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26.1 GLOSSARY

This glossary describes the major symbol usage for the body of the chapter. Symbols used
in the appendix are generic. The following notational conventions hold throughout: (1)
scalars are denoted with plain symbols, (2) vectors are denoted with lowercase bold

symbols, {3) matrices are denoted with uppercase bold symbols.
linear model weights

linear model basis vectors

spectral power distribution; basis vector
color space transformation matrix
linear model dimension |

number of wavelength samples

linear model for primaries

primary spectral power distribution
cone (Or sensor) sensitivities

cone (or sensor) coordinates

color matching functions |

tristimulus coordinates

luminance

luminous efficiency function

wavelength |
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26.2 INTRODUCTION

Scope

The goal of colorimetry is to incorporate properties of the human color vision system into
the measurement and specification of visible light. This branch of color science has been
quite successful. We now have efficient quantitative representations that predict when two
lights will appear identical to a human observer. Although such colorimetric representations
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FIGURE 1 A tivpical tmage processing chain. Light
reflects from a surface or collection of surfaces. This light
is recorded by a color camera and stored in digital form.
The digital image is processed by a computer and rendered
on a color monitor. The reproduced 1mage is viewed by a

human observer,

do not directly predict the color sensation,'™ they do provide the foundation for the
scientific study of color appearance. Moreover, colorimetry can be applied successfully in
practical applications. Foremost among these is perhaps color reproduction.””

As an illustrative example, Fig. 1 shows an image processing chain. Light from an
illuminant reflects from a collection of surfaces. This light is recorded by a color camera
and stored in digital form. The digital image is processed by a computer and rendered on a
color monitor. The reproduced image is viewed by a human observer. The goal of the
image processing is to render an image with the same color appearance at each image
location as the original. Although exact reproduction is not always possibie with this type
of system, the concepts and formulae of colorimetry do provide a reasonable solution.™®
To develop this solution, we will need to consider how to represent the spectral properties
of light, the relation between these properties and color camera responses, the representa-
tion of the restricted set of lights that may be produced with a color monitor, and the way
in which the human visual system encodes the spectral properties of light. We will treat
each of these topics in this chapter, with particular emphasis on the role played by the

human visual system.

Reference Sources

A number of excellent references are available that provide detailed treatments of
colorimetry and its applications. Wyszecki and Stiles’ comprehensive book’ is an
authoritative reference and provides numerous tables of standard colorimetric data.
Pokorny and Smith'® provide a handbook treatment complementary to the one developed
here. Several publications of the Commission Internationale de I'Eclairage (International
Commission on Illumination, commonly referred to as the CIE) describe current
international technical standards for colorimetric measurements and calculations.'’ ™"
S | Other sources cover colorimetry’s mathematical foundations,'** its history,'® its
* applications,**” and its relation to neural mechanisms.”®” Chapters 27 and 28 of this
volume and Vol. II, Chap. 24 are also relevant.
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Chapter Overview

Colorimetry, Computers, and Linear Algebra. The personal computers that are now
almost universally available in the laboratory can easily handle all standard colorimetric
calculations. With this fact in mind, we have organized our treatment of colorimetry to
allow direct translation between our formulation and its software implementation. In
particular, we use vector and matrix representations throughout this chapter and use
matrix algebra to express colorimetric formulae. Matrix algebra is being used increasingly
in the colorimetric literature.***** Appendix A reviews the elementary facts of matnx
algebra required for this chapter. Numerous texts treat the subject in detail.”*’ Various
software packages provide extensive support for numerical matrix algebra.”!

Chapter Organization. The rest of this chapter is organized into two main sections. The
first section, “Fundamentals”, reviews the empirical foundation of colorimetry and
introduces basic colorimetric methods. The second section, “Topics™, discusses a number
of applications of colorimetry. It also includes a brief review of miore advanced topics in

color science.

26.3 FUNDAMENTALS

Stimuius Representation

Light at a Point. We describe the light reaching the eye from an image location by its
spectral power distribution. The spectral power distribution generally specifies the radiant
power density at each wavelength in the visible spectrum. For human vision, the visible
spectrum extends roughly between 400 and 700nm (but see “Sampling the Visibie
Spectrum” below). Depending on the viewing geometry, measures of radiation transfer
other than radiant power may be used. These measures include radiance, irradiance,
exitance, and intensity. The distinctions between these measures and their associated units
are treated in Vol. I, Chap. 24 and are not considered here. That chapter also discusses

measurement instrumentation and procedures.

Vector Representation of Spectral Functions. We will use discrete representations of
spectral functions. Although a discrete representation samples the continuous functions of
wavelength, the information loss caused by this sampling can be made arbitranly small by
increasing the number of sample wavelengths. |

Suppose that spectral power density has been measured at N, discrete sample
wavelengths A, - - - A,,, each separated by an equal wavelength step AA. As shown in Fig.
2, we can represent the measured spectral power distribution using an AN, dimensional .
column vector b. The nth entry of b is simply the measured power density at the nth
sample wavelength multiplied by AA. Note that the values of the sample wavelengths
Ap - -+ Ay, and wavelength step AA are not explicit in the vector representation. These
values must be provided as side information when they are required for a particular
calculation. In colorimetric applications, sample wavelengths are typically spaced evenly
throughout the visible spectrum at steps of between 1 and 10am. We follow the
convention that the entries of b incorporate A\, however, so that we need not represent

AA explicitly when we approximate integrals over wavelength.

Manipulation of Light. Intensity scaling is an operation that changes the overall power
of a light at each wavelength without altering the relative power between any pair of
wavelengths. One way to implement intensity scaling is to place a neutral density filter in
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FIGURE 2 The vector representation of functions of wavelength.
The plot shows a spectral power distribution measured at 10-nm
intervals between 400nm and 700nam. Each point on the plot
represents the power at a single sampie wavelength. The vector b on
the right depicts the vector representation of the same spectral power
distribution. The nth entry of b is simply the measured power density
at the nth sample wavelength times AA. Thus b, is derived from the

power density at 400nm, b, is derived from the power density at
410 nm, and b,, is derived from the power density at 700 am:

the light path. The superposition of two lights is an operation that produces a new light
whose power at each wavelength is the sum of the power in the original lights at the
corresponding wavelength. One way to impiement superposition is to use an optical beam
splitter. The effects of both manipulations may be expressed using matrix algebra.

- We use scalar multiplication to represent intensity scaling. If a light b, is scaled by a
factor 4, then the result b is given by the equation b = b,a. The expression b,a represents a
vector whose entries are obtained by multiplying the entries of the vector b,a by the scalar
a. Similarly, we use vector addition to represent superposition. If we superimpose two
lights b; and b,, then the result b is given by the equation b =b, + b;. The expression
b, + b, represents a vector whose entries are obtained by adding the entries of the vectors
b, and b,. Figures 3 and 4 depict both of these operations.

Linear Models for Spectral Functions. Intensity scalin-g and superposition may be used
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FIGURE -3 Representation of intensity scaling.” Suppose that light b is -
created by reducing the power in light b, by a factor of 0.5 at each
wavelength. The resuit is shown graphically in the plot. The vector represen-
tation of the same relation is given by the equation b=b, 0.5.
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FIGURE 4 Representation of superpositicn. Suppose that light b. 1S created"b}r
superimposing two lights b and b,. The result is shown graphically in the plot.
The vector representation of the same relation 1s given by the equation

b=b, =b,.

in combination to produce a wide range of spectral functions. Suppose that we have a set
of N, lights that we can individually scale and superimpose. Let the vectors by - - - by,
represent the spectral power distributions of these lights. In this case, we can produce any
spectral power distribution b that has the form

b=b,aq, + T + b,wbﬂ,vb | (1)

Suppose we know that a spectral function b is constrained to have the form of Eq. (1)
where the vectors b, - - - by, are known. Then we can specify b completely by providing the
values of the scalars a, - - - an,. If the number of primaries N, is less than the number of
sample wavelengths N,, then this specification is more efficient (i.e., requires fewer
numbers) than specifying the entries of b directly. We say that the spectral functions that
satisfy Eq. (1) are described by (or lie within) a linear model. We call N, the dimension of
the linear model. We call the vectors b, - - - by, the basis vectors for the model. We call the
scalars a, - - - ay, required to construct any particular spectral function the model weights

for that function.

Matrix Representation of Linear Models. Equation (1) can be written using vector and
matrix notation. Let B be an N, by N, dimensional matrix whose columns are the basis
vectors b, - - - by,. We call B the basis matrix for the linear model. The composition of the
basis matrix is shown pictorially on the left of Fig. 5. Let a be an N, dimensional vector
whose entries are the weights a, - - - ay,. Figure 5 also depicts the vector a. Using B and a.

we can reexpress Eq. (1) as the matrix multiplication

b =Ba | 2)

The equivalence of Eqs. (1) and (2) may be established by direct expansion of thé
definition of matrix multiplication (see App. A). A useful working intuition for matrx
multiplication is that the effect of multiplying a matnx times a vector (e.g., Ba) 1s to
produce a new vector (e.g., b) that is a weighted superposition of the columns of the
matrix {e.g., B); where the weights are given by the entries of the vector-(e.g., a). -

Use of Linear Models. When we know that a spectral function is described by a linear
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FIGURE 5 Vector representation of linear models. The matrix B represents the

basis vectors of the linear model. The vector a represents the model weights

required to form a particular spectral power distribution b. The relation between
: | b, a, and B is given by Eq. (2) and is depicted on the right of the figure.

model, we can specify it by using the weight vector a. The matrix B, which is determined
by the basis vectors, specifies the side information necessary to convert the vector a back
to the discrete wavelength representation. When we represent spectral functions in this
way, we say that we are representing the functions within the specified linear model.
Representing spectral functions within a small-dimensional linear model places strong
constraints on the form of the functions. As the dimension of the model grows, linear
models can represent progressively wider classes of functions. In many cases of interest,
there is prior information that allows us to assume that spectra are indeed described by a
linear model. A common example of this situation is the light emitted from a
computer-controlled color monitor. Such a monitor produces different spectral power
distributions by scaling the intensity of the light emitted by three different types of
phosphor (see Vol. I, Chap. 27). Thus the emitted light lies within a three-dimensional
linear model whose basis vectors are given by the emission spectra of the monitor’s
phosphors. Linear model constraints also turn out to be useful for describing naturally
occurring surface and illuminant spectra (see later under “Surfaces and [lluminants™).
Note that representing spectral functions within linear models is a generalization of,
rather than an alternative to, the more traditional wavelength representation. To
understand. this, we need only note that we can choose the basis vectors of the linear
model to be discrete delta functions centered at each sample wavelength. We refer to this
speciai choice of basis vectors as the identity basis or wavelength basis. We reter to the
corresponding linear model as the identity model. For the identity model, the basis matrix
B is the N, by N, identity matrix, where N, is the number of sample wavelengths. The
identity matrix contains 1's along its main diagonal and 0’s elsewhere. Multiplying the
identity matrix times any vector simply results in the same vector. From Eq. (2), we can
see that when B is the identity matrix, the representation of any light b within the linear

model is simply a =b.

Sampling the Visible Spectrum. To use a discrete representation for functions of
wavelength, it is necessary to choose a sampling range and sampling increment. Standard
practice varies considerably. The current recommendation of the CIE is that the visible
spectrum be sampled at 5-nm increments between 380 and 780 nm.!" Coarser sampling at
10 nm between 400 and 700 nm provides an adequate approximation for many applica-
tions. In this chapter, we provide tabulated spectral data at the latter wavelength sampling:
Where possible, we provide references to where they may be obtained at finer sampling
increments. In cases where a subset of the spectral data required for a calculation is not
available, interpolation or extrapolation may be used to estimate the missing values.”
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FIGURE 6 Schematic of the stimulus for the basic
color-matching experiment. The observer views a
bipartite field. A test is presented on one side of 2
bipartite field and a matching light is presented cn
the other side of the field. The test light’s spectral
power distribution b, is under experimental controt.
The observer adjusts the spectral power distribution
b, of the matching light. The observer’s task is to
make the two haives of the bipartite field appear
identical. The bipartite field is often surrounded by
an annulus whose spectral power distribution b, 1s
held fixed during the matching process.

Empirical Foundations of Colorimetry

The Basic Color-Martching Experiment. In the absence of linear model constraints, the .
only complete representation of the spectral properties of light is the full spectral power
distribution. The human visual system, however, does not encode all of the information
available in the spectral power distribution. Understanding how the visual system encodes
the spectral properties of light leads to an efficient representation of the information
relevant to human vision. To develop this understanding, we consider the color-matching
expernment.

The basic color-matching experiment is illustrated in Fig. 6. An observer views a
bipartite field, as shown in the figure. Each side of the field is spatially uniform, but the
two sides may differ in their spectral power distributions. The spectral power distribution b,
of one side of the bipartite field is under experimental control. We call this the test light.
The spectral power distribution b, of the light on the other side of the bipartite field is
under the observer’s control. We call this the matrching light. The observer’s task in the
experiment is to adjust the matching light so that it appears identical in color to the test
light. The bipartite field may be surrounded by an annulus whose spectral power
distribution b, is held fixed during the matching process. f .

Typically, the apparatus for the color-matching experiment is arranged so that the
observer can adjust the matching light by controliing the intensity scaling of some number
of superimposed primary lights. It is not a priori clear that it will be possible for the
ohserver to make a match when the number of primaries is small. The results of a large
number of color-matching studies, however, show that observers are able to set matches to
any test light by adjusting the intensity of just three primaries. This result implies that
there exist lights with different spectral power distributions that cannot be distinguished by
4 human observer. From the color-matching experiment, we may conclude that the human
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visual system does not encode all of the information available in the full spectral power
distribution. |

We use the symbol ~ to indicate that two lights are a perceptual match. Perceptual
matches are to be carefully distinguished from physical matches, which are denoted by the
= symbol. Of course, when two lights are a physical match, they must be a perceptual
match. Two lights that are a perceptual match but not a physical match are referred to as
metameric color stimuli or metamers. The term metamerism is often used to refer to the
fact that two physically different lights can appear 1dentical.

Conditions. for Trichromatic Color Matching. There are a number of qualifications to
the empirical generalization that it is possible for observers to match any test light by
adjusting the intensities of just three primaries. Some of these qualifications have to do
with ancillary restrictions on the experimental conditions (e.g., the size of the bipartite
field and the overall intensity of the test and matching lights). We discuss these later under
“Limits of the Color-Matching Experiment.” The other qualifications have to do with the
choice of primaries and certain conventions about the matching procedure. First, the
primaries must be chosen so that it is not possible to match any one of them with a
weighted superposition of the other two. Second, the observer sometimes wishes to
increase the intensity of one or more of the primaries above its maximum value. In this
case, we must allow the observer to scale the intensity of the test light down. We follow the
convention of saying that the match was possible, but scale up the reported primary
weights by the same factor. Third, the observer sometimes wishes to decrease the intensity
of one or more of the primaries below zero. In this case, we must allow the observer to
superimpose each such primary on the test light rather than on the other primaries. We
follow the convention of saying that the match was possible, but report with a negative SIZM
the intensity of each transposed primary.

With these qualifications, matching with three primaries 1s always possible. This fact 1s
often referred to as the trichromacy of normal human color vision.

