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The brain processes sensory and motor information in multiple
stages. At each stage, neural representations of stimulus features or
motor commands are manipulated. Information is transmitted
between neurons by trains of action potentials (spikes) or, less fre-
quently, by graded membrane potential shifts. The ‘neural code’
refers to the neural representation of information, and its study can
be divided into three interconnected questions. First, what is being
encoded? Second, how is it being encoded? Third, with what preci-
sion? Neurophysiologists initially approached these questions by
measuring stimulus–response curves, using mainly static stimuli.
The stimulus (x-axis) indicates what is being encoded, the response
(y-axis) and the curve’s shape determine how it is being encoded,
and error bars indicate the code’s precision. By using different stim-
ulus ensembles and different response measures, one can begin to
answer questions one and two. The precision of the code is implic-
it in the variance but has also been addressed directly by quantify-
ing how well stimuli can be discriminated based on neural responses.

Measuring neural reliability is important for many reasons relat-
ed to how the three questions interconnect. The crucial first ques-
tion cannot be answered directly but will always depend on the
investigator’s intuition and experience in choosing relevant stimulus
parameters. Moreover, how such parameters vary in the chosen stim-
ulus ensemble can lead to different results. For example, an audito-
ry physiologist interested in frequency tuning might obtain different
results from pure tones versus white noise. One way to validate the
choice of stimulus parameters and ensemble is to compare behav-
ioral performance to the best performance possible by an ideal
observer of the neural data. A match between behavioral and neur-
al discrimination suggests that the chosen encoding description is
relevant and perhaps directly involved in generating behavior1–3.

Information theory, the most rigorous way to quantify neural
code reliability, is an aspect of probability theory that was devel-
oped in the 1940s as a mathematical framework for quantifying
information transmission in communication systems4. The theo-
ry’s rigor comes from measuring information transfer precision
by determining the exact probability distribution of outputs given
any particular signal or input. Moreover, because of its mathe-

matical completeness, information theory has fundamental the-
orems on the maximum information transferrable in a particular
communication channel. In engineering, information theory has
been highly successful in estimating the maximal capacity of com-
munication channels and in designing codes that take advantage of
it. In neural coding, information theory can be used to precisely
quantify the reliability of stimulus–response functions, and its use-
fulness in this context was recognized early5–8.

We argue that this precise quantification is also crucial for deter-
mining what is being encoded and how. In this respect, researchers
have recently taken greater advantage of information-theoretic
tools in three ways. First, the maximum information that could
be transmitted as a function of firing rate has been estimated and
compared to actual information transfer as a measure of coding
efficiency. Second, actual information transfer has been measured
directly, without any assumptions about which stimulus parame-
ters are encoded, and compared to the necessarily smaller estimate
obtained by assuming a particular stimulus–response model. Such
comparisons permit quantitative evaluation of a model’s quality.
Third, researchers have determined the ‘limiting spike timing pre-
cision’ used in encoding, that is, the minimum time scale over
which neural responses contain information. We review recent
work using some or all of these calculations9–16, focusing on the
goodness of simple linear models commonly used to describe how
sensory neurons encode dynamic stimuli. We conclude that these
models often capture much of the transmitted information, and
that each spike carries information.

Information-theoretic calculations also show that certain neu-
rons use precise temporal (millisecond) spiking patterns in
encoding. Precise spike timing had previously been identified in
the auditory system, where it is important for sound localiza-
tion17 and echolocation18, and also more recently elsewhere in
the CNS19. The interesting question is whether spike timing pre-
cision is greater than necessary to encode the stimulus. New
information-theoretic techniques address that question by quan-
tifying spiking precision and comparing it to the minimal pre-
cision required for encoding in a variety of sensory systems2,9,13–16.
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Information theory quantifies how much information a neural response carries about the stimulus. This
can be compared to the information transferred in particular models of the stimulus–response function
and to maximum possible information transfer. Such comparisons are crucial because they validate
assumptions present in any neurophysiological analysis. Here we review information-theory basics before
demonstrating its use in neural coding. We show how to use information theory to validate simple stimu-
lus–response models of neural coding of dynamic stimuli. Because these models require specification of
spike timing precision, they can reveal which time scales contain information  in neural coding. This
approach shows that dynamic stimuli can be encoded efficiently by single neurons and that each spike
contributes to information transmission. We argue, however, that the data obtained so far do not suggest
a temporal code, in which the placement of spikes relative to each other yields additional information.
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We contrast the role of precise spiking in encoding
dynamic stimuli to its potential role in situations
where the stimuli do not vary rapidly in time, so that
precise spike patterns could carry additional infor-
mation not related to stimulus dynamics20. Such
temporal codes are suggested by data from single
neurons and neuron ensembles21–24.

General concepts
Information theory measures the statistical significance of how
neural responses vary with different stimuli. That is, it determines
how much information about stimulus parameter values is con-
tained in neural responses. If stimulus A yields a mean response
rA and stimulus B yields rB, information in the response could be
measured as the difference between rA and rB. However, two neu-
rons with the same differential response (rA – rB) may have differ-
ent variability in their individual trial responses. Then the
information obtained per trial is greater for the neuron with less
variability. If response variability is described by the variance, then
neuronal information can be described by the signal detection
measure d′, which equals the differential response normalized by
response variances25. However, this is rigorously correct only if the
distribution of response probabilities given particular stimulus
conditions (conditional probability distribution) is completely
specified by their mean and variance, as for Gaussian distributions.

