)2] + Ss exp [-(7rrssu)2]). (12)
From eqn. (7), the output of the rectifier has a d.c., fundamental and second-

harmonic component:

FR(Xsub, 0) = IFR(Xsub, 2w)I,

FR(Xsub, W) = FD(Xsub, W),

FR(Xsub, 2w) = 2qF2(xsub, W), (13)
where I represents magnitude. The output of the pool is obtained by weighting the
output of each subunit pathway with the pool's spatial profile, and summing across
subunits. Since the distance between neighbouring subunits is assumed infinitesimal:

Fp(nw) = JJ FR(XSUb nw) P(xSub, Ysub) dxSub dySub

Thus Fp (0) = ff IFR(xSub, 2w)l P(xSub, Ysub) dXsub dysub = IFp(2w)I . (14)

As shown in eqns. (2) and (4), the fundamental component of the pool's signal has
the same form as that of a subunit centre-surround, with r2 +rp replacing r2c and
r2 +r2 replacing r2S. Making these substitutions in eqn. (12) and setting Xsub =Ss p 55i xu

(since the middle of the pool is at location zero):

FP(w) = c cosq (S, exp L-(ru)2(r2C + r2)] + Ss exp [-(ru)2(r2S + r2)]). (15)
The pool's second-harmonic component is

Fp(2w) = f qc COS2 (2uxSUb- 0) (Sc exp -(7rsc U)2]

+ Ss exp [-(7rr55 u)2])2 i 1r;2 exp [-(X2Ub + Y -ub)rp2] dxSub dysub
- iqc2(Sc exp L- (1Trr5 u)2] + SS exp [- (irr5 u)2])2 7r-lr1

x 1 + cos (4ruxubY2Sr)]exp [-xsubrp1 dxsub
- 4qc2(Sc exp -(7Trsc u)2] + Ss exp L(7rss('r)2])2

x [1+ cos (20) exp -(2rrp U)2]]. (16)

The output of the complete model is obtained by multiplying pool output by the
frequency response of the contrast gain control, and adding the maintained discharge,
m, to the d.c. component:

FM(O) = m+ Fp(O) [1 + gFp(O)]-1,
FM(w) = FP(w) (1 +i2Trrw) [1 +gFp(0)+i27rTw]f,

FM(2w) = Fp(2w) (1 +i47rTw) [1 +gFp(0)+i47TTw]-'.
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Several observations can be made from eqns. (15)-(17). (1) The amplitude of the
model's fundamental response component varies sinusoidally with the grating's
spatial phase. (2) If r., is small compared with r5s and rp, the linear component has
a spatial resolution given by the radius V/(r 2 + rp), and the second-harmonic
component by the radius V2 r,C. Thus, the non-linear component has better spatial
resolution. (3) When spatial frequency is high enough, exp [- (27rrp U)2] < 1 and the
non-linear component becomes independent of spatial phase.

Bar stimulus
Represent the fundamental component of the stimulus with

L(x,w) = {c Xb < X < Xb+b (18)
0 elsewhere

where c is contrast, xb is the location of the left side of the bar, and b is bar width.
The signals at successive stages of the model can be derived by similar arguments
to those used for the grating stimulus.
Output of the subunit centre-surround:

FD(Xsub,W) = c[Sc erfb(xb-xsubrb,rsc)+Ss erfb(xb-xsub, b, r,)], (19)
where

erfb(x, b, r) = erf [A/2 (x+ b)/r]-erf (/2 x/r); erf (x) = (2T)-lfexp[-_z2]dz. (20)2

Pool output:

Fp(0) = IFp(2w)I,
Fp(w) = c[Sc erfb(xb, b, V(r2C+r2))+S. erfb(xb, b, V(rS +rp))]

Fp(2w) = lqc2(2T)-lf [SC erfb(xb-rPz/V2, b, rS)
+Ss erfb(xb-rPz/V2, b, rSS)]2 exp [-_z2] dz. (21)

(The last equation involves integrals of the squared error function and is best left
in the form shown.)
Model output: as in eqn. (17).
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