Tristimulus Coordinates. The basic color-matching experiment is an empirical procedure
that maps any light to three numbers: the weights on the color-matching apparatus
primaries required to make a match. These three weights are often called the tristimulus
coordinates of the test light. Given the qualifications and conventions discussed earlier,
there are no restrictions on the magnitude of tristimulus coordinates. Thus, the matching
light’s spectral power distribution is described compietely by a three-dimensional linear
model whose basis vectors are the primary lights’ spectral power distributions. The
tristimulus coordinates of a test light are precisely the linear model weights required to
form the matching light. | | |

We denote the primary spectral power distributions by the vectors p - " pa. The
associated linear model matrix P contains these vectors in its three columns. We denote
the tristimulus coordinates of a light using the three dimensional vector t. Thus we can use
the tristimulus coordinates of any test light b to reconstruct a matching light Pt such that

b ~ Pt | (3)

We empbhasize that, in general, Pt will not be equal to b.

Critical Properties of Color Matching. Our discussion of the color-matching experniment
suggests that we can represent the spectral properties of light using tristimulus coordinates.
To ensure that this representation is general, however, we need to consider whether color
matching exhibits a number of critical properties. We review these properties briefly
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below. Given that they hold, it is possible to show that tristimulus coordinates provide a
representation for the spectral properties of light. Krantz provides a detailed formal

treatment.’?

Reflexivity, Symmetry, and Transitivity. Reflexivity is the requirement that a light
match itself. Symmetry is the requirement that if two lights match, they will continue to
match when their roles in the color-matching experiment are reversed. Transitivity is the
requirement if two lights each match a common third Iight then they will match each
other. Apart from small failures that arise from variability m ubserver s judgments, these

three properties do generally hold for human color matching."

Uniqueness of Color Matches. The tristimulus coordinates of a light should be unique.
This 1s equivalent to the requirement that only one weighted combination of the apparatus
primaries produces a match to any given test light. The uniqueness of color matches
ensures that trisimulus coordinates are well defined. In conjunction with transitivity,
uniqueness also gunarantees that two lights that match each other will have identical
tristimulus coordinates. It s generally accepted that, apart from variability, trichromatic

color matches are unique for color-normal observers.

Persistance of Color Matches. The above properties concern color matching under a
single set of viewing conditions. By viewing conditions, we refer to the properties of the
image surrounding the bipartite field and the sequence of images viewed by the observer
before the match was made. An important property of color matching 1s that hights that
- match under one set of viewing conditions continue to match when the viewing conditions
are changed. This property is referred to as the persistence or stability of color matches.”'®
it holds to good approximation for a wide range of viewing conditions. We discuss
conditions where the persistence law fails iater in the chapter. The importance of the
persistence law 1s that it allows a single set Df tristimulus values to be used across viewing

conditions.

Consistency Across Observers. Finally, for the use of tristimulus coordinates to have
general validity, it is important that there be good agreement about matches across
observers. For the majority of the population, there is good agreement about which lights
match. We discuss individual differences in color matching in a later section.

Computing Tristimulus Coordinates. Grassmann’s Laws. Trisumulus coordmates pro-
vide an efficient representation for the spectral properties of light. For this representation
to be useful, we require a model of the color-matching expeniment that allows us to
compute tristimulus coordinates from spectral power distributions. To develop such a
model, we rely on two regularities of color matching that were first characterized by
Grassmann.”® These (sometimes in conjunction with the properties discussed above) are
geuerally referred to as Grassmann’s laws. They have been tested extensively and hold .
well.”

The two regularities may be expressed as follows: (1) (proportionality law) if two lights
match, they will continue to match if they are both scaled by the same factor, (2)
(additivity law) if two pairs of lights match each other, then the superposition of the two
will also match. We can express the two laws formally as follc}ws The proportionality law

~states:

if bl - bz., thﬂn blﬂ -~ hzﬂ (4)
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where a is a scalar that represents any intensity scaling. The additivity law states:
if by ~b, and b;~b,, then by +b;~b,+b, (5)

The proportionality law allows us to determine the relation between the tristimulus
coordinates of a light and the tristimulus values of a scaled version of that light. Suppose
that b ~ Pt. Applying the proportionality law, we conclude that for any scalar a, we have
ba ~ (Pt)a. Because matrix multiplication is associative, we can conclude that:

if b ~ Pt, then ba ~ P(ta) (6)

This means that the tristimulus coordinates of a light ba may be obtained by scaling the
tristimulus coordinates t of the light b. A similar argument shows that the additivity law
determines the relation between the tristimulus coordinates of two lights and_ the

tristimulus coordinates of their superposition:

if b, ~ Pt, and b, ~ Pt,, then b, + b, ~ P(t, + t,) (7)

Implication of Grassmann’s Laws. If the tristimulus coordinates of the basis vectors for
a linear model are known, then Grassmann’s laws allow us to determine the tristimulus
coordinates of any light within the linear model. Let ¢t,---ty, be the tristimulus
coordinates corresponding to the model basis vectors and let T, be the 3 by N, matnx
whose columns are t, - - * t,,. For any light b within the linear model, we can write that
b = Ba. By expanding this matrix product and applying Eqs. (6) and (7), it 1s possible to
show that the tristimulus coordinates of b are given by the matrix product:

t=Tgza - (8)

Equation (8) is very important. It tells how to compute the tristimulus coordinates for
any light within a linear model from the tristimulus coordinates for each of the basis
vectors. Thus a small number of color matches (one for each of the basis vectors) allows us
to predict color matches for a large number of lights. We call the rows of the matrix T, the

- color matching functions with respect to the linear model defined by the columns of B.
This is a generalization of the standard usage of the term color-maiching funcrions, which

1s 1ntroduced below.

Color-Matching Functions. Let T be the corresponding matrix of tristimulus values for
the basis vectors of the identity model. In this case, T has dimensions 3 by N,, where N, is
the number of sample wavelengths, Each column of T is the tristimulus coordinates for a
monochromatic light. Within the identity model, the representation of any light b is simply
b itself. From Eq. (8) we conclude directly that the tristimulus values for any light are

given by
t=Tb (9)

Once we know the tristimulus coordinates for a set of monochromatic lights centered at
each of the sample wavelengths, we use Eq. {9) to compute the tristimulus coordinates of
any light.

We can regard each of the rows of T as a function of wavelength. We refer to these

_ . g
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functions as a set of color matching functions. Color matching functions are often plotted
as a function of wavelength, as illustrated in Fig. 7. It is important to note, however, they
do not represent spectral power distributions.

Mechanisms of Color Matching

Cone Mechanisms. . The basic color-matching experiment can be understood in terms of

the action of retinal photoreceptors. Three distinct classes of cone photoreceptors are
generally believed to participate in normal color vision. These are often referred to as the
long (L), middie (M), and short (S) wavelength sensitive cones. The information a cone
provides about a light is mediated by a single number: the rate of photopigment
isomerizations caused by the absorption of light quanta.” If two lights produce identical
absorption rates in all three classes of cones, the visual system will not be able to
distinguish them. The conventional mechanistic explanation for the results of the
color-matching experiment is thus that two lights maich if and only if they result in the
same number of photopigment absorptions in all three classes of cones,'®

To compute a cone’s quantal absorption rate from a light’s spectral power distribution,
we use the cone’s spectral sensituvity function. For each class of cones, the function
specifies the number of quanta that will be absorbed for a monochromatic light of unit
power centered on each of the sample wavelengths, When the application is to predict an
observer’s color matches, the sensitivity function should incorporate wavelength-
dependent filtering by the ocular media. To compute the quantal absorption rate. we
multiply the light power by the cone’s sensitivity at each wavelength and then sum the
results over wavelength.

Suppose that we represent the spectral sensitivity functions of the three classes of cones
by the rows of a 3 by ¥, matrix R. Let r be a three-dimensional vector whose entries are

- the cone quantal absorption rates. For a light with spectral power distribution b, we can

compute the absorption rates through the matrix equation
t=Rb (10}

This computation accomplishes the wavelength-by-wavelength multiplication and summa-

tion for each cone class.
Figure 8 shows estimates of human cone spectral sensitivity functions. The three curves

are independently normalized to a maximum of one. We discuss these estimates more
thoroughly later. |

Cone Coordinares. We use the term cone coordinates to refer to the vector r. We can
relate cone coordinates to tristimulus coordinates in a straightforward manner. Suppose
that in a color-matching experiment performed with primaries P we find that a light b has
tristimuius coordinates t. From our mechanistic explanation and Eq. (10) we have T

r=Rb = RPt - (11)

If we define the matrix My ; = (RP), we see that the tristimulus coordinates of a light are
related to its cone coordinates by a linear transformation

I = MT,Rt | | (12)
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By comparing Eq. (9) with Eq. (11) and nﬁting. that these equations hold for any light b.
we derive

R=MR_TT (13)

Equation (13) has the interesting implication that the color-matching experiment deter-
mines the cone sensitivities up to a free linear transformation. '

- Common Color Coordinate Systems

Color Coordinate Systems. For the range of conditions where the color-matching
experiment obeys the properties described in the previous sections, tristimulus coordinates
(or cone coordinates) provide a complete and efficient representation for human color
vision. When two lights have identical tristimulus coordinates, they are indistinguishable to
the visual system and may be substituted for one another. When two lights have tristimulus
coordinates that differ substantially, they can be distinguished by an observer with normal
color vision. - | -

The relation between spectral power distributions and tristimulus coordinates depends
on the choice of primaries used in the color-matching experiment. In this sense, the choice
of primaries in colorimetry is analogous to the choice of unit (e.g., foot versus meter) in
the measurement of length. We use the terms color coordinate system and color space 10
refer to a representation derived with respect to a particular choice of primaries. We also
use the term color coordinates as a synonym for tristimulus coordinates.

Although the choice of primaries determines a color space, specifying primaries alone is
not sufficient to compute tristimulus coordinates. Rather, it is the color-matching functions
that characterize the properties of the human observer with respect to a particular set of
primaries. Knowledge of the color-matching functions allows us to compute tristimulus
coordinates through Eq. (9). As we show below, however, knowledge of a single set of
color-matching functions also allows us to derive color-matching functions with respect 10
other sets of primaries. Thus in practice we can specify a color space either by its primaries

- or by its color-matching functions.
A large number of different color spaces are in common use. The choice of which color

space to use in a given application is governed by a number of considerations. If all that is
of interest is to use a three-dimensional representation that accurately predicts the results
of the color-matching experiment, the choice revolves around the question of finding a
set of color-matching functions that accurately capture color-matching performance for the
set of observers and viewing conditions under consideration. From this point of view,
color spaces that differ onlv by an invertible linear transformation are equivaient. But.
there are other possible uses for color representation. For example, one might wish to
choose a space that makes explicit the responses of the physiological mechanisms that
mediate color vision. We discuss a number of commonly used color spaces below.

Stimulus Spaces. A stimulus space is the color space determined by the primaries of a
particular apparatus. For example, stimuli are often specified in terms of the excitation of
three monitor phosphors. Stimulus color spaces have the advantage that they provide a
direct description of the physical stimulus. On the other hand, they are nonstandard and
their use hampers comparison of data collected in. different laboratories. A useful
compromise is to transform the data to a standard color space, but to provide enough side
information to allow exact reconstruction of the stimulus. Often this side information can

take the form of a linear model whose basis functions are the apparatus primaries.

_—
b
L
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FIGURE 7 Color-maiching functions. As de-
scribed in the text, the rows of the matrix T may be
viewed as a function of wavelength. Color-matching
functions are often plotted as a function of wave-
length. The plot shows a set of color-matching
functions for normal human vision standardized by
the CIE in 1931, The three individual functions are

b

usually referred to as the CIE X, y, and Z color-
matching functions.

CIE 1931 Color-Matching Functions. In 1931, the CIE chose a standard set of primaries
and integrated a large body of empirical data to determine a standard set of color-
matching functions. The notion was that these functions would describe the results of a
color-matching experiment performed on an ““average” color-normal human observer. The
result of the standardization process was a set of color-matching functions which are often
called the CIE 1931 color-matching functions.'” These functions are plotted as a function
of wavelength in Fig. 7 and tabulated in Table 1. Tristimulus coordinates computed with
respect to these color-matching functions are called CIE 1931 XY Z tristimulus coordinates.
The hypothetical observer whom the CIE 1931 color-matching functions describe is often

referred to as the CIE 1951 standard observer.
There is now some evidence that the color-matching functions standardized by the CIE

in 1931 are slightly different from those of the average human observer.””* A large body of
extant data is available only in terms of the CIE 1931 system, however, and many
colorimetric instruments are designed around it. Therefore, it seems likely that the CIE

1931 system will continue to be of practical importance for some time.

Judd-Vos Modified Color-Matching Functions. In 1951 Judd reconsidered the 1931
color-matching functions and came to the conclusion that they could be improved.” Vos™
refined Judd’s analysis. The Judd-Vos meodifications lead to a set of color-matching
functions that are probably more typical of the average human observer than the original
CIE 1931 color-matching functions. These functions were never officially standardized.
They are the basis of a number of estimates of the human cone spectral sensitivities and
are thus widely used in practice, especially in vision science. We provide the Judd-Vos:

modified XYZ color-matching functions in Table 2.

1964 10° Color-Matching Functions. In 1964, the CIE standardized a second set of
color-matching functions appropriate for larger field sizes. These color-matching functions
take into account the fact that human color matches depend on the size of the matching

fields. The CIE 1964 10° color-matching functions are an attempt to provide a standard
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TABLE 1 CIE 1931 XYZ Color-Matching Functions

Wavelengths are in am. The data are availabie at 1-nm
intervals between 360 nm and 830 nm."?

Wavelangth X Y y4
400 1.43E-02 3.96E-C4 6.79E-02
410 4 .35E-02 1.21E-03 2.07E-01
420 1.34E-01 4.00E-Q3 5.46E-01
430 2.84E-01 f.16E-02 1.39E+90
440 3.48E-01 2.30E-02 1.75€+00
450 3.36E-01 3.80E-0Q2 1.77E+060
480 2.91E-01 6.00E-02 1.67E+00Q
470 1.95E-91 $.10E-02 1.29E+00
480 g.56E-02 1.39E-01 8.13E-01
490 3.20E-02 2.08E-01 4,.85E-01
500 4.50E-03 3.23E-01 2.72E-01
510 9.30E-03 5.03E-01 1.58E-01
520 6.33E-02 7.10E-01 7.82E-02
530 1.66E-01 8.62E-01 4.22E-02
540 2.90E-01 9.54E-01  2.03E-02
550 4.33E-01 9.95E-01 3.7QE-03
560 5.95E-G1 9.95E-01 3.90E-03
5706 7.62E-C1 9.52E-01 <. 10E-03
58¢ 9.16E€-01 8.70E-G1 1.65E-03
5380 1.03E+00 7.57E-01 1.10E-03
600 1.06E+00 6.31E-01 8.00E-04
610 1.00E+00 5.03E-01 3.40E-04
620 8.54E-01 3.81E£-01 2.00E-04
630 6.42E-01 2.65E-01 0.00E+00
640 4 .48BE-01 1.75E-01 0.00E+00
850 2.84E-01 1.07E-01 0.00E+Q0
660 1.65E-01 6.10E-Q2 1.00E+00C
870 8.74E-02 3.20E-02 0.00E+00
6§80 4. 68E-02 1.70&-02 0.60E+00
6390 2.27E-02 8.20E-03 0.00E+00
700 1.14E-02 4.10E£-03 0.00E+00

observer for these larger fields. The use of 10° color-matching functions is recommended
by the CIE when the sizes of the regions under consideration are larger than 4°.'" We
provide the CIE 10° color-matching functions in Table 3.