The use of information as a statistical measure of significance is
an extension of this process. Information theory allows one to con-
sider not only response variance, but exact conditional probabili-
ty distributions. In the example above, we can calculate conditional
probabilities of various responses given stimulus condition A,
p(r|sA), and again given stimulus condition B, p(r|sB), and then use
information theory to calculate a distance between these two dis-
tributions. This analysis can be extended to a situation with many
stimulus conditions {sA, sB, sC, …} to measure how the distribution
of responses to any particular stimulus condition X is different
from all other conditional distributions that can be obtained. This
is done by comparing the conditional probability p(r|sX) to the
unconditional probability p(r) (the probability of the response
under any stimulus condition) using the equation for I(R, sX) (Box
1). Plotting I(R, sX) as a function of stimulus condition X allows
us to replace the traditional stimulus–response curve with a stim-
ulus–information curve that shows how well an ideal observer
could discriminate between the stimulus conditions based on a

single response trial (schematic example, Fig. 1; for actual examples,
see refs. 8, 26, 27). The average information for all stimulus con-
ditions I(R, S) is then obtained by including the probability of
occurrence of each condition (Box 1). In an experiment, stimulus
condition probabilities are usually controlled and often equal. In
such cases, I(R, S) is obtained by summing all I(R, sX) for all pos-
sible stimulus conditions X and dividing by the total number of
stimulus conditions. In natural situations, each stimulus condi-
tion has a different probability of occurrence, which might give
very different mean information values. Information-theoretic val-
ues are strictly positive and traditionally measured in bits, repre-
senting the minimum length of a string of ‘zeros’ and ‘ones’
required to transmit the same information.

A second advantage is that information theory can be used to
calculate maximal rates of information transfer. This measure,
which is estimated from the set of all possible neuronal responses,
is used to evaluate neuronal precision. For this purpose, we need
to introduce entropy, which measures the information required to
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Fig. 1. A mock neuron is tested with different stimulus
intensities (from 0 to 10). For each stimulus intensity, it
reveals a Gaussian distribution of spike responses around a
mean value, ranging from 20 Hz for weak up to 80 Hz for
strong stimuli. (a) Complete response distributions for each
stimulus intensity; darker values indicate higher probabilities.
(b) Summing these values along the horizontal lines leads to
the overall response probability distribution (right), assum-
ing that each stimulus is equally likely to occur. (c)
Information theory allows one to replace the traditional
stimulus–response curve (mean ± s.d.) with an information
curve (thick line) that indicates how well different values of
the stimulus are encoded in the response. The information
calculation is based not only the mean value of the response
but also on its complete distribution at each stimulus condi-
tion. The distribution of responses obtained for this mock
neuron at the middle of its operating range is more unique
than the distribution of responses obtained for other stimu-
lus values, leading to maximal values of information in that
range.

I (R, sx) = Σ p(ri sx) log2

p(ri sx)
p(ri)i

I (R, S) = Σ Σ p(sj)p(ri sj) log2

p(ri sj)
p(ri)i j

p(ri)       Probability that neural response takes the value ri

p(sj)       Probability that stimulus condition takes the value sj

p(ri sj)       Probability that neural response takes the value ri

                when stimulus condition sj is presented
(conditional probability)

Information about stimulus condition sx:

Average information obtained from all stimulus conditions:

Box 1.  Information theory and significance of neuronal encoding.
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code a variable with a certain probability distribution by charac-
terizing how many states it can assume and the probability of each.
For example, a distribution with few conditions (such as light on
and light off) contains less information (smaller entropy) than a
distribution with many conditions (such as natural scenes). A dis-
tribution in which one condition is very probable and others very
improbable has less entropy than a distribution in which all con-
ditions are equally probable. Entropy, like information, is expressed
in bits. The entropy of a distribution of stimulus conditions, H(S)
(Box 2), corresponds to the number of bits required to perfectly
specify all stimulus conditions. Similarly H(R), the entropy of the
neural response, corresponds to the number of bits required to spec-
ify all possible responses under all possible stimulus conditions.
Thus entropy is the information needed to encode all variability,
or equivalently to eliminate all uncertainty about a variable.

Conditional probabilities are also used to calculate conditional
entropies. In neural coding, H(R|S) is the entropy in the neural
response given the stimulus. This variable, called neuronal noise,
measures the uncertainty remaining in the neural response when
the stimulus conditions are known. Similarly, H(S|R), called the
stimulus equivocation, is the entropy remaining in the stimulus once
the neural responses are known. Using Bayes’ theorem, which relates
joint probabilities (probability of a particular stimulus and response
occurring together) to conditional probabilities, one can rewrite the
information equation of Box 1 in terms of conditional entropies
(Box 2). These new equations show that an information channel
can be considered a channel for entropy transfer, in which some of
the original entropy is lost and a different amount of new entropy
is added (Box 2). The entropy of the stimulus H(S) represents the
maximum information that could be encoded, from which the stim-
ulus equivocation H(S|R) is lost. Therefore the information about
the stimulus preserved in the neural response (termed ‘mutual infor-
mation’) is I(R, S) = H(S) – H(S|R). Adding the
neuronal noise H(R|S) to I(R, S) gives the total
neural response entropy, H(R). Therefore I(R, S) is
also H(R) – H(R|S). Note that entropy measures
uncertainty and that information is defined as the
difference of entropies—a reduction of uncertain-
ty. In addition, information measures are symmet-
ric in S and R, so that no causality is implied.

Because H(R) represents the maximal informa-
tion that could be carried by the neuron being stud-
ied, comparing H(R|S) to H(R) gives an estimate
of the neural code’s efficiency. However, H(R) mea-
sured in an experiment still depends on the stim-
uli presented because they affect the range of neural
responses observed. A more precise measure of effi-
ciency is calculated by comparing the information
transmitted by an actual neuron to the maximal
possible response entropy. Similarly, the symmetry

of information measures in S and R can be used to measure how
well the stimulus is being encoded. For example, H(R|S) could be
small in comparison to H(R), but H(S|R) could be large relative to
H(S). In that situation, even though neuronal efficiency is high, the
possible stimulus conditions are not being encoded very well.

