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The responses of neurons in lateral geniculate nucleus (LGN) exhibit powerful suppressive phenomena such as contrast saturation, size
tuning, and masking. These phenomena cannot be explained by the classical center–surround receptive field and have been ascribed to
a variety of mechanisms, including feedback from cortex. We asked whether these phenomena might all be explained by a single
mechanism, contrast gain control, which is inherited from retina and possibly strengthened in thalamus. We formalized an intuitive
model of retinal contrast gain control that explicitly predicts gain as a function of local contrast. In the model, the output of the receptive
field is divided by the output of a suppressive field, which computes the local root-mean-square contrast. The model provides good fits to
LGN responses to a variety of stimuli; with a single set of parameters, it captures saturation, size tuning, and masking. It also correctly
predicts that responses to small stimuli grow proportionally with contrast: were it not for the suppressive field, LGN responses would be
linear. We characterized the suppressive field and found that it is similar in size to the surround of the classical receptive field (which is
eight times larger than commonly estimated), it is not selective for stimulus orientation, and it responds to a wide range of frequencies,
including very low spatial frequencies and high temporal frequencies. The latter property is hardly consistent with feedback from cortex.
These measurements thoroughly describe the visual properties of contrast gain control in LGN and provide a parsimonious explanation
for disparate suppressive phenomena.
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Introduction
The visual responses of neurons in lateral geniculate nucleus
(LGN) reveal suppressive phenomena that cannot be explained
by the classical center–surround receptive field. First, responses
saturate when stimulus contrast increases [contrast saturation
(Derrington and Lennie, 1984; Chino and Kaplan, 1988; Sclar et
al., 1990; Kremers et al., 2001; Alitto and Usrey, 2004)]. Second,
responses to a stimulus are reduced by superimposition of an-
other [masking (Cudeiro and Sillito, 1996; Felisberti and Der-
rington, 1999; Freeman et al., 2002; Solomon et al., 2002)]. Third,
responses decrease when stimulus size is increased beyond an
optimal value [size tuning (Cleland et al., 1983a; Murphy and
Sillito, 1987; Jones and Sillito, 1991; Solomon et al., 2002; Ozeki
et al., 2004)]. These three phenomena are suppressive, because
responses are smaller than would be expected from the classical
center–surround receptive field alone.

There is little agreement as to the physiological basis of these
suppressive phenomena. Some have ascribed suppression to in-
hibitory signals within thalamus (Hubel and Wiesel, 1961; Levick

et al., 1972; Cleland et al., 1983a; Sclar, 1987; Felisberti and Der-
rington, 1999). Others attributed it to cortical feedback (Murphy
and Sillito, 1987; Przybyszewski et al., 2000; Webb et al., 2002;
Alitto and Usrey, 2003).

Moreover, there is little agreement as to how the suppressive
phenomena should be explained functionally: how should the
receptive field model be extended to account for response sup-
pression? Contrast saturation has been described by a compres-
sive relationship between stimulus intensity and cell output (Der-
rington and Lennie, 1984; Sclar et al., 1990; Felisberti and
Derrington, 1999; Przybyszewski et al., 2000; Kremers et al., 2001;
Solomon et al., 2002; Webb et al., 2002; Alitto and Usrey, 2004).
Masking has been described by a divisive gain control mechanism
(Freeman et al., 2002; Solomon et al., 2002). Size tuning has been
attributed to a large subtractive region surrounding the receptive
field (Solomon et al., 2002; Nolt et al., 2004; Ozeki et al., 2004).
These proposals aim to account for one suppressive phenome-
non at a time and not for all suppressive phenomena at once.
Moreover, they fail to explain known relationships between sup-
pressive phenomena. For example, size tuning depends on con-
trast, being strong at high contrast and absent at low contrast
(Solomon et al., 2002; Ozeki et al., 2004).

We suggest that the suppressive phenomena are parsimoni-
ously explained by a single mechanism of contrast gain control,
which operates in retina and is possibly strengthened in thala-
mus. Indeed, the stimulus manipulations that elicit the suppres-
sive phenomena invariably increase local contrast. Increasing lo-
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cal contrast decreases the responsiveness (gain) of retinal
ganglion cells (Shapley and Victor, 1978, 1981; Victor, 1987; Bac-
cus and Meister, 2002). This effect is thought to be enhanced in
LGN (Kaplan et al., 1987; Sclar, 1987; Cheng et al., 1995). It could
potentially explain the suppressive phenomena.