Cone Sensitivities. For some applications it is desirable to relate the color stimulus to the
responses of the cone mechanisms. A number of psychophysical and physiological
techniques have been developed for determining the foveal cone spectral
sensitivities.”**"7® At present, the most widely used estimates are those of Smith and
Pokorny,”~® which are based on the Judd-Vos modified XYZ color-matching functions.
Stockman, MacLeod, and Johnson,” however, argue for a set of small-field cone
sensitivities denved from the CIE 1964 10° color-matching functions. We provide both the
| - Smith-Pokorny and Stockman-MaclLeod-Johnson estimates in Tables 4 and 5. Other
. o estimates exist,”® |
Note that there is no universally accepted standard for scaling the sensitivities of each
- cone class relative to one another. One common method normalizes the sensitivities to a
maximum of one for each cone class. Care should be taken when drawing conclusions that

depend on the scaling chosen.

Opponent and Modulation Spaces. Cone coordinates are useful because they make
explicit the responses of the initial physiological mechanisms thought to mediate color
vision. A number of investigators have begun to use representations that attempt to

T it T o e il EER
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TABLE 2 Judd-Vos Modified X¥Z Color-Matching
Functions

Wavelengths are in nm. The data are available at 5-nm
increments between 380 nm and 825 nm.”

Waveiength - X Y Z
400 3.80E-Q2 2.80E-03 t.74E-01
410 9.99€-02 7.40E-03 4.61E-01
420 2.29E-01 1.75E-02 1.07E+00
430 3.1tE-01 2.73E-02 1.47E+30
440 3.33E-01 3.7%E-02 1.62E+Q0
450 2.89E-01 4. 68E-02 1.47E+00
450 2.33E-01 6.00E-02 1.29E+00
470 1.75E-01 9.10E-02 1.11E+00
480 9.16E-02 1.3%E-07 7.56E-01
430 3.17E-02 2.08E-01 4.47E-01
500 4 85E-03 . 3.23E-01 2.54E-01
510 9.2%E-03 5.03E-01 1.54E-01
520 6.38E-02 7.10E-01 - 7.66E-02
530 1.67E-01 8.62E-01 4.14E-02
540 2.93E-01 9.54E-01 2.00E-02
550 4.36E-01 g.95E-01 8.78E.03
5640 5.97E-01 9. 95E-01. 4.05E-03
570 7.64E-01 9.52E-01 2.28E-03
580 3.16E-01 8.70£-01 1.81E-03
580 1.02E+00 7.57E-01 1.23E-03
600 1.068E+00 8.31E-01 9.06E-04
610 9.92E-01 5.03E-01 4,.29E-04
620 8.43E-01 3.81E-01 2.56E-04
630 6.33E-01 2.85E-01 8. 77E-05
6§40 4,41E-01 1.75E-01 5.12E-05
659 2.79E-01 1.07E-01 2.42E-05
8660  1.82E-01 6§.10E-02 1.19E-05
670 8.58E-02 3.20E-02 5.60E-08
6§80 4.58£-02 1.70E-02 2.79E-08
890 2.22E-02 8.21E-03 1.31E-08
700 1.$1£-02 4 10E-0Q3 6.48E-07

Source: From ‘“Colorimetric and photometric properties of a
two degree fundamental observer.” J. J. Vos, Color Research

and Application, Copyright © 1978. Repninted by permission of
John Wiley & Sons, Inc.

represent the responses of subsequent mechanisms. Two basic ideas underlie these
representations. The first is the general opponent processing model described later under
“Opponent Process Model.” We call representations based on this idea opponent color
spaces. The second idea is that stimulus contrast is more relevant than stimulus
magnitude.” We call spaces that are based o this second idea modulation color spaces.
Some color spaces are both opponent and modulation color spaces.

Cone Modulation Space. To derive coordinates in the cone modulation color space,
the stirnulus is first expressed in terms of its cone coordinates. The cone coordinates of a
white point are then chosen. Usually these are the cone coordinates of a uniform adapting
field or the spatio-temporal average of the cone coordinates of the entire image sequence.
The cone coordinates of the white point are subtracted from the cone coordinates of the
stimulus and the resulting differences are normalized by the corresponding cone coordinate
of the white point.. - - - -

The DKL Color Space. Derrington, Krauskopf, and Lennie*' introduced an opponent
~ modulation space that is now widely used. This space is closely related to the chromaticity
diagram suggested by MacLeod and Boynton.”? To derive coordinates in the DKL color
space, the stimulus is first expressed i cone coordinates. As with cone modulation space,
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TABLE 3 (I

Functions

—
i,
-]

1964 10° XYZ Color-Matching

Wavelengths are in nm. The data are available at 1-om
intervals between 360 nm and 830 nm."”

Waveiength X Y Zz

4040 1.91E-02 2.00E-03 8.80E-02
414 8.47E.02 8.80E-03 3.89&-01
420 2.05&-01 2.14E-0Q2 g.73E-01
430 3.15E-01 3.87E-02 1.55E+00.
4490 3.84E-01 6.21E-02 1.97E+00
459 3.71E-01 8.95E-02 1.99E+00
460 3.02E-01 1.28E-01 1.75E+00
4740 1.96E-Q1 1.85E-01 1.32E+00
480 8.05€£-02 2.94E-01 7.72E-01
490 1.62E-02 3.39E-01 4 15E.01
200 3.8CE-03 4.61E-01 2.19E-01
510 3.75&E-02 6.07E-01 1.12E-01
- 520 1.18E-01 7.82E-01 6.07E-02
530 2.37E-01 8.75E-01 3.05E-02
540 3.77E-01 9.62E-01 1.37E-02
550 5.30E-Q1 9.92E-01 4 00E-03
560 7.05E-01 3.97E-01 0.00E+0Q
570 8.79E-01 9.56E£-01 0.0CE+Q0
580 1.01E+00 8.68E-01 0.00E+QQ
590 1.12E+00 7.77E-01 0.00E+00
600 1.12E+00 6.58E-01 0.00E+0C0
610 1.03E+00 5.28E-01 0.00E+00
620 8.56E-01 3.98£-01 0.00E+00
630 6.48E-01 2.84E-01 0.00E+00
640 4.32E-01 1.80&£-01 0.00E+0%
650 2.68&-01 1.08E-01 0.00E+00
- 680 1.53E-01 6.03E-02 0.00E+00
670 8.13E-02 3.18E-02 0.00E+00
680 4.05E-02 1.59E-02 0.00E+0Q0
6940 t.99E-02 7.70E-0Q3 0.00E+0C
3.70E-03 0.00E+0Q0

7040

3.60E-03

the cone coordinates of a white point are then subtracted from the cone coordinates of the
stimulus of interest. The next step is to reexpress the resulting difference as tristimulus
coordinates with respect to a new choice of primaries that are thought to isolate the
responses of postreceptoral mechanisms.®* The three primaries are chosen so that
modulating two of them does not change the response of the photopic luminance
mechanism (discussed later). The color coordinates corresponding to these two primaries
are often called the constant B and constant R and G coordinates. Modulating the constant
R and G coordinate of a stimulus modulates only the S cones. Modulating the constant B
coordinate modulates both the L and M cones but keeps the S cone response constant.
: Because the constant R and G coordinate is not allowed to change the response of the
: photopic luminance mechanism, the DKL color space is well defined only if the S cones do
3 not contribute to luminance. The third primary of the space is chosen so that it has the
£ - same relative cone coordinates as the white point. The coordinate corresponding to this
b third primary is called the luminance coordinate. Flitcroft* provides a detailed treatment
of the DKL color space. |
Caveats. The basic ideas underlying the use of opponent:and modulation color spaces
seem to be valid. On the other hand, there is not general agreement about how signals
from cones are combined into opponent channels, about how this combination depends on
adaption, or about how adaptation affects signals originating in the cones. Since a specific
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TABLE 4 Smith-Pokorny Estimates of the Cone

Sensitivities

Wa#elengths are in nm. The data are available at i-nm

increments between 400 nm and 700 nm.”’

Wavelength L M S

40 2.66E-03 2.82E-03 1.08E-01
410 6.88E-03 7.67E-03 2.85E-91
420 1.58E-02 1.89E-02 £.59E-01
430 .. 2.33E-02.. 3.17E-02. = 9.08E-01
440 3.01E-02 4.77E-02 1.00E+0Q0Q
450 3.43E-02 6.35E-02 3.10E-01
460 4.12E-02 8.50E-02 = 7.98E-01
470 5.27E-02 1.30E-G1 6.89E-01
480 1.02E-01 1.89E-01 4.68E-01
480 1.62E-01 2.67E-0G1 2. 76E-Q1
500 2.63E-01 3.96E-01 - 1.64E-01
510 4 .23E-01 5.95E-01 9.56E-02
520 6.17&-01 8.08E-91 4.74E-02
530 7.73E-01 9.41E-01 2.56E-02
5490 8.83E-01 9.97E-01 1.24E-02
5§50 - 9.54E-01 g .87E-41 5.45E-03
560 g.93E-01 §.22E-01 2.53E-03
570 §,97E-01 8.06E-01 1.44E-033
580 9 .65E-01 6.31E-01 1.16E-03
590 8.94E-01 4.77E-01 8.12E-04
600 7.95E-01 3.18E-01 6.10E-04
610 6.70E-01 1.93E-01 3.12E-04
620 5.3QE-C1 1.10&-01 1.98E-04
630 3.80E-01 5.83E-02 9.Q3E-05
6§40 2.56E-01 2.98E-02 5.25E-05
850 1.58E-01 1.44E-02 2.51E-05
8§50 g.14E-02 5.99E-03 1.44E-05
870 4 82E-02 3.33E-03 7.58E-06
680 2.57E-02 1.64E-03 4.02E-08
630 1.24E-02 7.50E-04 1.94E-06
700 212-03 .

8.72E-07

model of these processes is impli
coordinates in these spaces must
modulation spaces, where the relation

3.68E-04

cit in any opponent or modulation color space,
be treated carefully. This is particularly true of
between the physical stimulus and coordinates in

the space depends on the choice of white point. As a consequence, radically different

stimuli can have identical coordina

contrast monochromatic intensity gratings are ail
independent of theirr wave

modulation color spaces,

tes in a modulation space. For example, 100 percent
represented by the same coordinates n
length. Nonetheless, such stimuli

appear very different to human observers. Identity of coordinates in a modulation color
space does not imply identity of appearance across difierent choices of white points.

Transformations Between Color Spaces

Because of the large number of color spaces currently in use, the ability to transiorm data
between various -color spaces.is of considerable practical importance..The derivation of -
such transformations depends on what is known about the source and destination color
spaces. Below we discuss cases where both the source and destination color space are
derived from the same underlying observer (i.e., when the source and destination color
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TABLE 5 Stockman-MacLeod-Johnson Estimates of
Cone Sensitivities |

Wavelengths are in nm. The data are available at 5-nm
increments between 390 nm and 730 nm.>*

:
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Cone coordinata
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Wavelength L M S
400 2.23E-03 1.93E-03 5.74E-02
410 8.786E-03 8.46E-03 2.38E-01
420 1.75E-02 2.05E-02 5.28E-01
430 2.69E-02 3.88E-02 8.03E-01
440 3.84E-02.  6.36E.02- . 9.87E-01
4590 4.88E-02 8.79E-02 4.50E-01
460 §.52E.02 - 1.20E-01 8.12E-01
470 9.69E-02 i.76E-01 §.51E-01
480 1.38E-01 2.38E-01 3.94E-01
430 1.88E-01 3.04E-01 2.08E-01
- 500 2.87E-01 4.48E-01 1.18E-01
510 4.59E-01 6.47E-01 6.21E-02
520 6.34E-01 8.23E-01 2.94E.02
530 7.76E-01 9.46E-01 {.28E-02
540 8.83E-01 1.00E+00 5.61E-03
5590 9.42E-01  9.77E-01 2.50E-03
560 9.88E-01 3.19E-01 1.15E-03
570 . S.99E-C1 8.03E-01 5.44E-04
580 9.68E-01 6.45E-01 2.63E-04
590 9.25E-01 4.88E-01 1.31E-04
600 8.36E-01 3.35E-01 6.65E-05
610 7.12E-01 2. 10E-01 3.4BE-05
620 5.64E.01 1.22E-01 1.83E-05
830 4.15E-01 6.93E-02 5.94E-06
640 2.71E-01 3.41E-02 5.49€-06
650 1.66E-01 1.57E-02 3.08E-06
660 9.40E-02 7.70E-03 1.76E-06
6740 4.99E-02 3.69E-03 1.03E-06
680 2.584E-02 1.75E-03 6.07E-07
690 1.22E-02 8.33E-04 3.64E-07
700 5.87E-02 3.95E-04 2.22E-07

400 457 500

550

600 650 TN
Wavelength {nm}

FIGURE 8 Human cone spectral responsivity. func-. -
tions normalized to a maximum of one, These

estimates are due to Smith and Pokorny.

37.39
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TABLE 6 Color Space Transformations

The table summarnzes how to {orm the matrix M that transforms color coordinates
between two spaces..

A e L e

Speactral functions known

Source Destination M Notes

Primaries P CMFs To M= ToPy

CMFs. Ty Primarias P2 M= (T{P2) !

Primaries P4 Primaries P2 M« (TP2)"Y{TP1)  Tisany set of CMFs.

CMFs T4 CMFs T2 ToxMTH Use regression to find M.

One space specified in tarms of other

Known tnistimuius coocrQinates How to construct M

Sourca primaries known in destination space. Put them in columns of M.
Source CMFs knawn in destination spacs. Put them in rows of M-,
Oastination primaries known in saurce space. Put them in columns of M- 1.
Destination CMFs known in source space. Put themn in rows of M.

* CMFs stands for Color Matching Functions

spaces both predict identical color matches). Table 6 summarizes these transformations.
When the source and destination color spaces are-characterized by a different underlying
observer, the transformation s more difficult and often cannot be done exactly. We discuss

possibie approaches in a later section.

Source Primaries and Destination Color-Matching Functions Known. Let P, be the
matrix representing a set of known primaries. Let T, be the matrix representing a known
set of color-matching functions (e.g., the CIE 1931 XYZ color-matching functions). We
would like to determine a transformation between the color coordinate system specified by
P, and that specified by T,. For example, lineanzed frame buffer values input to a
computer-controlled color monitor may be thought of as tristimulus coordinates in a color
space defined by the monitor’s phosphor emission spectra. This transformation thus allows
computation of the CIE 1931 XY Z tristimulus coordinates from the linearized frame buffer
values.

We start by using Eq. (9) to compute the tristimulus coordinates, with respect to T,, for
all three primary lights specified by P,. Each of these primaries is contained in a column of
P,, so that we may perform this calculation directly through the matrix multiplication

Myr= T,P, | (14)

Let the maitrix P, represent the destination primaries. We do not need to know these
explicitly, only that they exist. The meaning of Eq. (14) is that

Pl et PEMP,T (ISj ‘_ :

where we have generalized the symbol “~" to denote a column-by-column visual match
for the matrices on both sides of the relation. This relation follows because the columns of
M, ; specify how the destination primaries should be mixed to match the source primaries.
Equation (15) tells us that we can substitute the three lights represented by the columns of
P.M, r for the three lights represented by the columns of P, in any color-matching
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experiment. In particular, we may make this substitution for any light b with tristimulus
coordinates t, in the source color coordinate system. We have

b~ P;tl il PZMP,Ttl | (16)
By inspection, this tells us that the three-dimensional vector
t, = Mp 1t (17}

is the tristimulus coordinates of b in the destination color coordinate system. Equation (17)
provides us with the means to transform tristimulus coordinates from a coordinate system
where the primaries are known to one where the color-matching functions are known. The
transformation matrix M » required to perform the transformation depends only on the
known primaries P, and the known color-matching functions T,. Given these, M, r may be

computed directly from Eq. (14).