A final basic point of information theory is the ‘data processing
inequality’ theorem. Its basis is the somewhat trivial statement that
information cannot be recovered after being degraded. For exam-
ple, consider a neural processing chain where S is encoded by a
first neuron in a set of neuronal responses R1, and R1 is then
encoded by a second set of neuronal responses R2. The data pro-
cessing inequality says that I(S, R1) ≥ I(S, R2). Note that this is
true of all information channels, not just neurons. This theorem

review

Fig. 2. Flow chart of how to measure the channel capacity of a neuron.
The same stimulus is presented n times while the responses Ri are mea-
sured (left). These responses are averaged to obtain the average
response Ravg. The difference between each Ri and Ravg become the noise
traces Ni (middle). These are Fourier-transformed to the noise power
spectra Ni(f) (right), which can be averaged as well. Bottom left, power
spectra of the mean response (red) together with the mean power spec-
tra of the noise (yellow). Bottom right, ratio of these two functions, the
so-called signal-to-noise ratio or SNR, together with the cumulative
information rate. Response and noise data were created in a pseudo-
random way from Gaussian distributions.
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H (S) = — Σ p(si) log2 p(si) Entropy of S

Box 2. Entropy and information.

H (R,S) = —Σ Σ p(si,rj) log2 p(si,ri) Joint entropy of R and S
i j

H (R S) = —Σ p(rj)Σ p(si rj) log2 p(si rj) Conditional entropy of S given R or
stimulus equivocationj

H (R S) = —Σ p(sj)Σ p(ri sj) log2 p(ri sj) Conditional entropy of R given S or
neuronal noisej i

i

Equivalent forms for average information:
I(R, S) = H(R) — H(R S)
I(R, S) = H(S) — H(S R)
I(R, S) = H(R) + H(S) — H(R, S)

i

Avg. power SNR Info rate
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is a cornerstone of the method (below) used to find a lower bound
on the amount of information about a dynamic stimulus trans-
mitted in a neuronal channel.

By their choice of parameters to describe stimulus conditions or
neural responses, and by the more fundamental choice of stimuli,
neurophysiologists make assumptions that affect the information
calculation. For that reason, information values are only applicable
to a particular well-defined experimental context. However, because
information-theoretic methodology allows one to quantify the
accuracy of encoding and calculate maximal values of potential
information transfer, it has become an essential tool to test the
validity of these experimental assumptions.

In practice, it is easier to represent neural responses with min-
imal assumptions about the neural code than it is to find appro-
priate stimuli and the correct parameters to describe them. Neural
responses can be represented with high temporal precision, and,
with enough data, the relationship of any neural response mea-
sure to the stimulus conditions can be evaluated. Information mea-
sures can then be used to determine the limiting spike-timing
precision involved in that particular encoding, for example by cal-
culating the point at which information values stop increasing
when analyzed over progressively shorter time windows. Similar-
ly, information theory can guide the choice of parameters to rep-
resent the information being tested. Below we demonstrate how
to estimate information transfer without making any assumptions
about how the stimulus is encoded. This methodology can be used
to test the validity of stimulus parameters and, more generally, of
the stimulus ensemble, and thus to find the right model describing
the neuron’s stimulus–response function. We suggest that many
parameters should be used initially (a ‘rich’ stimulus ensemble) to
minimize assumptions. One can then search for the subset of para-
meters that most affect the information obtained in response to
particular stimuli, compared to the average information obtained
from all stimuli. We believe this process will lead to future experi-
mental and theoretical breakthroughs.

Information theory and dynamic stimuli
Neuroscientists have recently used information theory to tackle the
problem of characterizing information for continuously time-vary-
ing stimuli. This is difficult because the number of possible stimu-
lus conditions quickly becomes enormous for any neural system
with memory, as neural responses depend not only on the present
stimulus but also on stimulus history. Therefore the stimulus must
be specified as a vector of parameters, describing all preceding stim-
ulus states relevant to the response. For example, if a certain stim-
ulus parameter can have 8 different values, and the response
depends on 7 previous states, suddenly 88 (that is, 16,777,216) dif-
ferent stimulus conditions must be represented. Because of this
dimensional explosion, estimating the probabilities of stimulus and
response is rarely practical. To avoid this problem, neurophysiolo-
gists have used three complementary methods. The first (‘direct’)
method calculates information directly from the neural response
by estimating its entropy, H(R), and neural noise, H(R|S). This
method exactly determines the average information transmitted,
but it does not reveal what aspects of the stimulus are being encod-

ed. For the example in Fig. 1, the direct method would give the exact
average value of the information curve without giving its shape.
Because the direct method does not make any assumptions about
response probability distributions, it also requires a lot of experi-
mental data. The second method is similar to the first, with the
added assumption that the neuronal response amplitudes, expressed
in the frequency domain (see below), have Gaussian probability
distributions. This method, which gives an upper bound for infor-
mation transfer, requires significantly less data because Gaussian
distributions are completely described by their mean and variance.
The third method attempts to calculate information transfer for
each possible stimulus condition to obtain the complete curve in
Fig. 1. It therefore assumes a representation (choice of parameters)

review

Box 3. Entropy and information for Gaussian distribution and channel.

1/ √2πσx
2 • exp(—x 

2 / (2σx
2)

 H(S) = log2(σs√2πe)

 I(S, R) = 
1 

log2(                               )2   
σs

2

σn
21+

 I(S, R) = ∫ log2[1+SNR(f)]df
k

0

Gaussian distribution

mean = 0, variance = σx
2

Gaussian entropy

Gaussian channel                      R= S + N, where S and N are Gaussian and independent.

Gaussian information

Dynamic Gaussian channel

SNR(f) is the signal-to-noise power ratio at frequency f
Signal power at f is given by the variance of the Gaussian signal and is estimated by:
<S(f)S*(f)>
S(f) is the Fourier transform of s(t)
S*(f) is the complex conjugate of S(f)
<> denotes the average over the experimental samples

Fig. 3. Summary diagram for calculation of upper and lower bounds on
information transfer. Top, situation where a stimulus S is corrupted by
additive noise and subsequently fed through an unknown encoder to
result in the response R. The lower bound is obtained with a linear
reverse filter operation. The upper bound is obtained directly by com-
paring average and individual responses.

