Visual cortical plasticity

- Deprivation-induced changes in representation
 - Ocular dominance plasticity
 - Retinal scotoma and cortical re-organization
- Perceptual learning-related plasticity
- Timing-dependent plasticity

Visual cortical plasticity

- Deprivation-induced changes in representation
 - Ocular dominance plasticity
 - Retinal scotoma and cortical re-organization
- Perceptual learning-related plasticity
- Timing-dependent plasticity

Ocular dominance plasticity

Definition of ocular dominance index:

od = $0\sim1$, binocular

OD distribution in normal adult V1 (monkey)

OD distribution in V1 after monocular deprivation (suture one eye of the newborn monkey for several months)

Comparison between cat and monkey

Radioactive tracing

NEUROSCIENCE, Third Edition, Figure 23.3 (Part 1) © 2004 Sinauer Associates, Inc.

Development of OD columns

Effect of monocular deprivation

Normal inject non-deprived inject deprived eye eye

OD column formation is an <u>activity-dependent</u>, <u>competitive</u> process

Experiments:

- 1. Binocular injection of TTX, blocks segregation of OD columns
- segregation is <u>activity dependent</u>
- 2. If both eyes are deprived (binocular deprivation), OD columns are normal
- segregation depends NOT on the absolute level of activity, but on the <u>balance</u> between the input from the two eyes, thus seems to be <u>competitive</u>

Critical period

Monocular deprivation (MD) causes a shift of OD toward the nondeprived eye. This is effective only before certain age. MD has no effect (???) in adult animals

<u>Critical period</u>: a period in early life that the neural circuit is susceptible to external sensory inputs (e.g. MD). This period depends on the species and the neural circuit.

OD in V1:

cat: 3rd week -- 3 months

monkey: first 6 months

human: 1st year most important, but extends to 5-10 years

After the critical period, the effect is permanent (???)

Within the critical period, the effect can be reversed by reverse suture

Critical period for behaviors

Konrad Lorenz: critical period for parental imprinting in ducklings

OD plasticity in rodent model

OD plasticity also exists in adult rodents

Conditions to induce OD shift in adult rodent

- Prolonged monocular deprivation
- Dark rearing (binocular deprivation) followed by monocular deprivation
- Pharmacological degradation of extracellular matrix or genetic deletion of Nogo receptors
- Prior monocular deprivation during development

Mechanisms OD shift

- <u>Developing</u>: First weakening of deprived eye (may involve thalamocortical LTD), then strengthening of open eye
- <u>Adult</u>: Strengthening of open eye (may involve reduction of inhibition)

Visual cortical plasticity

- Deprivation-induced changes in representation
 - Ocular dominance plasticity
 - Retinal scotoma and cortical re-organization
- Perceptual learning-related plasticity
- Timing-dependent plasticity

Receptive field shift of cortical cells mapped to the scotoma

Gilbert and Wiesel, Nature, 1992

But some recent studies show no re-organization

Smirnakis et al., Nature, 2005

Visual cortical plasticity

- Deprivation-induced changes in representation
 - Ocular dominance plasticity
 - Retinal scotoma and cortical re-organization
- Perceptual learning-related plasticity
- Timing-dependent plasticity

Localization of perceptual learning in the visual pathway

- Inter-ocular transfer: cortical vs. precortical
- Stimulus specificity: early vs. late visual pathway
- Are there changes in V1?

Example 1. Perceptual learning in orientation discrimination

O: trained location and orientation

g: trained location, but different orientation

*: naïve location

+: passively stimulated position

Learning-induced changes in V1 orientation tuning

Distribution of preferred orientation

Blue: before learning

Red: after learning

Green: trained orientation

Change in slope of tuning at trained orientation

Example 2. Perceptual learning of stimulus localization (vernier and bisection tasks)

Task dependence of contextual modulation

Neural mechanisms for perceptual learning

- Some forms of perceptual learning may involve changes in V1 receptive field properties
- V1 changes may be dynamically regulated by top-down influences

Visual cortical plasticity

- Deprivation-induced changes in representation
 - Ocular dominance plasticity
 - Retinal scotoma and cortical re-organization
- Perceptual learning-related plasticity
- Timing-dependent plasticity

Bi & Poo, Journal of Neuroscience, 1998, 18(24): 10464-72

STDP in vivo

- 1. Electrical stimulation
- 2. Sensory stimulation
- 3. Natural stimulation

Zhang et al., Nature, 1998

Zhang et al., Nature, 1998

Froemke & Dan, Nature, 2002

Schuett et al., *Neuron*, 2001

Schuett et al., *Neuron*, 2001

Spike-timing Dependent Plasticity Rat Oc1

Spatiotemporal Visual Receptive Fields

STDP of Visual Responses

Wolters et al., J. Neurophys,, 2004

Fu et al., Science, 2002

Cat

Asymmetric circuit

Effects of motion on V1 RF

Motion-position illusions

Illusion 1: Shift in Perceived Target Position Induced by Local Motion

De Valois & De Valois (1991)

Ramachandran & Anstis (1990)

Demo

Illusion 2: Shift in Perceived Target Position Induced by Motion Adaptation

Snowden, 1998

Nishida & Johnston, 1999

Asymmetric circuit

Effects of motion on V1 RF

Motion-position illusions

STDP and motion stimuli during development of cortex circuit

Asymmetric circuit

Effect of motion on V1 RF (1)

Motion-position illusion (1)

Prediction 1: Dependence of Cortical RF on Local Motion

RF Mapping w/ Local Motion

Asymmetric circuit

Effect of motion on V1 RF (1)

Motion-position illusion (1)

Population coding of position

Physiological Basis of Illusion 1

Asymmetric circuit

Effect of motion on V1 RF (2)

Motion-position illusion (2)

Prediction 2: Dependence of Cortical RF on Motion Adaptation

Asymmetric circuit

Effect of motion on V1 RF (2)

Motion-position illusion (2)

Physiological Basis of Illusion 2

Psychophysics (Snowden, 1998)

Visual cortical plasticity

- Deprivation-induced changes in representation
 - Ocular dominance plasticity
 - Retinal scotoma and cortical re-organization
- Perceptual learning-related plasticity
- Timing-dependent plasticity

All PW whiskers cut

Recovery

All PW whiskers cut Recovery

Celikel et al., Nature Neurosci, 2000

What we found so far

- Repeated exposure to natural stimuli (and possibly other types of stimuli) enhances response reliability
- 2. The effect lasts for at least 6 minutes

Questions

- Which part of the natural stimuli induce the changes in cortical neurons?
- What changes in response properties underlie the improvement in reliability?

- 1. Which part of the natural stimuli induce the changes in cortical neurons?
 - 1. Preferred stimuli (?)
- 2. What changes in response properties underlie the improvement in reliability?
 - 1. Point process adaptive filtering, but we haven't found anything consistent...

CC between movie motifs and spontaneous motifs

Hongfeng Gao
Kaj Djupsund
Kai Shen
Ben Hayden
Yaosong Shen