Source Color-Matching Functions and Destination Primaries Known. A second trans-
formation applies when the color-matching functions in the source color space and the
primaries in the destination color space are known. This will be the case, for exampie,
when we wish to render a stimulus specified in terms of CIE 1931 tristimulus coordinates
on a calibrated color monitor.

Let T, represent the known color-matching functions and P, represent the known
primaries. By applying Eq. (17) we have that the relation between source trisumulus
coordinates and the destination tristimulus coordinates is given by t, =M, rt.. This 15 a
system of linear equations that we may solve to find an expression for t, in terms of t,. In
particular, as long as the matrix M » is nonsingular, we can convert tristimulus coordinates

using the relation

t, =Mppt; (18)

where we define |
M;p= (MF.T)_I = (TIPE)%1 (19)

Source and Destination Primaries Known. A third transformation applies when the
primaries of both the source and destination color spaces are known. One application of
this transformation is to generate matching stimuli on two different calibrated momitors.
Let P, and P, represent the two sets of primaries. Let T represent a set of
color-matching functions for any human color coordinates system. (There is no require-
ment that the color-matching functions be related to either the source or the destination
primaries. For example, the CIE 1931 XYZ color-matching functions might be used.) To
do the conversion, we simplyv use Eq. (17) to transform from the color coordinate system
described by P, to the coordinate system described by T. Then we use Eq. (18) to
transform from the coordinates system described by T to the coordinate system described

by P,. The overall transformation is given by

t, = Mp ot = (My,pJ(Mp )ty = (TP;) (TPt (20)
It should not be surprising that this transformation requires the specification of a set of

color-matching functions. These color-matching functions are the only source of-informa-
tion about the human observer in the transformation equation.

Source and Destination Color-Matching Functions Known. Finally, it is sometimes of
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interest to transform between two color spaces that are specified in terms of their
color-matching functions. An example is transforming between the space defined by the

Judd-Vos modified XYZ color-matching functions and the space defined by the Smith-

Pokorny cone fundamentals. -
Let T, and T, represent the source and destination color-matching functions. Our

development above assures us that there is some three-by-three transformation matnsx, call
it M, that transforms color coordinates between the two systems. Recall that the
columns of T, and T. are themselves tristimulus coordinates for corresponding mono-

chromatic lights. Thus M, must satisty
| T.=M,T, - (21)

This is a system of linear equations where the entries of My are the unknown variabies.
This system may be solved using standard regression methods. Once we have solved for

M, », we can transform tristimulus coordinates using the equation
t, =Mt (22)

The transformation specified by Eq. (22) will be exact as long as the two sets of
~color-matching functions T, and T, characterize the performance of the same observer.
One sometimes wishes. however, to transform between two color spaces that are defined
with respect to different observers. For example, one might want to convert CIE 1931
XYZ tristimulus values to Judd-Vos modified tristimulus values. Although the regression
procedure described here will still produce a transformation matrix in this case, the resuit
of the transformation is not guaranteed to be correct.” We return to this topic later,

Interpreting the Transformation Matrix. It is useful to interpret the rows and columns of
the matrices derived above. Let M be a matrix that maps the color coordinates from a
source color space to a destination color space. Both source and destination color spaces
are associated with a set of primaries and a set of color-matching functions. From our
derivations above. we can conclude that the columns of M are the coordinates of the
source primaries in the destination color space [see Eq. (14)] and the rows of M provide .
the destination color-matching functions with respect to the linear model whose basis
functions are the primaries of source color space. Similarly, the columns of | ~' are the
coordinates of the destination primaries in the source color-matching space and the rows of
‘M™! are the source color-matching functions with respect to the linear model whose basis
functions are the primaries of the destination color space. Thus in many cases it is possible
to construct the matrix M without full knowledge of the spectral functions. This can be of
practical importance. For example, monitor manufacturers often specify the CIE 1931
XYZ tristimulus coordinates of their monitors’ phosphors. In additional, colorimeters that
measure tristimulus coordinates directly are often more readily available than spectral

radiometers.

Transforming Primaries and Color-Matching Functions. We have shown that color
coordinates in any two color spaces may be related by applying a linear transformation M.
The converse is also true. If we pick any nonsingular linear transformation M and apply it
to a set of color coordinates we have defined a new color space that will successtully -
predict color matches. The color-matching functions for this new space will be given by
T,=MT,. A set of primaries for the new space will be given by P, = P,M™". These derived
primaries are not unique. Any set of primaries that match the constructed primaries will
also work.

The fact that new color spaces can be constructed:by applying linear transformations
has an important implication for the study of color. If we restrict attention to what we may
conclude from the color-matching experiment, we can determine the psychological
representation of color only up to a free linear transformation. There are two attitudes
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one can take toward this fact. The conservative attitude is to refrain from making any
statements about the nature of color vision that depend on a particular choice of color
space. The other is to appeal to experiments other than the color-matching expenment to
choose a privileged representation. At present, there is not universal agreement about how
to choose such a representation and we therefore advocate the conservative approach.

Visualizing Color Data

A challenge facing today’s color scientist is to produce and interpret graphical representa-
tions of color data. Because the visual representation of light-is three-dimensional, it 1s
difficult to plot this representation on a two-dimensional page. Even more difficult is to
represent a dependent measure of visual performance as a function of color coordinates.

We discuss several approaches.

Three-Dimensional Approaches. One strategy is to plot the three-dimensional data in

perspective, as shown on the top of Fig. 9. In many cases, the projection viewpoint may be
chosen to provide a clear view of the regularities of interest in the data. The
three-dimensional structure of the data may be emphasized by the addition of various
monocular depth cues. A number of computer-graphics packages now provide facilities to
aid in the preparation of three-dimensional perspective plots. Often these programs allow

~ variation of the viewpoint and automatic inclusion of monocular depth cues.

M

— L . L M

FIGURE 9 Three dimensional views of color data. The figure shows the color coordinates of
an equal eénergy spectrum in color space defined by the human cone sensitivities (closed circles)

and the color coordinates of CIE daylight D65 (closed squares). The top panel shows the data
in perspective. The bottom panels show three two-dimensional views of the same data.
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A second approach to showing the three-dimensional structure of color data is to
provide mulitiple two-dimensional views, as in a drafter’s sketch. This approach is shown
on the bottom of Fig. 9. | |

Computer display technology provides promise for improved methods of viewing
three-dimensional data. For example, it is now possible to produce computer animations
that show plots that vary over time. Such plots have the potential for representing
multidimensional data in a manner that is more comprehensible to a human viewer than a
static plot. Other interesting possibilities include the use of stereo depth cues and color
displays. At present, the usefulness of these techniques is largely confined to exploratory
data analysis because there are no widely accepted standards for publication.

Chromaticity Diagrams. A second strategy for plotting color data is to reduce the
dimensionality of the data representation. One common approach is through the use of
chromaticity coordinates. Chromaticity coordinates are defined so that any two lights with
the same relative color coordinates have identical chromaticity coordinates, That is, the
chromaticity coordinates of a light are invariant with respect to intensity scaling. Because
chromaticity coordinates have one less degree of freedom than color coordinates, they can
be described by just two numbers and plotted in a plane. We. call a plot of chromaticity
coordinates a chromaricity diagram. A chromaticity diagram eliminates all information
about the intensity of a stimulus. |

There are many ways to normalize color coordinates to produce a set of chromaticity
coordinates. When the underlying color coordinates are CIE 1931 XYZ tristimulus
coordinates, it 1s conventional to use CIE 1931 xy chromaticity coordinates. These are
gitven by -

x=X/[{(X+Y+2)

y=Y/X+Y+2Z) o (23)

A graphical way to understand these chromaticity coordinates is illustrated in Fig. 10.

Y - 1,00
0.75

y 0.50

0.25

0.00
000 - 0.25 0.50 0.75 1.00

v | | X S
FIGURE 10 CIE 1931 xy chromaticity diagram. The left side of the figure shows a perspective )
view of the CIE 1931 XYZ wistimulus space. The ray shows a locus of points with constant

chromaticity coordinates. The actual chromaticity coordinates for each ray are determined by

where the ray intersects the plane described by the equation X + Y + Z=1. This plane is

indicated. The X and Y trnistimulus values at the point of intersection are the x and y
chromaticity coordinates for the ray. The right side of the figure shows the chromaticity
coordinates for the ray. The right side of the figure shows the chromaticity coordinated of an

equal energy spectrum (closed circles) and of CIE daylight D65 (closed square).
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Wyszecki and Stiles’ review a number of other standard chromaticity diagrams. MacLeod
and Boynton* propose a chromaticity diagram that is derived from cone coordinates.

A useful property of most chromaticity diagrams is that the chromaticity coordinates of
the mixture of two lights is always a weighted combination of chromaticity coordinates of
the individual lights. This is easily verified for the CIE 1931 xy chromaticity diagram by
algebraic manipulation. Thus the chromaticity of a mixture of lights will plot somewhere
on the chord connecting the chromaticities of the individual lights.

~ Implicit in the use of chromaticity coordinates is the assumption that scalar multiplica-
tion of the stimuli does not affect the visual performance being plotted. If the overall
intensity of the stimuli matter, then the use of chromaticity coordinates can obscure
important regularities. ‘For example, the shape of color discrimination contours (see
“Color Discrimination™ later in chapter) depends on how the overall intensity of the
stimuli covaries with their chromaticities. Yet these contours are often plotted on a
chromaticity diagram. This practice can lead to misinterpretation of the discrimination
data. We recommend that plots of chromaticity coordinates be treated with some caution.

Functions of Wavelength. Color data are often represented as functions of wavelength.

The wavelength spectrum parameterizes a particular path through the three-dimensional

color space. The exact path depends on how overall intensity covaries with wavelength.
For an equal energy spectrum, the path is illustrated in Fig. 9.

Wavelength representations are particularly useful in situations where knowing the
value of a function for the set of monochromatic stimuli provides a complete characteriza- i
tion of performance. Color-matching functions, for example, are usefully plotted as
functions of wavelength because these functions may be used to predict the tristimulus
coordinates of any light. Plots of detection threshold versus wavelength, on the other hand.
cannot be used to predlct the detection threshold for arbitrary lights.™ Just as the

 chromaticity diagram tends to obscure the potential importance of manipulating the
overall intensitj.r of light, wavelength representations tend to obscure the potential
importance of considering mixtures of monochromatic lights,

el i,

Colorimetric measurements

To apply the formulae described in this chapter, it is often necessary to measure the
colorimetric properties of stimuli. The most general approach is to measure the full ;
spectral power distribution of the stimuli. Standard instrumentation and methods are i
discussed in Vol. II, Chap. 24. Often, however, it is not necessary to know the full spectral f
power distribution; knowledge of the tristimulus coordinates (in some standard color
space) i1s sufficient. For E'(ample the color space transformations summarized earlier in
Table 6 depend on the full spectral power distributions of the pmnarles only through therr
tristimulus coordinates.

Specialized instruments, cailed colorimeters, can measure tristimulus coordinates
directly. These instruments typically operate using the same principies as photometers (see
Chap. 24 of Vol. IT of this Handbook) with the exceptmn that they have three calibrated
filters rather than just one. Each filter mimics the spectral shape c::uf one of the

- color-matching functions. Wyszecki and Stiles discuss colorimeter demgn Colorimeters
are generally less expensive than radiometers-and are thus an attractive option when full
spectral data is not required. -

Two caveats are worth note. First, it is technically difficult to design filters that exactly
match a desired set of color-matching functions. Generally, commercial colorimeters are
calibrated so that they give accurate readings for stimuli with broad spectral power
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distributions. For narrowband stimuli (e.g., the light emitted by the red phosphor of many
color monitors) the reported readings may be quite inaccurate. Second, most colorimeters
are designed to the CIE 1931 standard. This may not be an optimal choice for the purpose
of predicting the matches of an average human observer.

26.4 TOPICS

Surfaces and llluminants.

As shown In Fig. 1, the light reaching the eye is often formed when light from an
illuminant reflects from a surface. Illuminants and surfaces are likely to be of interest in
color reproduction applications involving inks, paints, and dyes, and in lighting design
applications.

Reflection Model. lIlluminants are specified by their spectral power distributions. We will
use the vector e to represent the illuminant spectral power distributions. In general, the
interaction of light with matter 1s quite complex (see Vol. I, Chaps. 7 and 9). For many
applications, however, a rather simple model is acceptable. Using this model, we describe a
surface by its surface reflectance function. The surface reflectance function specifies, for
each sample wavelength, the fraction of illuminant power that is reflected to the observer.
We will use the vector s to represent surface reflectance spectra. Each entry of s gives the
reflectance measured at a single sample wavelength. Thus the spectral power distribution b
of the reflected light 1s given by the wavelength-by-wavelength product of the illuminant
spectral power distribution and the surface reflectance function.

The most important consideration neglected in this formulation is viewing geometry.
The relation between the radiant power emitied by a source of llumination, the material
properties of a surface, and the radiant power reaching an observer can depend strongly on
the viewing geometry. In our formulation, these geometrical factors must be incorporated
implicitly into the specification of the illuminant and surface properties, so that any actual
calculation is specific to a particular viewing geometry. Moreover, the surface reflectance
must be understood as being associated with a particular image location, rather than with a
particular object. A great deal of current research in photorealistic computer graphics is
concerned with accurate and efficient ways to specify illuminants and surfaces for spatially
complex scenes.”*” A second complexity that we neglect is fluorescence.

Computing the Reflected Light. The relation between the surface reflectance function
and the reflected light spectral power distribution is linear if the illuminant spectral power
distribution is held fixed. We form the N, by N, diagonal illuminant matrix E whose
diagonal entries are the entries of e. This leads to the relation b = Es. By substituting into
Eq. (9), we arrive at an expression for the tristimulus coordinates of the light reflected

from a surface |
t= (TE)s | (24)

The matrix (TE) in this equ.ﬁtion plays exactly the same role as the color-matching
functions do in Eq. (9). Any result that holds for spectral power distributions may thus be .
directly extended to a result for surface reflectance functions when the illuminant i is known

and held fixed.

Linear Model Representations for Surfaces and Hluminants. Judd, MacAdam, and
Wyszecki measured the spectral power distributions of a large number -of ‘naturally
occurring daylights. They determined that a four-dimensional linear model provided a
good description of their spectral measurements. Consideration of their results and other



26.26

VISION

TABLE 7 CIE Basis Vectors for Daylights

Wavelengths are in nm. The data are available at 5-nm
increments from 300 nm to 830 nm."