Info = Σlog2(1+SNR)
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describing the stimulus conditions and a model relating these stim-
ulus conditions to neural responses. This method always gives an
average information rate lower than the actual information calcu-
lated by the direct method. Before describing these methods in
detail, we briefly show how information-theory equations for time-
varying signals (stimulus and response) are simplified when they
are calculated in the frequency domain and the amplitude of each
frequency component of the signal has a Gaussian distribution.

In a dynamic system with memory, probabilities are difficult to
calculate because what happens now depends on what happened
before. Thus all possible neural response and stimulus conditions
must be considered simultaneously. However, this problem is sim-
plified if the stimulus–response relationship depends on the relative
time between their occurrences rather than the absolute time. Prob-
ability distributions describing such signals are called ‘stationary’
(although the signals are still dynamic). One can then use Fourier
transformation to convert signals into a frequency-domain repre-
sentation, that is, transforming probability distributions of signals
at different times into probability distributions of signals at differ-
ent frequencies. This is attractive because signals in the frequency
domain, being the sums of many values collected at different times,
are often statistically independent, unlike signals in the time domain.
In this case, mutual information can be calculated independently
for each frequency and summed to give the overall information.

However, to calculate information at a particular frequency,
one still has to build probability distributions for stimulus and
response amplitudes at that frequency. As in the time domain, this

requires large samples and is thus impractical. If the probability
distributions can be approximated by Gaussian distributions,
though, the situation changes completely. Then the entire proba-
bility distribution can be represented by its mean and variance,
which can be estimated from the data. A case of particular sim-
plicity and theoretical interest is when the response R can be
obtained from a Gaussian stimulus S with zero mean simply by
adding Gaussian noise with zero mean. This case is theoretically
interesting because, for a given variance, the Gaussian distribu-
tion has the maximum possible entropy (see proof in ref. 14, sec-
tion A.13). This property led to a famous formula on information
capacity, defining the maximal information that can be transferred
in an information channel given a particular signal variance, which
Shannon proposed4. This property is also essential to the derivation
of lower and upper information bounds discussed below. The
equations for the entropy of a Gaussian distribution and for the
information of a Gaussian channel (Box 3) depend only on the
variance, σ2, of the distributions, as expected.

Calculating information transfer directly
The direct method is theoretically simple. Although the dimen-
sionality explosion makes it practically impossible to calculate the
joint probability of time-varying stimulus and response, the
responses of single spiking neurons can be limited to strings of
zeros and ones if the time windows used to divide the response are
sufficiently small. Moreover, most possible strings occur rarely.
Thus, one can directly estimate the total entropy of the spiking

review

Fig. 4. An example of reverse reconstruction. A visual interneuron of the fly (H1 cell) was stimulated by a grating moving in front of the animal using
a pseudo-random waveform (upper diagram, red trace). The spike output of the cell (shown in black) follows the velocity signal only roughly. The
impulse response of the reverse filter (right diagram) is negative in time and possesses band-pass characteristics. Applied to the neural response, the
reconstructed or estimated stimulus function comes out as shown in black in the bottom diagram. Except for fast signal deflections, this signal is close
to the stimulus (Haag and Borst, unpublished).
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response, H(R), and the fraction of this entropy attributable to
neuronal noise, H(R|S). Spike train noise is determined by repeat-
ing a dynamic stimulus many times to get the response distribu-
tion under the same stimulus conditions. In this case, one does
not worry about specifying parameters to describe the stimulus or
calculating stimulus probabilities. Practically, however, this esti-
mation is still difficult because one has to be careful when esti-
mating the probabilities of occurrence of each spike response (for
details, see ref. 28). The direct method has been used for dynamic
systems when a lot of data could be obtained15 or with relatively
simple stimuli16. This approach would seem to be the most satis-
fying because it gives a correct information measure, rather than an
upper or lower bound, but it also has some limitations. First, for
both experimental and computational reasons, researchers must
limit the number of dimensions given by the size of the string of
zeros and ones used to describe the response. This string size
depends both on the size of the window used to parse the response
into ones and zeros (the limiting temporal resolution) and on the
length of time examined (memory of the system). Second, the
direct method does not indicate which stimulus aspects are best
represented. Finally, as with all estimates of information, one must
remember that the information obtained depends on the stimu-
lus ensemble. This is probably more obvious in the direct method
than in the model-based method because it condenses a neuron’s
encoding properties to a single number. For this number to rep-
resent the average information transmitted by the neuron, we
would have to sample many natural stimuli so that all possible

responses (and their natural statistics) could be obtained. In prac-
tice, data collection is severely limiting, so we must use simple stim-
uli. Thus, the direct measure is most useful in gauging the goodness
of the lower-bound estimates described below.

Calculating an upper bound on mutual information
The upper-bound calculation is a variant of the direct method that
is used for dynamic stimuli. It assumes that the neuronal response
and neuronal noise have Gaussian probability distributions in the
frequency domain and that neuronal noise is additive. In this situ-
ation, we can define the stimulus S as the mean neuronal response
obtained from many repetitions of identical stimulus conditions
(Box 3). The actual response R is the response on individual trials,
which then equals the mean signal plus a noise term. The noise is
obtained from deviations of each individual response around the
mean. This procedure (Fig. 3) is intended to separate deterministic
aspects of encoding from those considered to be noise. As in the
direct method, one then calculates the information from response
entropy H(R) and neuronal noise entropy H(R|S), but in this case,
both are obtained by simple averaging. This method for calculat-
ing neuronal noise is only valid when mean neuronal response and
neuronal noise defined in this way are statistically independent (in
other words, when the mean response reflects everything that can be
learned about the stimulus). The direct method is more general in
the sense that deviations from the mean response can carry infor-
mation about the stimulus. For example, consider a temporal code
in which the relative position of two spikes encodes the stimulus,
but their absolute temporal position varies. In this case, the mean
response carries no information about the stimulus, and deviations
from the mean contain all the information.

review

Fig. 5. Example of upper and lower bound of information as calculated
from the spike train of a fly motion-sensitive nerve cell (H1 cell). The fly
was stimulated by a moving grating while the spikes were recorded
extracellularly. The lower bound was calculated from the coherence
between the membrane potential and the stimulus velocity, the upper
bound was calculated from the SNR. The upper integration limit was set
to 50 Hz, because higher frequencies were not delivered by the stimula-
tion device. The neural signal is carrying 21–73 bits per s about the stim-
ulus velocity (Haag and Borst, unpublished).