Materials and Methods
We characterized the responses of 34 well isolated neurons recorded in
LGN of eight anesthetized, paralyzed cats. These neurons were held long
enough (�2 h, commonly 4 h) to perform a series of more than six
experiments, which involved �180 stimuli.

Recording. Adult cats were anesthetized with ketamine (20 mg/kg)
mixed with acepromazine (0.1 mg/kg) or xylazine (1 mg/kg). Anesthesia
was maintained with a continuous intravenous infusion of penthotal
(0.5– 4 mg � kg �1 � h �1). Animals were paralyzed with pancuronium
bromide (0.15 mg � kg �1 � h �1) and artificially respired with a mixture
of O2 and N2O (typically 1:2). EEG, electrocardiogram, and end-tidal
CO2 were continuously monitored. Extracellular signals were recorded
with quartz-coated platinum/tungsten microelectrodes (Thomas Re-
cording, Giessen, Germany), sampled at 12 kHz, and stored for spike
discrimination. A craniotomy was performed to access the right LGN (at
approximately Horsley-Clarke A6L9), whose location was determined
from the sequence of ocular preference changes along the penetration.
Cells had receptive fields with eccentricities ranging from 2° to 45°, with
an average value of 13.4 � 8.9° (SD; n � 34). All procedures were ap-
proved by the Veterinary Office of Canton Zurich and by the Animal
Care and Use Committee of the Smith-Kettlewell Eye Research Institute.

Visual stimuli were displayed using the Psychophysics Toolbox (Brai-
nard, 1997; Pelli, 1997) and presented monocularly on a calibrated mon-
itor with mean luminance of 32 cd/m 2 and refresh rate of 124 Hz. Stimuli
lasted 1– 4 s and were repeated three to six times (blocks). Stimulus order
within blocks was randomized. Each block included one or more blank
stimuli.

We classified cells into X and Y types from responses to counterphase-
modulated sinusoidal gratings of different spatial frequencies (Enroth-
Cugell and Robson, 1966; Hochstein and Shapley, 1976). Grating phase
was chosen to elicit the smallest first harmonic response. Cells are classi-
fied as Y type if the amplitude of the second harmonic reliably exceeded
that of the first harmonic. Most units (28 of 34) were of the X type.

Stimuli were centered on the receptive field based on responses to
drifting gratings enclosed in small circular apertures displayed at differ-
ent spatial locations. Control measurements were repeated regularly to
ensure correct stimulus centering in the face of the drifts in eye position
that can occur even during paralysis. When such drifts occurred, we
added a new parameter to the model: stimulus offset from the center. We
obtained its value by fitting responses to stimuli of different diameters.
We then held this value fixed across experiments starting with the exper-
iment in which the shift occurred.

Model. As illustrated in Figure 1, the model contains two pathways,
one linear and one nonlinear.

The linear pathway involves a classical center (ctr) – surround (srd)
receptive field, a difference-of-Gaussians, RF � Gctr � ksrdGsrd, where
Gctr and Gsrd are two-dimensional Gaussian densities of width �ctr and
�srd, and ksrd is the relative weight of the surround. The receptive field is
convolved with the stimulus S(x,y,t) to produce a linear response:

L�t� � �S * RF��0, 0, t�. (1)

For our stimuli, which consist of the sum of a “test” and a “mask” drifting
gratings, L(t) is the sum of the responses to the individual gratings:

L�t� � Ltest�t� � �maskLmask�t�, (2)

where �mask denotes the relative effectiveness of the temporal frequency
of the mask in driving the receptive field.

The nonlinear pathway involves a suppressive field that computes the
SD of local luminance clocal. Assuming that the stimulus S(x,y,t) has a
mean of zero, local contrast follows

c local � ����S	�x, y, t�2GSF�x, y�dx dy dt, (3)

where GSF denotes the suppressive field, a Gaussian of width �SF, and
S	(x,y,t) denotes the stimulus processed through a bank of filters, [S *
H](x,y,t). We model each of these filters as a difference-of-Gaussians:
H � Gu � kdGd.