- W.I P———e

Wavaelangth Vector 1 Vactor 2 Vector 3
400 §.483E+01 4.34E+0% -1.10E+00
410 1.058E+02 4.63E+01 -5 00E-01
420 1.06E+02 4.39E+01 -7.00£-01
430 9.68E+01 3.71E+Q1 -1.20£+0Q0
440 1.138E+Q2 3.87=+01 -2.80E+00
450 {.26E+02 3.88E+01 -2.30E+00..
4560 1.26E+02 1.26E+01 -2.80E+Q0
470 1.21£+02 2.79E+Q1 -2.80E+00
430 1.21E+02 2.436+01 -2.50E+00
490 1.14E+02 2.01E+0t -1.80E+00
500 1.13E+02 1.62E+01 -1.5CE-01
510 1.11£+02 1.32E+G1 -1.30E+00
520 1.07E+02 8.80E+00 -1.20E+00
530 1.08E+02 6. 10E+00 -1.00E+00.
£40 1.05E+02 4 20E+00 -5.00E-0Q1
5§59 1.04E+0Q2 1.90E+00 -3.00E-Ct
560 1.00E+0Q2 0.00E+0Q 0.GO0E+Q0
570 g9 80E+01 -1.80E+0QQ 2.90E-01
580 9.51E+01 -3.50E+00 5.00E-01
530 8§.91E+01 -3.50E+00 2.10£+00
600 g.05E+01 -5.80E+00C 3.20E+Q0
610 g.03E+01 -7.20E+G0 4.10E+GO
§20 8.84E+01 -8.6CE+GQ 4. 70E+Q0Q
830 8.40E+01 -9.50E+QQ 5.10E+00
640 8. 51E+01 -1.09E€+01 6.70E+00
850 8.19E+01 -1.07E«01 7.30E+00
6§60 8.26E+01 -1.20E+01 8.60£+00
670 8.43E+01 -1.40E+Q1 9.80E+00
680 8.13E+01 -1.36E+01 1.02E+01
590 7.19E+01 -1.20E+01 §.30E+00
700 7.43E+01 -1.33E+01 3.60E+00

daylight measurements led the CIE to standardize a three-dimensional linear model for
natural daylights. The basis vectors for this model are provided in Table 7. Figure 11
depicts a daylight spectral power distribution (measured at the author’s laboratory in Santa
Barbara, Calif.) and its approximation using the first two basis vectors of the CIE linear
model for daylight. |

Cohen® analyzed the reflectance spectra of a large set of Munsell papers™' and
concluded that a four-dimensional linear model provided a good approximation. to the,
entire data set. The basis vectors for Cohen’s linear model are provided in Table &,
Maloney*? reanalyzed these data, plus a set of natural spectra measured by Krinov” and
confirmed Cohen’s conclusion. More recently, reflectance measurements of the spectra of
additional Munsell papers and of natural objects’ have been described by smali-
dimensional linear models. Figure 12 shows a measured surface reflectance spectrum (red
cloth, measured in the author’s laboratory) and its approximation using Cohen’s
four-dimensional linear model.

It is not yet clear why natural illuminant and surface spectra are well approximated by
small-dimensional linear models or how general this conclusion is. Maloney’* provides

some speculations. Nonetheless, the assumption that natural spectra do he within
small-dimensional linear models seems reasonable in. light of the. currently. available
evidence. This assumption makes possible a number of interesting practical calculations, as

we illustrate in some of the following sections.
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FIGURE 11 The figure shows a daylight spectral
power distribution and its approximation using the
CIE linear model for daylight. For this particular
illuminant, only two basis functions were required to

provide a very good fit.

TABLE 8 Cohen’s Basis Vectors for Reflectance Functions

Wavelengths are in nm. The data are available at 10-nm increments

from 380 nm to 770 am.*®

Wavelength Vector 1 Vaclor 2 Vacior 3 Vactor 4
400 3.50e+00 -9.14E-01 -7.83E-01 -2.2BE-01
410 3.81E+00 -9.54E-01 -7.7BE-0% -2.50E-01
420 3.52E+00 -9.94&-01 -7.65E-0t -2.68E-01
439 3.54E+QQ -1.05E+00 -7.39E-01 -2.64E-01
440 3.55E+00 -1.12E+00 .7.09E-01 -2.44E-01
450 3.57E+00 -1.20E+00 -8.63E-01 -2.07E-01
460 3.57E+00 -1.2BE+C0 -5.81E-01 -1.83E-01
479 3.56E£+08 -1.35E+00 -4.62E-01 -1.13E-01
480 3.58E+00 -1.38E+00 -2.47E-0% -4.24E-02
490 3.62E+Q00 -1.38E+00 8.40E-03 4.18E-02
500 3.87e+00 -1.31E+00 2.79E-01 1.20E-01
5140 3.80E+00 -1.13E+0¢ 6.10E-01 - 2.82E-01
520 3.81E+00 -9.2BE-.Q1 8.89E-01 4 00E-01
£3¢C 3.91E+00 -7.84E-01 1.03E+00 4.07E-01
540 3.91E+80 -6.33E-01 1.10E+Q0 3.53E-0t
580 3.4E+00 -4.86E-01 1.13E+00 2.80E-01
560 - 3.94E+00 -2.78E-01 1.12E+00 2.15E-01
570 4.04E+00 -7.45E-02 1.13E+00 8.13E-02
580 4 17E+00 1.71E-01 1.07E+0Q¢ -B.77E-02
590 4.42E+00Q 4.208-01 1.01E+00 -1.94E-01
600 4.55E+00 6.83E-01 7.1BE-0t -3.45E-01
810 4.73E+00 8.70E-Q1 4.75E-41 -3.74E-01
620 4.84E+00 1.00E+00 2.76E-01 -3.80E-01
630 4.90E+00 1.08E+00 1.47E-01 -3.87E-0Q1
640 4.93E+00 1.12E+00 5.61£-02 -3.92&-.01
650 4.97E+00 1.i15E+Q0 -1.21E-02 -3.87E-01
680 5.01E+00 1.16E+00 -6.80E-02 -3.87E-01
670 5.08E+00 1.16E+00 -1.20E-0tf -3.19%9E-Q1
680 5.17E+00 t.16E+00. . -1.61E-01 . -2.40E-01
690 5.27E+C0 1.18E+00 -1.99E.01 -1.28E-.01
700 5.39E+0Q 1.14E4+00 -2.40E-01 1.28E-02

il —
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FIGURE 12 The figure shows a measured surface
reflectance function and a fit to it using Cohen’s
4-dimensional linear model.*

Determining a Linear Model from Raw Spectral Data. Given a set of spectral
measurements, it 1s possible, for any integer »,, to find the N, dimensional linear mode!
that best approximates the spectral data set (in a least-squares sense). Suppose that the
data set consists of N_.., spectra, each of which is represented at N, sample wavelengths.
Let X be an N, by N,.,, data matrix whose columns represent the individual spectral
measurements. The goal of the calculation is to determine an N, by ¥, matrix B .and an N,
DY Nmeas matrix of coefficients A such that the linear model approximation X = BA is the
best least-squares approximation to the data matrix X over all possible choices of B and A.

The process of finding the matrix B is cailed one-mode components analysis.>® It is very

closely related to the principle components analysis technique discussed in most multivari-

ate statistics texts.””” One-mode components analysis may be accomplished numerically
through the use of the singular value decomposition.*” We define the singular value
decomposition in App. A. To see how the singular value decomposition is used to
determine an ), dimensional linear model for X, consider Fig. 13. The top part of the
figure depicts the singular value decomposition of an N, by N,.,, matrix X for the case
Npeas > N,, where the two matrices D and V7 have been collapsed. This form  makes it
clear that each column of X is given by a linear combination of the columns of U.
Furthermore, for each column of X, the weights needed to combine the columns of U are
given by the corresponding column of the matrix DV”. Suppose we choose an N,

ROER

FIGURE 13 The top part of the figure depicts the
singular value decomposition (SVD) of an N, by
N eas matrix X for the case N,,...> N,. In this view
we have collapsed the two matrices D and V. To
determine an N, dimensional linear model B for the
data in X we let B consist of the first N, columns of
U. As shown in bottom of the figure, the linear
model approximation of the data is given by X = BA
where A consists of the first N, rows of DV’
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dimensional linear model B for the data in X by extracting the first N, columns of U. In
this case, it should be clear that we can form an approximation X to the data X as shown in
the bottom part of the figure. Because the columns of U are orthogonal. the matrix A
consists of the first N, rows of DV’, The accuracy of the approximation X depends on how
important the columns of U excluded from B were to the original expression for X. It can
be shown that choosing B as above produces a linear model that minimizes the
approximation error of the linear model, for any choice of N,.”® Thus, computing the
singular value decomposition of X allows us to find a good linear model of any desired
dimension for N, <N,. Computing linear models from data is quite feasible on modern
personal computers.. . .- .. | | o I

Although the above procedure produces the linear model that provides the best
least-squares fit to a data set, there are a number of additional considerations that should
go into choosing a linear model. First, we note that the choice of linear model is not
unique. Any nonsingular linear combination of the columns of B will produce a linear
model that provides an equally good account of the data. Second, the least-squares error
measure gives more weight to spectra with large amplitudes. In the case of surface spectra,
this means that the more reflective surfaces will tend to drive the choice of basis vectors. In
the case of illuminants, the more intense illuminants will tend to drive the choice. To avoid
this weighting, the measured spectra are sometimes normalized to unit length before
performing the singular value decomposition. The normalization equalizes the effect of the
relative shape of each spectrum in the data set,”*® Third, it is sometimes desired to find a
linear model that best describes the variation of a data set around its mean. To do this. the
mean of the data set should be subtracted before performing the singuiar value
decomposition. When the mean of the data is subtracted, one-mode components anaivsis is
identical to principle components analysis. Finally, there are circumstances where the
linear model will be used not to approximate spectra but rather to approximate some other
quantity (e.g., color coordinates) that depend on the spectra. In this case. more general
techniques, closely related to those discussed here, may be used.™

Approximating a Spectrum with Respect (o a Linear Model. Given an .V, dimensional
model B, it is straightforward to find the representation of any spectrum with respect to
the linear model. Let X be a matrix representing the spectra of functions to be
approximated. These spectra do not need to be members of the data set that was used to
determine the linear model. To find the matrix of coefficients A such that X =BA best
approximates X we use simple linear regression. Regression routines to solve this problem

are provided as part of any standard matrix algebra software package.

Digital Image Representations. [If, in a given application, illuminants and surfaces may
be represented with respect to small-dimensional linear models, then it becomes feasible to
use point-by-point representations of these quantities in digital image processing. In typicai
color image processing, the image data at each point are represented by three numbers at
each location. These numbers are generally tristimulus coordinates in some color space. In
calibrated systems, side information about the color-matching functions or primary spectral
power distributions that define the color space is available to interpret the tristimulus
coordinates. It is straightforward to generalize this notion of color images by ailowing the
images to contain N, numbers at each point and allowing these numbers to represent
quantities other than tristimulus -coordinates.® For example. in representing the image
produced by a printer, it might be advantageous to represent the surface reflectance at
each location.® If the gamut of printed reflectances can be represented within a
small-dimensional linear model, then representing the surface reflectance functions with
respect to this model would not require much more storage than a traditional color image.’
The basis functions for the linear model need be represented only once, not at each
location. But by representing reflectances rather than tnstimulus values, it becomes
possible to compute what the tristimulus coordinates reflected from the printed image
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would be under any illumination. We illustrate the calculation below. Because of the
problem of metamerism, this calculation is not possible if only the tristimulus coordinates
are represented in the digital image. |

Simulation of Illuminated Surfaces. Consider the problem of producing a signal on a
monitor that has the same tristimulus coordinates as a surface under a variety of different
luminants. The solution to this problem is straightforward and is useful in a number of
applications. These include rendering digitally archived paintings,”®' generating stimuli for
use in psychophysics,”” and producing photorealistic computer-generated imagery.” We
show the calculation for the data at a single image location. Let a be a representation of
the surface reflectance with respect to an N, dimensional linear. model B. Let E represent
the illuminant spectral power distribution in diagonal matrix form. Let T represent the
~ color-matching functions for a human observer, and P represent the primary phosphor
spectral power distributions for the monitor on which the surface will be rendered. We
wish to determine tristimulus coordinates t with respect to the monitor primaries so that
the light emitted from the monitor will appear identical to the light reflected from the
simulated surface under the simulated illuminant.. From Egs. (2) (cast as s = Ba), (24),

(18), and (19) we can write directly the desired rendering equation
t=((TP) (TE)B)a (25)

The rendering matrix ((TP)~'(TE)B) has dimensions 3 by N, and maps the surface weights
directly to monitor tristimulus coordinates. It is quite general, in that we may use it for anyv
calibrated monitor and any choice of linear models. It does not depend on the particular
surface being rendered and may be computed once for an entire image. Because the
rendering matrix is of small dimension, rendering of this sort is feasibie, even for very large
images. As discussed earlier in the chapter, it may be possible to determine the matrix
M, » = (TP)" directly. A similar shortcut is possible for the matrix (TE)B. Each column of
this matrix is the tristimulus coordinates of one linear model basis vector under the

illuminant specified by the matrix E.

Color Coordinates of Surfaces. Our discussion thus far has emphasized describing the
color coordinates of lights. In many applications of colorimetry, it is desirable to describe
the color properties of reflective objects. One efficient way to do this, as described above,
is to use linear models to describe the full surface reflectance functions. Another possibility
is to specify the color coordinates of the light reflected from the surface under standard
ilumination. This method allows the assignment of tristimulus values to surfaces m an
orderly fashion. The CIE has standardized several illuminant spectral power distributions
that may be used for this purpose (see following section). Using the procedures defined
above, one can begin with the spectral power distribution of the illuminant and the surface
reflectance function and from there calculate the desired color-matching coordinates. The
relative size of the tristimulus values assigned to a surface depends on its spectral
reflectance function and on the illuminant chosen for specification. To factor the intensity
of the illuminant out of the surface representation, the CIE specified a normalization of
the color coordinates for use with 1931 XYZ tristimulus coordinates. This normalization
consists of multiplying the computed tristimulus coordinates by the quantity 100/Y,, where
Y, is the Y tristimulus coordinate for the illuminant.

The tristimulus coordinates of a surface provide enough information to match the

surface when it is viewed under the illuminant used to compute those coordinates. It is
important to bear in mind that two surfaces that have the same tristimulus coordinates
under one illuminant do not necessarily share the same tristimulus coordinates under
another illuminant. A more complete description can be generated using the linear model

approach described above. - - |

Standard Sources of Illumination. The CIE has standardized a2 number of illuminant
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TABLE 9 CIE Hluminants A and D65

Wavelengths are in nm. The data are
available at 1-nm increments from 300 nm

to 830 nm."?