Box 4. Linear reconstruction formulas.
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The upper-bound method, however, estimates information
transmission from significantly less data than the direct method.
Because the upper-bound method assumes that mean response
and noise have Gaussian probability distributions, it requires just
enough data to correctly estimate the variance of the Gaussian
probabilities used to model mean response and neuronal noise
and to verify that the noise distribution is indeed Gaussian or
almost Gaussian. The upper bound calculated by this method is
the theoretical limit of information transmission obtainable from
any input that causes similar power fluctuations in the neuronal
response. This theoretical limit is called the channel capacity. The
actual information may be lower because mean neuronal
response statistics are not necessarily Gaussian (see also section
3.13, ref. 14). If this distribution is Gaussian with equal power at
all frequencies (white noise), then the stimuli are optimally
encoded (proof in appendix A15, ref. 14).

For example (Fig. 2), the mean response (signal) is estimat-
ed from many stimulus repetitions. The signal’s power spectrum
gives the variance at all frequencies. Noise is obtained by sub-
tracting this mean response from each trial. The power spec-
trum of the noise is calculated to obtain the signal-to-noise ratio
(SNR), which is then plugged into the equation for a dynamic
Gaussian channel (Box 3). Information in the spike trains can
still increase in the high-frequency range where SNR is smaller
than one. For small SNR, this calculation must be done careful-
ly. Estimation of SNR, and consequently of information, has a
positive bias because power spectra can only be positive or zero.
Thus, appropriate statistical tests must be used to decide whether
the estimated SNR is significantly different from zero. Only in
this case should cumulative information capacity increase. At
frequencies where the SNR is no longer significantly different
from zero, cumulative mutual information will flatten out. In
Fig. 2, we used the jackknife resampling technique29 to estimate
the power spectra’s significance.

Because the upper-bound method is based on strong assump-
tions, it can estimate information transmitted with much less data
than the direct method. It can be applied both to spiking and non-
spiking neuronal responses. Also, it estimates information trans-
fer for different frequency components of the neuronal response.
When linear models are used to estimate the lower bound, as
described below, one can directly compare these estimates as a
function of frequency to evaluate the model’s quality.

Calculating the lower bound on information transfer
So far, we have calculated average information or, more practi-
cally, its upper bound without making any assumptions about
what stimulus aspects are encoded. Here we describe how to
investigate stimulus encoding by testing different encoding mod-
els. Because these models might not capture all the information,
this gives a lower-bound estimate of information transmitted.
One method of modeling stimulus encoding (‘reverse recon-
struction’) describes how to calculate the best possible stimulus
estimate from the neural responses. This estimate is then used
to calculate the lower bound of information transmitted between
stimulus and response. This method offers some advantages over
the more traditional approach of estimating the response from
the stimulus14,30. In this procedure (Fig. 3), the stimulus signal S
is encoded into response spike trains. A reconstruction algorithm
of choice is then used to estimate S (Sest) from the response R.
Mutual information between S and R is then estimated by cal-
culating the information between S and Sest. From the data pro-
cessing inequality, this information estimate is smaller than or
equal to the information about S that is in R. Thus this proce-
dure gives a lower bound on the information. If S is estimated
well, the resulting lower bound is close to the real information
transmitted about the stimulus. Otherwise, the lower bound is
far from the real information. In this approach, the reconstruc-
tion algorithm models the neural encoding. The lower bound

lets us quantify the neuron’s per-
formance and (by comparison
with the upper bound or direct
estimation) the goodness of our
model. This general methodology
is applicable to any stimulus and
any reconstruction model. Two
progressively more restricted situ-
ations, Gaussian stimuli and use of
a linear reconstruction algorithm,
are of particular interest because
they require significantly less
experimental data. These addi-
tional assumptions can give good
approximations to the actual infor-
mation transmitted (calculated by
the direct method).

First, to take advantage of the
properties of a Gaussian channel,
we use a stimulus with Gaussian
distributions. We define noise as
the difference between S and Sest.
Assuming the noise is Gaussian
and independent of Sest, we then
estimate a lower bound on infor-
mation transmitted by calculating
the information in a channel with
input Sest and output Sest + N (in
Box 3, S = Sest and N = S – Sest). We

review

Table 1. Methods and assumptions of four ways to calculate neural information.

Method of estimation Driving principle Simplifying assumption Further assumption
Lower bound Find ‘best’ Sest from R Gaussian S Linear decoder

I(S,R) → I(S, Sest) Calculate N = S – Sest → Box 4 and actual
→ Equations in Box 3 coherence

Absolute lower Find ‘best’ Sest from R 1) Use Gaussian S
Find smallest I(S′,Sest′) → Equation 3.1 in ref. 31

that would give the same
error as (S – Sest)2

Upper bound Separate R into a Additive noise: If N is Gaussian,
(when all assumptions deterministic and a Rdet = Ravg → Box 3 and expected
are true) random component by N = R – Ravg coherence

repeating S many times I(R, Rdet) → I(R, Ravg)
I(S, R) →I(R, Rdet)

Direct Separate R into a None except temporal
deterministic and a resolution

random component by
repeating S many times

I(S, R) →I(R, Rdet)

S = stimulus, Sest = estimated stimulus, R = response, Ravg= average response, Rdet= deterministic part of the
response, N = noise. All four methods reformulate the problem of finding the mutual information between S and
R, I(S, R), as an equivalent information calculation that is easier to perform.
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can further relax the assumption
of Gaussian noise because we
know that the entropy of any non-
Gaussian noise with the same vari-
ance is smaller than the entropy of
Gaussian noise. In other words,
this lower-bound estimate is most
accurate if the noise is Gaussian,
and the estimate is lower if the
noise probability distribution
deviates from this assumption.