Wavelength A Dgs
400 1.47E+01 8.28E+01
4190 1.77E+01 ~ 9.15E+01
4290 2.10E+01 9.34E+01
430 2.47E+01 8.67E+01

440  2.87E+071°  1.05E+02 "7
450 3.31E+01 1.17E+02
460 3.78E+01 1.18E+02
470 4.29E +01 1.15E+Q2
480 4.82E+01 1.16E+02
490 £.39E+01 1.09E+02
500 5.99E +01 1.09E+02
510 B.61E+01 1.08E+02
520 7.25E+C1 i 05E+02
5390 7.91E+C1 1.08E+02
540 8.60E+01 1.04E+02
550 3.29E+01 1.04E+02
560 1.00E+02 1.00E+02

570 1.07E+02 9.63E+01
580  1.14E+02 9.58E+01
590 1.22E+02 8.837E+01
600 1.29E .02 9.00E+C1
610 1.36E+02 8.96E+01
620 1.44E+02 8.77E+01
630 1.51E+02 8.33E+01
640 1.568E+02 8.37E+01
650 1.65E+02 8.00E+01
660 1.72E+02 8.02E+01
670 1.79E+02 8.23£+01
680 1.85E+02 7.83E+01
690 1.92E+02 6.97E+01
700 1.98E+02 7.16E+01°

spectral power distributions.”” These were designed to be typical of various common
viewing conditions and are useful as specific choices of illumination when the illuminant
cannot be measured directly. CIE illuminant A is designed to be representative of
tungsten-filament illumination. CIE illuminant D65 is designed to be representative of
average daylight. The relative spectral power distributions of these two iluminants are
provided in Table 9. Other CIE standard daylight illuminants may be computed using the
basis vectors in Table 7 and formulae specified by the CIE." Spectra representative of -
fluorescent lamps and other artificial sources are also available.™"

-

Recovering Spectral Power Distributions from Tristimulus Coordinates. It 1s not
possible in general to recover a spectral power distribution from its tristimulus coordinates.

If some a priori information about the spectral power distribution of the color signal is
available, however, then recovery may be possible. Such recovery is of most interest in

‘applications where direct spectral measurements are not possible and where knowing the

full spectrum is important. For example, the effect of lens chromatic aberrations on cone
quantal absorption rates depends on the full spectral power distribution.”*
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Suppose the spectral power distribution of interest is known to lie within a three-
dimensional linear model. We may write b = Ba, where the basis matrix B has dimensions
N, by 3. Let t be the tristimulus coordinates of the light with respect to a set of
color-matching functions T. Following the development earlier in the chapter, we can
conclude that a = (TB)™'t, which imples

b=B(TB) 't (26)

When we do not have a prior constraint that the signal belongs to a three-dimensional
linear. model, we may. still. be. able to place some. linear model constraint, of dimension
higher than 3, on the spectral power distribution. For example, when we know that the
signal was produced by the reflection of daylight from a natural object, it is reasonable to
assume that the color signal lies within a linear model of dimension that may be as low as
9. In this case, we can still write b = Ba, but we cannot apply Eq. (26) directly because
the matrix (TB) will be singular. To deal with this problem, we can choose a reduced linear
model B with only three dimensions. We then proceed as outlined above, but substitute
the reduced model for the true model. This will lead to an estimate b for the actual
spectral power distribution b. If the reduced linear model B provides a reasonable
approximation to b, the estimation error may be quite small. The estimate b will have the
property that it is a metamer of b. The techniques described above for finding linear model
approximations may be used to choose an appropriate reduced model.

Finding Metamers of a Light. It is often of interest to find metamers of a light. We
discuss two approaches here. Wyszecki and Stiles’ treat the problem in considerable detail.

Using a Linear Model. 1f we choose any three-dimensional linear model B we can
combine Eq. (26) with the fact the fact that t=Tb [Eq. (9)] to compute a pair of
metameric spectral power distributions b and b:

b=B(TB) 'Th (27)

Each choice of B will lead to a different metamer b. Figure 14 -shows a number of
metameric spectral power distributions generated in this fashion.

Powaer

400 450 500 550 €00 850 709
Wavelength inm)-

FIGURE 14 The figure shows three metameric
color signals with respect to the CIE 1931 standard
observer. The three metamers were computed using
Eq. (27). The mitial spectral power distribution b
(not shown) was an equal energy spectrum, Three

- separate linear models were used: one that describes
natural daylights, one typical of monitor phosphor
spectral power distributions, and one that provides
Cohen’s “fundamental metamer.”
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Metameric Blacks. Another approach to generating metamers is to note that there will
be some spectral power distributions b, that have the property Tb, = 0. Wyszecki referred
to such distributions as metameric blacks, since they have the same tnstimulus coordinates
as no light at all.>*® Grassmann's laws imply that adding a metameric black b, to any light
b yields a metamer of b. Given a linear model B with dimension greater than 3 it is
possible to find a second linear model B, such that (1) all lights that lie m B, also lie in B
and (2) all lights in B, are metameric blacks. We determine B, by finding a linear model
for the null space of the matrix TB. The null space of a matrix consists of all vectors that
are mapped to 0 by the matrix. Finding a basis for the null space of a matrix is a standard
operation in numerical matrix algebra. If we have a set of basis vectors N, for the null
space of TB, we can form B, = BN,. This technique provides-a way to generate a large list

of metamers for any given light b. We choose a set of weights a at random and construct -

b, = B,a. We then add b, to b to form a metamer. To generate more metamers, we simply
repeat with new choices of weight vector a. "

Surface and Illuminant Metamerism. The formal similarity between Eq. (9) (which gives
the relation between spectral power distributions and tristimulus coordinates) and Eq. (24)
(which gives the relation between surface reflectance functions and tristimulus coordinates
when the illuminant is known) makes it clear that our discussion of metamerism can be
applied to surface reflectance spectra. Two physically different surfaces will appear
identical if the tristimulus coordinates of the light reflected from them 1s identical. This fact
can be used to good purpose in some color reproduction applications. Suppose that we
have a sample surface or textile whose color we wish to reproduce. It may be that we are
not able to reproduce the sample’s surface reflectance function exactly because of various
limitations in the available color reproduction technology. If we know the illuminant under
which the reproduction will be viewed, we may be able to determine a reproducible
reflectance function that is metameric to that of the desired sample. This will give us a
sample whose color appearance is as desired. Applications of this sort make heavy use of

the methods described above to determine metamers. |
But what if the illuminant is not known or if it is known to vary? In this case there is an

additional richness to the topic of determining metamers. We can pose the problem: of
finding surface reflectance functions that will be metameric to a desired reflectance under
multiple specified illuminants or under all of the illuminants within some linear model. The
general methods developed here have been extended to analyze this case.”** Similar issues
arise in lighting design. where we desire to produce an artificial light whose color-rendering
properties match those of a specified light (such as natural daylight). When wavelength-
by-wavelength matching of the spectra is not feasible, it may still be possible to find
a spectrum so that the light reflected from surfaces within a linear model is identical for
the two light sources. Because of the symmetric role of illuminants and surfaces
in reflection, this problem may be treated by the same metheds used for surface

reproduction.

Cohen’s “Matrix R.” Cohen and Kappauf®*®* have proposed that a useful way to
associate a spectral power distribution with a set of tristimulus coordinates is to choose as
basis functions_the color-matching functions themselves. That is, we choose the matrix

B =T7. When B is chosen in this way, the estimated color signal from Eq. (26) is given by ~

b=T7(TT") 't. From Eq. (27) we also have b =T"(TT")"'Tb. Cohen and Kappauf refer
to this b as the “fundamental metamer” of b. The matrix T"(TT")™'T is often referred to
‘as “matrix R.” It is easy to show that “matrix R’ is invariant when a linear transformation
is applied to the color-matching functions. There is no reason to believe the “fundamental
metamer” will be a good estimate (in a least-squares sense) of the original spectral power

distribution (see Fig. 14). | -

-
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Color Cameras and Other Visual Systems

We have treated colorimetry from the point of view of specifying the spectral information
available to a human observer. We have developed our treatment, however, in such a way
that it may be applied to handle other visual systems. Suppose that we wish to define color
coordinates with respect to some arbitrary visual system with Ny photosensors. This
visual system might be an artificial system based on a color camera or scanner. a
nonhuman biological visual system, or the visual system of a color-anomalous human
observer. We assume that the sensitivities of the visual system’s photosensors are known
up to a linear transformation. Let T,,,,.. be an N, by N, matrix. whose entries are the
sensitivities of each sensor at each sample wavelength. We can compute the responses of
these sensors to any light b. Let t,.,.. be a vector containing the responses of each sensor
type to the light. Then we have t, ... =Ti...b. We may use t,..... as the device color

coordinates of b,

Transformation Between Color Coordinates of Different Visual S ystems. Suppose that-
we have two different visual systems and we wish to transform between the color
coordinates of each. A typical example might be trying to compute the CIE 1931 XYZ
tristimulus coordinates of a light from the responses of a color camera. Let v, be the
number of source sensors, with sensitivities specified by T.. Similarly, let N, be the number
of destination sensors with sensitivities specified by T,. For any light b we know that the
source device color coordinates are given by t, =T.b and the destination device color
coordinates t,=T,b. We would like to transform between t. and t, without direct
knowledge of b. |

If we can find an N, by N, matrix M such that T, = MT,, then it is easy to show that the
matrix M may be used to compute the destination device color coordinates from the source
device color coordinates through t, = Mt,. We have already considered this case (in a less
general form). The extension here is that we allow the possibility that the dimensions of
the two color coordinate systems differ. When a linear transformation between T, and T,
exists, it can be found by standard regression methods. | |

Horn demonstrated that when no exact linear transformation between T, and. T, exists,
it is not, in general, possible to transform between the two sets of color coordinates.* The
reason for this is that there will always exist a pair of lights that have the same color
coordinates for the source device but different color coordinates for the destination device.
The transformation will therefore be incorrect for at least one member of this pair. When
no exact lnear trapsformation exists, it is still possible to make an approximate
transformation. One approach is to use linear regression to find the best. linear .
transiormation M between the two sets of color-matching functions in a least-squares
sense. ‘This transformation is then applied to the source color coordinates as if it were
exact.® Although this is an approximation, in many cases the results will be acceptable. In
the absence of prior information about the spectral power distribution of the original light
b, it is a sensible approach. | |

A second possibility is to use g)riﬂr constraints on the spectral power distribution of the
light to guide the transformation.”“ Suppose that we know that the light is constrained to
e within an N, dimensional linear model B. Then we can find the best linear
transformation M between the two matrices T,B and T,B. This transformation may then
be used to transform the source color coordinates to the destination color coordinates. It is
casy to show that the transformation will be exact if T,B=MT.B. Otherwise, it is a
reasonable approximation that takes the linear model constraint into account.

Computational Color Constancy. An interesting application is the problem of estimating
surface reflectance functions from color coordinates. This problem is of interest for two
reasons. First, it appears that human color vision makes some attempt to perform this
estimation, so that our percept of color is more closely associated with object surface
properties than with the proximal properties of the light reaching the eye. Second, an
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artificial system that could estimate surface properties would have an important cue o aid
object recognition. In the case where the illuminant is known, the problem of estimating
surface reflectance properties is the same as the problem of estimating the color signal,
because the illuminant spectral power distribution can simply be incorporated into the
sensor sensitivities. In this case the methods outlined above for estimating color signal
spectral properties can be used. | -

The more interesting case is where both the illuminant and the surface reflectance are
unknown. In this case, the problem is more difficult. Considerable insight has been gained
by applying linear model constraints to both the surface and illuminant spectral power
distributions. In the past decade, a large number of approaches have been developed for
recovering surface reflectance functions.”**">~"® Each approach differs (1) in the additional
assumptions that are made about the properties of the image and (2) in the sophistication
of the model of illuminant surface interaction and scene geometry used. A thorough
review of all of these methods i1s beyond the scope of this chag:ter. It 1s instructive,
however, to review one of the simpler methods, that of Buchsbaum. 2

Buchsbaum assumed that in any given scene, the average reflectance function of the

- surfaces in the scene is known. This is commonly called the *“gray world” assumnption. He
also assumed that the illuminant was diffuse and constant across the scene and that the
illuminants and surfaces in the scene are described by linear models with the same
dimensionality as the number of sensors. Let S, be the spectral power distribution of the
known average surface, represented in diagonal matrix form. Then it is possible to write
the relation between the space average of the sensor responses and the illuminant as

oy, = TSuB.a, (28)

where a, is a vector containing the weights of the illuminant within the linear model

representation B,. Because we assume that the dimension N, = N,, the matrix 18,..B, will
be square and typically may be inverted. From this we recover the illuminant as
e = B,(TS...B.)  't.... If we let E represent the recovered illuminant in matrix form, then at

each image location we can write

t = TEB,a, | (29)

where a, is a vector containing the weights of the surface within the linear model
representation B,. Proceeding exactly as we did for the illuminant, we may recover the
surface reflectance from this equation. | |

Although Buchsbaum's method depends on rather strong assumptions about the nature
of the scene, subsequent algorithms have shown that these assumptions can be weakened.
Maloney and Wandell demonstrated that the gray world assumption can, under certain
circumstances, be relaxed.”” " Several recent reviews emphasize the relation between

computational color constancy and the study of human vision.” ™

Color Discrimination

Measurement of Small Color Differences. Our treatment so far has not included any
“discussion of the precision to which observers can judge identity of color appearance. To
specify tolerances for color reproduction, it would be helpful to know how different the
color coordinates of two lights must be for an observer to reliably distinguish between
them. A number of techniques are available for measuring human ability to discriminate

between colored lights. .
One method, empioyed in seminal work by MacAdam,>* is to examine the variability
" in individual color matches. That. is, if we have observers set matches to the same test
stimulus, we will discover that they do not always set exactly the same values. Rather,
there will be some trial-to-trial variability in the settings. MacAdam and others®* used
the sample covariance of the individual match tristimulus coordinates as a measure of

observers’ color discrimmation. |
A second approach is to use psychophysical methods (see Vol. I, Chap. 39) to measure
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observers’ thresholds for discriminating between pairs of cﬂlured lights. Exampies include
increment threshold measurements for monnchmglgatic lights®” and thresholds measured

Measurements of small color differences are often summarized with isodiscrimination
contours. An isodiscrimination contour specifies the color coordinates of lights that are
equally discriminable from a common standard light. Figure 15 shows an illustrative
isodiscrimination contour. Isodiscrimination contours are often modeled as ellipsoids™*”
and the figure is drawn to the typical ellipsoidal shape. The well-known MacAdam
ellipses® are an emmple of representing discrimination data using the chromaticity
coordinates of a cross section of a full three-dimensional 1sodiscrimination contour (see the

 legend of Fig. 15). .

CIE Uniferm Color Spaces. Figure 16 shows chromaticity plots of representative
isodiscrimination contours. A striking feature of the plots is that the size and shape of the
contours depends on the standard stimulus. For this reason, it 1s not possible to predict
whether two lights will be discriminable solely on the basis of the Euclidean distance
between their color coordinates. The heterogeneity of the isodiscrimination contours must
also be taken into account.