Within this general framework,
the key problem is finding the best
way to estimate the stimulus from
the response. Although this can be
difficult, there are many signal-
processing and systems-analysis
methods for calculating transfor-
mations between two time-varying
signals. Transformations with
memory (history dependence) are
called filters. In linear filters, the
simplest type of memory transfor-
mations, the effect of the stimulus
on the response at one time is
added to the effect at all previous
times. This linear operation in the
time domain is called convolution.
In the frequency domain, convolu-
tion corresponds to simple multi-
plication between corresponding
frequency components of stimulus
and response. Signal processing
methods can be used to calculate
optimal linear filters that transform
R into Sest to minimize the differ-
ence between S and Sest

31. The opti-
mal linear filter is obtained with a
relatively simple formula, almost
identical to the one used to calcu-
late regression coefficients. This
formula is the product of the fre-
quency components of stimulus
and response (also known as their
cross-correlation) divided by the
response power spectra. Reverse
reconstruction (Box 4) is similar to
the process termed ‘reverse corre-
lation’32 (used, for example, to cal-
culate dynamic receptive fields for visual33 or auditory34

interneurons), except that the reverse filter is normalized by
response power.

Note that we define noise relative to the estimated stimulus,
unlike the ‘estimated noise’ in ref. 14, which is defined relative to
the stimulus. In the linear case, effective noise is N = S – Sest/γ2.
Using the effective noise and replacing the stimulus with the esti-
mated stimulus as the signal leads to the same equations (see refs.
30 and 35 for a more detailed derivation of both formulations).

As mentioned above, all information calculations depend on
the choice of stimuli. Therefore, the information transmitted by a
neuron may be smaller in a natural situation than in the laborato-
ry. To calculate a lower bound that is more independent of the stim-
uli, one can use an information measure called the rate-distortion

function35, which is the absolute lower bound of information
obtainable for a particular error. This error can be calculated with
the reverse reconstruction as explained above. Thus, if a similar
error is obtained in natural situations with different stimuli, then
this method provides a more accurate estimate of the lower bound.

Linear reconstruction algorithms have been used almost
exclusively for reverse reconstruction (Table 2). For example 
(Fig. 4), a spiking neuron called H1 was recorded in the visual
system of the fly. The stimulus was a grating moving randomly
back and forth in front of the fly´s eyes (Fig. 4a). Using the for-
mulas in Box 4, an optimal linear reverse filter (green trace, 
Fig. 4b) was calculated based on the cross-correlation between
velocity signal and spike output, divided by spike train power.
Convolving the spike train with this filter gives a stimulus estimate

review

Table 2. Neural information and spike precision in response to dynamic stimuli.

Animal system Method Bits per second Bits per spike High-freq. cutoff
(Neuron) (efficiency) or limiting spike
Stimulus timing
Fly visual10 Lower 64 ∼ 1 ∼ 2 ms
(H1)
Motion

Fly visual15 Direct 81 — 0.7 ms
(H1)
Motion

Fly visual37 Lower and 36 — —
(HS, graded potential) upper
Motion 104

Monkey visual16 Lower and 5.5 0.6 ∼ 100 ms
(area MT) direct
Motion 12 1.5

Frog auditory38 Lower Noise 46 Noise 1.4 ∼ 750 Hz
(Auditory nerve) Call 133 (∼ 20%)
Noise and call Call 7.8 (∼ 90%)

Salamander visual50 Lower 3.2 1.6 (22%) 10 Hz
(Ganglion cells)
Random spots

Cricket cercal40 Lower 294 3.2 > 500 Hz
(Sensory afferent) (∼ 50%)
Mechanical motion

Cricket cercal51 Lower 75–220 0.6–3.1 500–1000 Hz
(Sensory afferent)
Wind noise

Cricket cercal11,38 Lower 8–80 Avg = 1 100–400 Hz
(10-2 and 10-3)
Wind noise

Electric fish12 Absolute 0–200 0–1.2 (∼ 50%) ∼ 200 Hz
(P-afferent) lower
Amplitude modulation
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(Fig. 4c) that matches the original stimulus fairly well, particu-
larly in the slow components of its time course.

Combining the methods
We can now compare these various estimates of information
transfer. When we have enough data to estimate an upper bound,
but not enough for the direct method, we know the true infor-
mation is between the two bounds but we can still attempt to
improve the lower bound to find a better decoding scheme. In
particular, because most experimenters use a linear filter to
approximate decoding, using these comparisons to validate the
decoding model allows us to measure deviations from linearity. If
encoding were truly linear, the direct estimate and lower bound
would be equal. Moreover, if stimuli have Gaussian distributions,
then the upper bound equals the exact information, because the
response signal is then Gaussian and noise is independent of the
signal. We can define an ‘expected’ coherence (see Box 4) as given
by the SNR measured directly from the response train in the esti-
mation of the upper-bound information rate. Deviations of
expected coherence from one are due to the system’s intrinsic
noise. Moreover, using the linear decoding scheme, actual coher-
ence calculated from the lower bound equals expected coherence.
In most cases, however, expected and actual coherence are dif-
ferent. This difference can be used to estimate the system’s degree
of linearity. In particular, if noise is truly independent and the
signal is Gaussian, then differences between expected and actual
coherence accurately measure the system’s non-linearity13,36.

In summary, lower and upper bounds of the information esti-
mate can be derived from a stimulus-response set (see Fig. 3 and
Table 1). From repeated presentation of identical stimuli, one cal-
culates the signal-to-noise ratio (see Fig. 1), converts it to an expect-
ed coherence and uses the formula in Box 4 to determine the upper
bound. The lower bound in the linear decoding case is obtained
using the same formula, but using the actual coherence (Box 4).
The assumptions in each of these steps are summarized in Table 1.

Figure 5 shows an example of actual and expected coherence
as calculated from a visual interneuron of the fly, a so-called HS
cell. In the low-frequency range, up to about 10 Hz, the expected
coherence is about 0.9 on average. Thus about 10% of the missing
coherence (with respect to a perfect representation) is due to
response noise. In this frequency range, actual coherence is about
60%. Thus, another 30% can be attributed to response nonlinear-
ities. For higher frequencies, both measured and expected coher-
ence drop off to asymptote at zero level. In the low-frequency range,
the information estimate is between 1 and 3 bits. Assuming that
signals are independent for each frequency, the total information
rate estimate therefore is between 21 and 73 bits per second37.

What have we learned from information theory? 
We have briefly reviewed the use of methods of systems analysis
and information theory to estimate the precision of the neural
code and the goodness of our models of encoding for dynami-
cal stimuli. The absolute measure of information quantifies the
code’s precision, whereas comparison of lower or upper versus
direct estimates tests the goodness of our neuronal decoding
scheme and therefore of our understanding of neuronal pro-
cessing. However, both absolute and relative measures depend
on the choice of stimulus12,14,16,35,38 (in an obvious example, its
bandwidth). The use of information to measure absolute preci-
sion is therefore subject to the same constraint as any other
method of estimating the neural code’s precision: the choice of
stimulus ensemble. However, because information values are in
absolute units, they can be used to evaluate the effectiveness of

different stimuli. In particular, one can search for stimuli that
give large information values, and we suggest that these ensem-
bles might be most valuable for determining neural encoding
properties. An interesting hypothesis is that stimulus ensembles
with naturalistic properties yield the highest information values,
suggesting that neural processing is optimized to represent nat-
ural stimuli, as found in the auditory system of the frog39.

Not many researchers have yet used information-theory and
systems analysis techniques to characterize neural encoding of
dynamic stimuli (Table 2). Most of them used only a linear
decoding filter to model the stimulus–response function, and
obtained only the corresponding lower-bound estimate of infor-
mation. The linear filters’ forms implied that most neurons could
be thought of as low-pass or band-pass filters. For peripheral
sensory neurons, this result is not particularly striking. More-
over, the high-frequency cutoff for most neurons studied was rel-
atively low, and much higher frequencies are encoded by auditory
neurons, as discussed below. However, these papers go beyond
simply describing neuronal tuning properties. The absolute val-
ues of information revealed the importance of every spike and
the relatively low neural noise. Information measures of around
one bit per spike were found. This suggests that every spike allows
an ideal observer to reduce uncertainty about the stimulus iden-
tity by half. By comparing overall information transfer to maxi-
mum spike train entropy achievable with identical spike rates,
researchers have further quantified this high level of encoding39,40.
The ratio of these numbers can be used to define a coding effi-
ciency (see also ref.14, pp 166–175). In the cricket cercal system,
this coding efficiency is about 50% (Table 2). This efficiency mea-
sure is sensitive to the stimulus. In the frog auditory system, effi-
ciencies of 90% were measured in response to a natural stimulus
ensemble (Table 2)39. Using an upper-bound measure based on
the finding that electric fish P receptors fire only one spike per
cycle of carrier frequency12, another group also found coding
efficiencies of about 50% (Table 2). These measures of coding
efficiency could not be obtained from classical stimulus–response
characterizations. We and others suggest that 50% is a very high
number, considering the high entropy obtainable from consid-
ering any possible spike pattern given a fixed number of spikes.
These results verify that single sensory neurons at the periphery
have high fidelity, as sensory neurophysiologists have long
known41. Note, however, that high fidelity of single neurons does
not necessarily imply high fidelity of stimulus encoding. When
information is compared to source entropy, or when informa-
tion is plotted as a function of stimulus condition, one finds that
only a limited bandwidth of the stimulus is represented and that
when the bandwidth is large, the relative information encoded
compared to the stimulus entropy can be low. In those cases,
joint consideration of neural responses would lead to high stim-
ulus encoding, but this consideration should not consist of sim-
ply averaging responses because this causes information loss.

The other very promising strength of these information-the-
oretic measures is the possibility of calculating the absolute
amount of information transmitted (upper and direct estima-
tion of information) to test the goodness of encoding models. In
all papers with this comparison so far10,15,16,37, linear decoding
only captures a fraction of overall information transmitted, albeit
a large fraction. The information-theoretic methodology allows
one to identify system non-linearities and can validate any non-
linear model investigated in the future. This will help to bridge
the gap between the very quantitative analysis used to describe
linear neurons found at the sensory periphery and the more qual-
itative description of nonlinear neurons such as combination-

review
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sensitive auditory neurons in bats42 and songbirds43 or face-selec-
tive neurons in primates44. This discrepancy results from the dif-
ficulty of systematically deriving nonlinear models from neural
data. On the other hand, nonlinear encoding is arguably more
interesting because it occurs in higher-order neural processing
involved in complex feature extraction.

Spike timing precision and temporal codes
Here we analyze the nature of the neural code. A universal find-
ing in information calculations for dynamic stimuli is the rela-
tively high importance of single spikes, in the sense that the
information per spike is high. Because the temporal placement
of spikes is also well preserved, this suggests that temporal spike
patterns are an important aspect of the code. This general state-
ment, however, does not imply that the neural code is temporal
rather than based on spike number.