The CIE provides two sets of formulae that may be used to predict the discriminability
of colored lights, Each set of formulae specifies a nonlinear transformation from CIE 1931
XYZ color coordinates to a new set of color coordinates. Specificaily, the XY Z coordinates
may be transformed etther to CIE 1976 L*u*v* (CIELUY) color coordinates or to CIE
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FIGURE 15 Iscdiscrimination contour. The FIGURE 16 Isodiscrimination contours plotted in
plﬂtted elhpsmd shows a hypothetical isodiscrimina- the chromaticity diagram. These were computed
tion contour in the CIE XYZ color space. This using the CIE L*u*v* uniform color space and
contour represents color discrimination performance  provide an approximate representation of human
for the standard light whose color coordinates are  performance. For each standard stimulus, the
located at the ellipsoid’s center. Isodiscrimination - plotted contour represents the color coordinated of
contours such as the one shown are often sum- lights that differ from the standard by 15 AE, units
marized by a two-dimensional contour plotted on a  but that have the same luminance as the standard.
chromaticity diagram (see Fig. 16). The two- The choice of 15 AE?*, units magnifies the contours
dimensional contour is obtained form a cross section compared to those that would be ﬂbtamed in a
of the full contour, and its shape can depend on  threshold experiment.

which cross section is used. This information is not

available directly from the two-dimensional plot. A ...

common criterion for choice of cross section is

isoluminance. The ellipsoid shown in the figure is

schematic and does not represent actual human

performance. -




COLORIMETRY  26.37

1976 L*a*b* (CIELAB) color coordinates. Both transformations stretch the XYZ color
space so that the resulting Euclidean distance between color coordinates provides an
approximation to the how well lights may be discriminated: Both the L*u*v* and L*a*b*
systems are referred to as umform color spaces. A more complete description of these
color spaces is available elsewhere.™'' We provide the basic formulae and some discussion
below. . | |
Transformation to CIELUV Coordinates. The CIE 1976 L*u*v* color coordinates of a
light may be obtained from its CIE XYZ coordinates according to the equations

Y 1/3 Y
116(—) —-16  —>0.008856
L;* _ Y, Y., |
903 3(1) R = (0.008856
RS Lo 30)
u* = 1.3L*( 44X - 4, ) o
(X +15Y +3Z2) (X, +15Y,+32,)
) G ). S
(X +15Y +32) (X,+15Y,+3Z,)

In this equation, the quantities X, Y,, and Z, are the tristimulus coordinates of a white
point. Little guidance is available as to how to choose an appropriate white point. In the
case where the lights being judged are formed when an illuminant reflects from surfaces,
the tnistimulus coordinates of the illuminant may be used. In the case where the lights
being judged are on a computer-controlled color monitor, the sum of the tristimulus
coordinates of the three monitor phosphors stimulated at their maximum intensity may be
used. | |
Transformation to CIELAB Coordinates. The CIE 1976 L*a*b* color coordinates of a
light may be obtained from its CIE XY Z coordinates according to the equations

1/3
116(-{) — 16 Z >{).008856
feo) VT Y,
903 3(3) < 0.008856
RS Lo (31)
i X) (Y)
R e i ) R
a* = 500 _f(X,, f v/
e AN EAY
=201 (7) -1(Z,)
where the function f(s) is defined as
()P $>0.008856
fis) "{ 7787(s) + 15 5=0.008856 - 32)

'As with the CIELUV transformation, the quantities X,,, Y,,, and Z, are the tristirntilus' )

coordinates of a white point.
Distance in CIELUV and CIELAB Spaces. In both the CIELUV and CIELAB color

spaces, the Euclidean distance between the coordinates of two lights provides a rough
guide to their discriminability. The symbols AEY, and AEY are used to denote distance in
the two uniform- color spaces-and are-defined as»~-- - -~ - - o |

AEY, = V(AL*)” + (Au*)* + (Av¥)”
AEY = V(AL*Y + (Aa*)* + (Ab*)

(33)
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where the various A quantities on the right represent the differences between the
corresponding coordinates of the two lights. Roughly speaking, a AEX or AEX, value of 1
corresponds to a color difference that can just be reliably discerned by a human observer
-under optimal viewing conditions. A AEZ* or AEY value of 3 is sometimes used as an
acceptable tolerance in industrial color reproduction applications.

Limits of the CIE Uniform Color Spaces. The two CIE color difference measures AE
and AL provide only an approximate guide to the discriminability between two lights.
There are a number of reasons why this is so. One major reason is that the formuiae were
designed not only to predict discrimination data but also certain suprathreshold judgments
of color appearance.™ A second important reason is that color discrimination-thresholds
depend heavily on factors other than the tristimulus coordinates. These factors include the
adapted state of the observer,” the spatial and temporal structure of the stimulus,”’"* and
the task demands placed on the observer.””’ Therefore, the complete specification of a
uniform color space must incorporate these factors. At present, a model of visual
performance that would allow such incorporation is not available. The transformations to
CIELUYV and CIELAB spaces do, however, depend on the choice of white point. This
dependence is designed to provide some compensation for the adapted state of the

observer.

Limits of the Color-Matching Experiment

Specifying a stimulus using tristimulus coordinates depends on having an accurate set of
color-matching functions. The various standard color spaces discussed earlier under
*“Common Color Coordinate Systems’ are designed to be representative of an “‘average”
or standard observer under typical viewing conditions. A number of factors limit the
precision to which a standard color space can predict individual color matches. We
describe some of these factors below. Wyszecki and Stiles’ provide a more. detailed
treatment. -

For most applications, standard calculations are sufficiently precise. When high
precision is required, it is necessary to taillor a set of color-matching functions to the
individual and observing - conditions of interest. Once such a set of color-matching
functions is available, the techniques described in this chapter may be used to compute
corresponding color coordinates. |

Individual Differences Among Color-Normal Observers. Standard sets of color-
matching functions are summaries of color-matching results for a number of color-normal
observers. There 1s small but systematic variability between the matches set by individual
observers, and this variability limits the precision to which standard color-matching
functions may be taken as representative of any given color-normal observer. A number of
factors underlie the variability in color matching. Stiles and Burch carefully measured
color-matching functions for 49 observers using 10° fields.”™” Webster and MacLeod
analyzed individual variation in these color-matching functions.'” They identified six
primary factors that drive the variation in individual color matches. These are macular
pigment density, lens pigment density, amount of rod intrusion into the matches {discussed
shortly), and variability in the absorption spectra of the L, M, and S cone photopigments.

Lens pigment density is known to increase over the life span of an individual, resulting
in systematic differences in color-matching functions between populations of different
ages.'"™ The nature of the mechanisms underlying the variability in cone photopigment
absorption spectra is a matter of considerable current interest.
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Color-Deficient and Color-Anomalous Observers. Some individuals require only two (or
in rare cases only one) primaries in the color-matching experiment. These individuals are
referred to as color-deficient or color-blind observers. Most forms of color deficiency can
be understood by assuming that the individual lacks one {or more) of the normal three
types of cone photopigment. For these individuals, use of standard color coordinates will
produce acceptable results, since a match for all three cone types will also be a match for
any subset of these types. In very rare cases, an individual has no cones at all and the
vision of such an individual is mediated entirely by rods. A second class of individuals are
trichomatic but set color matches substantially different from color-normal observers.
These individuals are referred to as color anomalous. The leading hypothesis about the
‘cause of color anomaly is that the individuals have photopigments with spectral
sensitivities substantially different from individuals with normal color vision.' Our
development of colorimetry can be used to tailor color specification tor color-anomalous
individuals if their color-matching functions are known. Estimates of the cone sensitivities
of color-anomalous observers are available.”” Simple standard tests exist for identifying
color-blind and color-anomalous individuals. These include the I[shihara pseudo-
isochromatic plates'®® and the Farnsworth 100 hue test."™

Cone Polymorphism. Recent genetic and behavioral evidence suggests that there are
multiple tvpes of human L and possibly human M cone photopigments.'®™*” This .
possibility is referred to as cone polymorphism. Moreover, Neitz. Neitz, and Jacobs'®
~argue that some individuals possess more than three types of cone photopigments. This
claim challenges the conventional explanation for trichromacy and is controversial. The
interested reader is referred directly to the current literature. Because the purported
difference in spectral sensitivity of different subclasses of human L and M cone
shotopigments is quite small, the possibility of cone polymorphism is not of practical
importance for most applications. The most notable exception Is in certain psychophysical
experiments where precise knowledge of the relative excitation of different cone classes is

crucial.,

Retinal Inhomogeneity. Most standard colorimetric systems are based on color-matching.
experiments where the bipartite field was small and viewed foveally. The distribution of .
photoreceptors and of inert visual pigment is not homogeneous across the retina. Thus
color-matching functions that are accurate for the fovea do not necessarily describe color
matching in the extra fovea. The CIE 1964 10° XYZ color-matching functions are designed
for situations where the colors being judged subtend a large visual angle. These functions

are provided in Table 3. |

Rod Intrusion. Both outside the fovea and at low light levels, rods can play a role in
color matching. Under conditions where rods play a role. there is a shift in the
‘color-matching functions due to the contribution of rod signais. Wyszecki and Stiles’
discuss approximate methods for correcting standard sets of color-matching functions when

rods intrude into color vision.

Chromatic Aberrations. By some standards, even the small (roughly 2°) fields used as
the basis of most color coordinate systems are rather coarse. The optics of the eye contain
chromatic aberrations which cause different wavelengths of light to be focused with
different accuracy. These aberrations can cause a shift in the color-matching functions if
the stimuli being matched have a fine spatial structure. Two stimuli which are metameric at
low spatial freau&ncies may no longer be so at high spatial frequencies. Such effects can be
quite. large.”*® It is possible.to correct.color coordinates. for chromatic aberration 1if
enough side information is available. Such correction is rare in practice but can be
important for stimuli with a fine spatial structure. Some guidance is available from the
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literature.®* Another strategy availabie in the laboratory is to correct the stimulus for
the chromatic aberration of the eye.'" '

Pigment Self-Screening. One of the factors that determines the cone sensitivities 1s that

the photopigment itself acts as an inert filter. In any individual cone. the -spectral
properties of this filter depend on the fraction of photopigment that has recently been

isomerized by light quanta. As the overall intensity of the stimulus changes. this fraction

changes, which changes the cones’ sensitivity functions. Although such shifts may generally

be neglected, they can become quite important under circumstances where very intense
adapting fields are employed.™

Calculating the Effect of Errors in Color-Matching Functions. Given that there is some

‘variation between different standard estimates of color-matching functions. between the
- color-matching functions of different individuals, ‘and between the color-matching func-

tions that mediate performance for different viewing conditions, it is of interest to
determine whether the magnitude of this variation is of practical importance. There 1s
probably no general method for making this determination, but here we outline one
approach.

Consider the case of rendering a set of illuminated surfaces on a color monitor. If we
know the spectral power distribution of the monitor’s phosphors it is possible to compute
the appropriate weights on the monitor phosphors to produce a light metameric to each
illuminated surface. The computed weights will depend on the choice of color-matching
functions. Once we know the weights, however, we can find the CIE 1976 L*u*v* (or CIE
1976 L*a*b*) coordinates of the emitted light. This suggests the following method to
estimate the effect of differences in color-matching functions. First, we compute the CIE
1976 L*u*v* coordinates of surfaces rendered using the first set of color-matching
functions. Then we compute the corresponding coordinates when the surfaces are rendered
using the second set of color-matching functions. Finally, we compute the AL7, difference
between corresponding sets of coordinates. It the AEX are large, then the differences
between the color-matching functions are important for the rendering application.

We have performed this calculation for a set of 462 measured surfaces’' rendered
under CIE Illuminant Dgs. The two sets of color-matching functions used were the 1931
CIE XYZ color-matching functions and the Judd-Vos modified XYZ color-matching
functions. The monitor phosphor spectral power distributions were measured by the
author.!'' The results are shown in Fig. 17. The plot shows a histogram of the ALY,
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FIGURE 17 Effect of changes in color matching
functions. The plot shows a histogram of the AEY,
" differences between two sets of lights, each of which
is a monitor rendering of the same set of illuminated

 surfaces. The two renderings were computed using
different sets of color matching functions.



3
e

COLORIMETRY 26.41

differences. The median difference is 3.1 AE# umits. This difference is quite close to
discrimination threshold and, for most applications, the differences between the two sets of

color-matching functions will probably not be of great consequence.

Color Appearance

Conrtext Effects. A naive theory of color appearance would predict that once we know
the tristimulus coordinates of a light, it would be straightforward to predict its color

appearance. Unfortunately, such a theory does not work. The color appearance of a light

~ depends not only. on its. spectral properties but also on the context in which it is seen. By
context, we refer to other attributes of the light itself, such as its size, shape. and temporal

profile, to the properties of the lights that surround the light of interest, and to the adapted
state of the observer. The adapted state of the observer is presumabiy determined by the
stimuli viewed in the recent past. Some are even willing to argue that more intangible
factors, such as the observer’s expectations, also influence color appearance.

Wyszecki® and Evans® each review color context effects. Among the context phenome-
non given the most study are color contrast, where the properties of nearby image regions
affects the color appearance of a test. and observer adaptation, where the images that an
observer has viewed influences his or her judgment of a subsequently viewed test.
Empiricallv. adaptation and contrast are somewhat difficult to separate. Indeed, the two
are difficult to separate conceptually, since adaptation can be viewed as a delayed contrast
effect and contrast can be considered as rapidly acting adaptation. Although phenomena
with names such as simultaneous color contrast, successive color contrast, color assimila-
tion, and observer adaptation are often discussed and considered separately, there is some
potential for clarity by considering the possibility that they are all manifestations of similar
Processes. |

The fact that the color-matching experiment, from which color coordinates are derived,
does not predict color appearance may seem surprising. After ail. the fundamental
judgment of the color-matching experiment concerns the identity of color appearance.
Recall, however, that the test and matching regions are always juxtaposed, so that they are

seen in identical context. As long as the context in which two lights are seen is identical,

color coordinates do correctly predict color appearance. ,
Context effects make color reproduction difficult. If we wish to reproduce an image so

that it appears identical to another image when the two will be ‘viewed m different
contexts, we must take the effect of context into account. This sort of consideration is of
particular importance in color photography and television, since in these cases the
reproduced image has a vastly different size from the image 1t depicts. > *° Two points
are worth noting. First, if we can arrange two images so that they have identical tristitmulius
coordinates at each image location, then we can be assured that each presents the same

context to the viewer and that the two images will match. This principle is the basis of

many applied color reproduction systems and is appropriate when the source and
destination images have roughly equal sizes and will be viewed under similar conditions.®
Second, tristimulus coordinates are still of great importance when the context does vary.
This is because the persistence law of color matching tells us that the context itself may be
specified through the use of tristimulus coordinates. We do not need to specify the context
in terms of the full spectral power distributions of the lights. Thus the basic color-matching
experiment provides the foundation on which we can build theornes ot color appearance. A
theory that successfully links tristimulus coordinates with some sort of appearance
coordinates, as a function of the viewing context, would provide the quantitative
framework necessary to take context into account in colorimetric applications. The search

for such a theory has-been-at the center of color.science. since .at. least .the time of von

Kries.! Wyszecki® and Wyszecki and Stiles’ review of the measurement of the effect of
context on color appearance. |
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Color Constancy. A hypothesis about the origin of color context effects is that the visual
system attempts to discount the properties of the illuminant so that color appearance
is correlated with object surface reflectance. To the extent that the visual system does
this, it is referred to as color constant. It has long been known that the human visual
system exhibits partial color constancy.*'*' The phenomenon of color constancy
suggests that the spectral power distribution of the illuminant is an lmpﬂrtant parameter
of the viewing context for predicting color appearance.'’® Land’s retinex theory was an
early account of how this parameter might affect appearance.''”""” More recent work

has examined the relation between physics-based cnlor constancy algorithms and color

appearance.’ T ?9-3[ 116,120

Sensitivity Regulation. Anotber framework for thinking about color context effects has
to do with the visual system’s tendency to adjust its sensitivity to the ambient viewing
conditions. If, as seems likely, the signals mediating the visual system’s sensitivity also
mediate color appearance, then we would expect senmtmty regulation to cause context
effects in color appearance. Regulation of visual sensitivity is discussed in Chap. 00. It 1s
possibie that similar mechanisms could subserve both maximization of sensitivity and the

achievement of color constancy.