For dynamic stimuli, both ‘what’ and ‘when’ aspects of the
stimulus could be encoded in spike train patterns. Humans and
other animals are sensitive to ‘when’ aspects of dynamic stimuli.
Psychophysical measurements of stimulus occurence detection
reveal microsecond precision for a multitude of sensory modal-
ities. In the auditory system, echolocation18 and sound localiza-
tion17 require particularly fine temporal resolution. Such
behaviors must be mediated by precise representation of time in
the CNS. In certain situations, spike patterns show a finer spike
precision than necessary. When such spike patterns encode ‘what’
aspects of the stimulus that are not encoded in the firing rate,
then encoding truly can be labeled ‘temporal’. This definition dis-
tinguishes spike timing required by stimulus dynamics from spike
timing used to encode non-dynamic aspects20,45. In contrast, pre-
cise spike timing is often contrasted with a rate code. Because a
rate code can be estimated with an arbitrarily small time win-
dow, high spike timing precision and rate coding are not mutu-
ally exclusive, whereas the difference between temporal encoding
and rate coding can be rigorously defined.

The methods discussed here can be used to measure stimu-
lus encoding accuracy and the corresponding spike timing pre-
cision. In general, because no assumptions are made about the
encoding, spike timing precision can be used both for temporal
encoding (‘what’) and for time coding (‘when’). This calculation
can also be done for both single neurons and neuron ensembles,
although we focused on examples from single neurons, reflect-
ing current progress. We elaborate on spike timing issues when
the lower bound is obtained by linear decoding, the most com-
mon case so far.

To estimate the lower bound of information about dynamic
stimuli, we did all our calculations in the frequency domain. A uni-
versal result in such analyses is the existence of an upper frequency
cutoff at which dynamic stimulus aspects stop being encoded in
the spike train response. This upper frequency limit is the frequen-
cy at which information goes to zero. To encode dynamic stimulus
changes up to that cutoff frequency, limiting spiking precision must
be at least roughly the time resolution given by half the inverse of
the cutoff frequency (called the Nyquist limit). When one assumes
linear encoding, the energy at a particular frequency in the spike
trains encodes the same frequency in the stimulus. In those cases,
spike placement with time resolution smaller than the window given
by the Nyquist limit has no effect in representing the stimulus. The
number of spikes within that time window can be used to encode
‘what’ aspects of the stimulus (for example, amplitude). For a linear
encoder, we effectively assume a rate code where the rate is esti-
mated for time windows given by the cutoff frequency of the stim-
ulus encoding, and the linear filter can be thought of as one of the

most appropriate transformations to obtain a mean firing rate20,46.
Any other window used to estimate firing rate may decrease infor-
mation in the spike train (by low-pass filtering).

Therefore with the linear model and the knowledge that high-
frequency stimulus components are being encoded, the corre-
sponding limiting spike timing is not surprising, nor is it indicative
of a temporal code. On the contrary, it is necessary to represent
the time-varying stimulus. What is surprising, however, is the com-
bination of high information transmission with relatively low spik-
ing rates. High total information can be obtained by encoding a
large bandwidth or by encoding a smaller bandwidth very pre-
cisely. Absolute measures of total information reach values of ∼ 300
bits per second for the lower bound (Table 2). When the spike rate
is taken into account, most cases yielded on the order of one bit
per spike. This result supports the statement that ‘every spike
counts’. Therefore spike timing in these examples is essential, even
though it can still be called a rate code. Such a firing rate is obtained
not by averaging over many neurons (or stimulus repetitions) but
by convolving the spike train with an appropriate filter.

Information measures in bits per spike do not translate directly
into spike timing precision in milliseconds, but in the linear case,
the high-frequency cutoff of stimulus encoding corresponds to the
limiting accuracy of spike timing. To determine this cutoff, one needs
to find the point at which information becomes statistically indis-
tinguishable from zero. To do so correctly requires obtaining error
bars on information estimates (or more precisely, their exact distri-
bution). This is particularly important because information esti-
mates have positive bias47. To obtain correct estimates of the bias
and standard errors of the estimates, different resampling techniques
can be used29,48. Estimation of the upper frequency limit of infor-
mation transmitted is similar to estimation of the upper frequency
limit of phase locking calculated for the owl auditory system, where
very high frequency limits, and therefore spike precision, occur49.

In general, the limiting temporal accuracy of stimulus encoding
might not equal the limiting spiking resolution. This might occur
when nonlinear decoding20 or the direct entropy method15 is used
to estimate the lower information bound. In such cases, one can
test for spiking precision by repeating information calculations for
a range of time windows. The information should increase as the
window size is made smaller until it plateaus. If particular care is
taken to correct for bias, this particular time window represents
the spike timing resolution. This approach revealed spike timing
resolutions of roughly one millisecond15. That result, however, does
not determine whether this fine spiking resolution is used for tem-
poral encoding, that is, whether it carries additional information
beyond that required to characterize the dynamics of the stimu-
lus. One way to answer this question is by looking at encoding in
the frequency domain and estimating whether higher-frequency
components used in a lower-bound estimation (with nonlinear
decoding filters) could carry additional information that is not
present in the lower-frequency components20.

The studies reviewed here demonstrate that both fine spike-
timing resolution and high reliability are found in peripheral
neurons that encode dynamic stimuli. These results highlight
the importance of each spike to the neural code. However, an
example of temporal encoding for dynamic stimuli has not yet
been found. On the other hand, temporal encoding for stimuli
with very slow dynamics (usually presented as static stimuli)
has been shown both in single neurons21 and in neuronal
ensembles23,24,52–54. In ensembles, synchronized activity encodes
‘what’ aspects of the stimulus that were completely absent in
joint consideration of the firing-rate estimate at time scales cor-
responding to those of the stimulus presentation. It remains to

review
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be seen how including the dynamics of natural stimuli would
affect these results in single neurons, and whether precise spike
timing could be used to simultaneously encode not only ‘when’,
but also ‘what’.
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