Brightness Matching and Photometry

The foundation of colorimetry is the human observer’s ability to judge i1dentity of color
appearance. It is sometimes of interest to compare certain perceptual attributes of lights
that do not, as a whole, appear identical. In particular, there has been a great deal of
interest in developing formulae that predict when two lights with different relative spectral

power distributions will appear equally bright. Colorimetry provides a partial answer to

this question, since two lights that match in appearance must appear equally bright.
Intuitively, however, it seems that it should be possible to set the relative intensities of any
two lights so that they match in brightness.

In a heterochromatic brightness-matching experiment, observers are asked to scale the
intensity of a matching light until its brightness matches that of an experimentally
controiled test light. Although observers can perform the heterochromatic brightness-
matching task, they often report that it is difficult and their matches tend to be highly
variable.” For this reason, more indirect methods for equating the overall effectiveness of
lights at stimulating the visual system have been developed. The most commonly used
method is that of flicker photometry. In a flicker photometric experiment, two lights of
different spectral power distributions are presented alternately at the same location. At
moderate flicker rates (about 20 Hz), subjects are able to adjust the overall intensity of one
of the lights to minimize the apparent flicker. The intensity setting that minimizes apparent
flicker is taken to indicate that the two lights match in their effectiveness as visual stimull.
Two lights equated in this way are said to be equiluminant or to have equal lummam:e
Other methods are available for determining when two lights have the same luminance.’

- Because experiments for determining when lights have the same luminance obey
linearity properties similar to Grassmann’s laws, it is possible to determine a luminous
efficiency function that allows the assignment of a luminance value to any light. A
luminous efficiency function specifies, for each sample wavelength, the relative contribu-
tion of that wavelength to the overall luminance. We can represent a luminous efficiency
function as an N, dimensional row vector v. Each entry of the matrix specifies the relative
luminance of light at the corresponding”sample ‘wavelength.-The luminance v of an
arbitrary spectral power distribution b may be cnmputed by the equation

v =vb | 34
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The CIE has standardized four luminous efficiency functions. The most commonly used
of these is the standard photopic luminous efficiency function. This is identical to the 1931
XYZ 7 color-matching function. For lights that subtend more than 4° of visual angle, a
luminous efficiency function given by the 1964 10° XYZ y color-matching function is
preferred. More recently, the Judd-Vos modified y color-matching function has been made
a supplemental standard.'* A final standard luminous efficiency function is available for
use at low light levels when the rods are the primary functioning photoreceptors. The
symbol V, is often used in the literature to denote luminous efficiency functions. Note that
Eq. (34) allows the computation of luminance in arbitrary units. Chapter 24, Vol. 2 of this
Handbook discusses standard measurement units for luminance.

It is important to note that luminance is a construct derived from flicker photometric -
and related experiments. As such, it does not directly predict when two lights will be
judged to have the same brightness. The relation between luminance and brightness is
quite complicated and is the topic of active research.”'" It is also worth noting that there is.
considerable individual variation in flicker photometric judgments, even among color-
normal observers. For this reason, it is common practice in psychophysical experiments to
use flicker photometry to determine isoluminant stimuli for individual subjects.

Opponent Process Model

We conclude with remarks on what mechanisms might process color information after the
initial transduction of light by the cone photoreceptors. Figure 18 shows a framework that
in its general form underlies most current thinking. This framework is generally referred to
as an opponent process model. It was first proposed in its modern form by Jameson and
Hurvich.!Z'** The first stage of the model is cone photoreceptor transduction. We have
already considered the implications of this stage in some detail. The 1., M, and S cone
responses are indicated by the triangles in the figsure. After transduction, the oppenent
process model postulates that the outputs of the cones at each location are recombined to
produce a luminance response and two chromatic responses. This recombination is often
referred to as an opponent transformation, because the two chromatic responses are
postulated to receive excitatory responses from some classes of comes and inhibitory
" responses from other classes of cones. The luminance and chromatic responses are
illustrated by squares in the figure. We have denoted the luminance responses as “Lum”
and the two chromatic responses as “R/G” and “B/Y,” respectively. The opponent
transformation itself is illustrated by a network of connections.
The opponent process framework provides a way to understand the results of flicker-

FIGURE 18 Opponent process framework for understanding color vision. See descrip-
tion in the text. -
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photometric and related experiments. Within the opponent process framework, these
experiments are explained as indicating a judgment that depends solely on the luminance

_response, separately from the two chromatic responses. This interpretation is lent credence
by the fact that observers can also make judgments that may be interpreted as tapping
solely the chromatic mechanisms.'*'?*"'*” The opponent process framework has also been
employed heavily to account for the effect of context on color appearance.’>'**"'** The idea
is that the parameters of the opponent transformation depend on the viewing context. This
is illustrated in the figure by the heavy arrow between the annulus that surrounds the test
light and the network representing the transformation.

Although the opponent process model provides a useful framework, a number of
difficult issues need to be resolved before the framework may be used to extend current
colorimetric standards. One major difficulty is that the details of the opponent transforma-
tions required to explain different classes of data are not in good agreement. A second
difficulty is that physiological data do not seem to support such ‘a simple conception of
biological mechanisms that mediate the processing of color information.****

26.5 APPENDIX A. MATRIX ALGEBRA

This appendix provides a brief introduction to matrix algebra. The development
emphasizes the aspects of matrix algebra that are used in this chapter and is somewhat -
idiosyncratic. In addition, we do not prove any of the results we state. Rather, our
intention is to provide the reader unfamiliar with matrix algebra with enough information

to make this chapter self-contained.

Basic Notions

Vectors and matrices. A vector is a list of numbers. We use lowercase bold letters to
represent vectors. We use single subscripts to identify the individual entries of a vector.
The entry a, refers to the ith number in a. We cali the total number of entries in a vector
its dimension. - - |
A matrix is an array of numbers. We use uppercase bold letters 1o represent matrices.
We use dual subscripts to identify the individual entries of a matrix. The entry 4, refers to
the number in the ith row and jth column of A. We sometimes refer to this as the ijth
entry of A. We call the number of rows in a matrix its row dimension. We call the number
of columns in a matrix its column dimension. We generally use the symbol N to denote
dimensions. o .
Vectors are a special case of matrices where either the row or the column dimension 1s
1. A matrix with a single column is often called a'column vector. A matrix with a single
row is often called a row vector. By convention, all vectors used in this chapter should be
 understood to be column vectors unless explicitly noted otherwise.
. | It is often convenient to think of a matrix as being composed of vectors. For example. if
| a matrix has dimensions N. by N,, then we may think of the matrix as consisting of N,
column vectors, each of which has dimension .. :
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Addition and Mulrfpﬁ&arian. A vector may be multiplied by a number. We call this
scalar multiplication. Scalar multiplication is accomplished by multiplying each entry of
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the vector by the number. If a is a vector and b 1s a number, then b = ab is a vector whose
entries are given by ¢; = b;a.

Two vectors may be added together if they have the same dimension. We call this
vector addition. Vector addition is accomplished by entry-by-entry addition. If a and b are
vectors with the same dimension, the entries of c=a +b are given by ¢, =4; + b,

Two matrices may be added if they have the same row and column dimensions. We call
this matrix addition. Matrix addition is also defined as entry-by-entry addition. Thus, if A
and B are matrices with the same dimension, the entries of C=A +B are given by
¢; = a; + b,. Vector addition is a special case of matrix addition.

A vector may be muitiplied by a matrix if the column dimension of the matrix matches
" the dimension of the vector. If A has dimensions N, by N, and b _has dimension M., then
¢= Ab is an N. dimensional vector. The ith entry of c is related to the entries of A and b

by the equation.
Ne
¢, =D, azb, (A.1)
j=1

It is also possible to multiply a matrix by another matnx if the column dimension of the
first matrix matches the row dimension of the second matrix. If A has dimensions N, by N
and B has dimensions N by NV, then C=AB is an N, by N, dimensional matrix. The k"
entry of C is related to the entries of A and B by the equation

N
Cy = Z ar‘jbﬁ: (Az)
j=1

By comparing Egs. (A.1) and (A.2) we see that multiplying a matrix by a matrix 1s a
shorthand for multiplying several vectors by the same matrix. Denote the N, columns of B
by b,,...,by and the N, columns of C by ¢,...,¢y. [f C=AB, then ¢, =Ab;, for
k=1,...,N. |

It is possible to show that matrix multiplication is associative. Suppose we have three
matrices A, B, and C whose dimensions are such that the matrix products (AB) and {(BC)
are both well defined. Then (AB)C = A(BC). We often write ABC to denote either
product. Matrix multiplication is not commutative. Even when both products are well

defined, it is not in general true that BA is equal to AB.

‘Matrix transposition. The transpose of an N, by N, matrix A i1s an N, by N, matrix B
whose ijth entry is given by b, =a, We use the superscript “T” to denote matrix

transposition: B = A”. The identity (AB)" = BT A7 always holds.

Special Matrices and Vecrors. A diagonal matrix D is an N, by N, matrix whose entnes
- d;; are zero if { #j. That is. the only nonzero entries of a diagonal matrix lie along its main
diagonal. We refer to the nonzero entries of a diagonal matrix as its diagonal entries.

A square matrix is a matrix whose row and column dimensions are equal. We refer to
the row and column dimensions of a square matrix as its dimension. -

An identity matrix is a square diagonal matrix whose diagonal entries are all one. We .
use the symbol I to denote the N by N identity matrix. Using Eq. (A.2) it is possible to
show that for any N, by N, matrix A, Al, =I[yA=A.

An orthogonal matrix U is a square matrix that has the property that Uv'u=0uu’ =1,,

where N is the dimension of U. |
A zero vector is a vector whose entries are all zero. We use the symbol 0y to denote the

N dimensional zero vector.
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Linear Models

Linear Combinations of Vectors. Equation (A.l) is not particularly intuitive. A more
useful way to think about the effect of multiplying a vector b by matrix A 1s as follows.
Consider the matrix A to consist of N, column vectors a,, ...,y . Then from Eq. (A.1) we
have that the vector ¢= Ab may be obtained by the operations of vector addition and

scalar multiplication by |
{:=ﬂlb1+'”+aﬁcbﬁc (A..?J)

where the numbers b, .. ., by_are the entries of b. Thus the effect of multiplying a vector
by a matrix is to form a weighted sum of the columns of the matrix. The weights that go
into forming the sum are the entries of the vector. We call any expression that has the
form of the right-hand side of Eq. (A.3) a linear combination of the vectors a,,. .., ay.

Independence and Rank. Consider a collection of vectors a,,...,ay. If no one of these
vectors may be expressed as a linear combination of the others, then we say that the

collection is independent. We define the rank of a collection of vectors ay,...,ay as the
largest number of linearly independent vectors that may be chosen from that collection.
We define the rank of a matrix A to be the rank of the vectors a,,. .., ay that make up its
columns. It may be proved that the rank of a matrix is always less than or equal to the
minimum of its row and column dimensions. We say that a matrix has full rank 1f 1ts rank 1s
exactly equal to the minimum of its row and column dimensions.

Linear Models. When a vector ¢ has the form given in Eq. (A.3), we say that ¢ lies within
a linear model. We call N, the dimension of the linear model. We call the vectors
a,...,ay the basis vectors for the model. Thus an N, dimensional linear model with basis
vectors a,, ..., ay_contains all vectors ¢ that can be expressed exactly using Eq. (A.3) for
some choice of numbers b,, ..., by. Equivalently, the linear model contains all vectors ¢
that may be expressed as ¢= Ab where the columns of the matrix~A are.the vectors
a,,...,2y and b is an arbitrary vector. We refer to all vectors within a linear model as the

<«

subspace defined by that model.

Simultaneous Linear Equations

Matrix and Vector Form. Matrix multiplication may be used to express a system of
simultaneous linear equations. Suppose we have a set of N, simultaneous linear equations
in N, unknowns. Call the unknowns b,,..., by. Conventionally, we would write the

equations in the form
ayby+--- +H1N¢bﬁc=cl

ﬂz1b1 s R +ﬂ2Nchc E-CZ (A.q')

ﬂﬂrlbl T +aNrNchc=cHr

where the g; and ¢; represent known numbers. From Eq. (A.1) it is easy to see that we may
rewrite Eq. (A.4) as a matrix multiplication:

Ab=c (A.5)




COLORIMETRY  26.47

In this form, the entries of the vector b represent the unknowns. Solving Eq. (A.5) for b is
equivalent to solving the system of simultaneous linear equations in Eq. (A.4). '

Solving Simultaneous Linear Equations. A fundamental topic in hnear algebra is finding
solutions for systems of simultaneous linear equations. We will rely on several basic resuits
in this chapter, which we state here.

When the matrix A is square and has full rank, it is always possible to find a unique
matrix A-! such that AA~' = A~'A =1,. We call the matrix A™' the inverse of the matrix
A. The matrix A" is also square and has full rank. Algorithms exist for determining the

“inverse of a matrix and are provided.by. software packages that support matrix algebra.

When the matrix A is square and has full rank, a unigue solution b to Eq. (A.5) exists.
This solution is given simply by the expression b = A7'c. When the rank of A is less than
its row dimension, then there will not in general be an exact solution to Eq. (A.5). There
will. however, be a unique vector b that is the best solution in a least-squares sense. That
is, there is a unique vector b that minimizes the expression X;=; ((Ab); —¢,)*. We call this
the least-squares solution to Eq. (A.5). Finding the least-squares solution to Eg. (A.5) 1s
often referred to as linear regression. Algorithms exist for performing linear regression and
are provided by software packages that support matrix algebra.

A generalization of Eq. (A.5) is the matrix equation

AB=C | (A.6)

where the entries of the matrix B are the unknowns. From our interpretation of matrix:
multiplication as a shorthand for multiple multiplications of a vector by a matrix, we can
see immediately that this type of equation may be solved by applying the above analysis In
a columnwise fashion. If A is square and has full rank, then we may determine B uniquely
as A~'C. When the rank of A is less than its row dimension. we may use regression to
determine a matrix B that satisfies Eq. (A.6) in a least-squares sense. It is also possibie to
solve matrix equations of the form BA = C where the entries of B are again the unknowns.
An equation of this form may be converted to the form of Eq. (A.6) by applying the
transpose identity (discussed earlier in this appendix). That ts. we may find B by solving
the equation ATB” = C” if A” meets the appropriate conditions. |

Null Space. When the column dimension of a matrix A is greater than its row dimension
N,, it is possible to find nontrivial solutions to the equation

Ab=0, (A7)

Indeed, it is possible to determine a linear model such that all vectors contained in the
model satisfy Eq. (A.7). This linear model will have dimension equal to the difference
between N, and the rank of the matrix A. The subspace defined by this linear model is
called the null space of the matrix A. Algorithms to find the basis vectors of a matrix’s null
space exist and are provided by software packages that support matrix algebra.

Singular Value Decomposition | | ..

The singular value decomposition allows us to write any N, by N, matrix X in the form
X =UDV’ (A.8)

where U is an N, by N, orthogonal matrix, D is an N, by N; diagonal matrix, and V is an N.
by N. orthogonal matrix.* The diagonal entries of D are guaranteed to be nonnegative.
Some of the diagonal entries may be zero. By convention, the entries along this diagonai
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] |

FIGURE A-1 The figure depicts the singular value decomposition (SVD)
of an N by M matrix X for three cases N.>N,, N.=N,, and N, <N..

are arranged in decreasing order. We illustrate the singular value decomposition in Fig.
A.l. The singular value decomposition has a large number of uses in numerical matrix
algebra. Routines to compute it are generally provided as part of software packages that

support matrix algebra.
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