The suppressive field controls neural gain by dividing the output of the
receptive field. The result is

V�t� � Vmax

L�t�

c50 � clocal
, (4)

where c50 determines the strength of the suppressive field, and Vmax

captures the overall responsiveness of the neuron.
Firing rate is a rectified version of V, with threshold V0:

R�t� � �V�t� � V0�
 . (5)

Model characterization. We fitted the model onto the harmonic compo-
nents of the spike trains at the temporal frequencies of the stimuli. Let {ti}
denote the spike times of a response to a stimulus of temporal frequency
f; the harmonic component follows r � 1/N�¥j exp[�2�iftj]�,
where �x� denotes the modulus of the complex number x, and N is the
number of spikes.

Fits minimize the square error between responses of neuron and
model �ij�rij � mj�

2, where rij denotes the response of a neuron to trial i
of stimulus j, and mi is the response predicted by the model.

To estimate model parameters, we fitted Equations 1–5 to a sequence
of four experiments, each constraining one or more parameters. The first
experiment constrained the parameters of the receptive field (�ctr, �srd,
and ksrd) and involved drifting gratings varying in spatial frequency.
Gratings had 50% contrast, optimal temporal frequency, �20° in diam-
eter, and one of �14 logarithmically spaced spatial frequencies. The
subsequent three experiments constrained the parameters of the sup-
pressive field (c50, �SF, �u, �d, kd, and �mask) and involved sums of a test
grating and a mask grating, in which we varied mask contrast (see Fig.
3 A, D), mask diameter (see Fig. 3 B, E), and mask spatial frequency (see
Fig. 3C,F ). Test diameter, spatial frequency and temporal frequency were
optimized cell by cell to elicit maximal response. Unless varied, the at-
tributes of the mask were also optimal for the cell. Each experiment
included test gratings presented alone at more than six contrasts and
sums of a 50% contrast test and a mask of variable attributes. Parameter
estimates obtained when fitting one experiment were held fixed in fits to
subsequent experiments. We repeated this sequence of fits until param-
eters changed by �1% since the previous sequence iteration. The result
was a single set of parameters used to predict responses to all
experiments.

Parameters Vmax and V0 were allowed to vary across experiments to
account for slow changes in neural responsiveness and spontaneous ac-

Figure 1. Model of LGN responses. The model includes a receptive field and a suppressive
field. The receptive field has the classical center–surround organization (difference-of-
Gaussians). The suppressive field computes the SD of the outputs of a Gaussian-weighted bank
of filters (FB) and sums the result to a constant, c50. The signals from receptive field and sup-
pressive field meet at a divisive stage. The output of the division is then rectified to yield positive
firing rates.
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tivity. During the course of a recording session with a given neuron
(which lasted on average 289 � 72 min, SD; n � 34), the spontaneous
firing rate varied over 18 � 11 spikes/s, with variations �25 spikes/s in 9
of 34 neurons. Similarly, the overall responsiveness varied substantially
over time. The harmonic response to a 50% contrast stimulus varied on
average by 25 � 16 spikes/s, with variations of �40 spikes/s in 4 of 34
neurons. These variations in spontaneous firing rate and responsiveness
were not statistically correlated ( p � 0.2). We tracked them by letting
Vmax and V0 vary from one experiment to another. In each experiment,
we fixed V0 to minus the mean spontaneous firing rate, which we ob-
tained from the responses to blank stimuli, and we chose Vmax to mini-
mize square error between model and data. Had we fixed Vmax and V0

across experiments, the quality of predictions would have been compro-
mised in many neurons.

Masking experiments. The logic of the masking experiments is that the
test elicits strong responses, and the mask probes how the suppressive
field influences these responses (Fig. 2). In general, both test (Fig. 2 A, B)
and mask (Fig. 2C,D) elicit responses when presented alone. These re-
sponses oscillate at the drift frequency and are well predicted by a simple
model consisting of a receptive field followed by rectification (Fig. 2 A–D,
dotted curves). We chose the drift rates of test and mask to be incom-
mensurate (e.g., 7.8 and 12.5 Hz) so that, even when test and mask are
superimposed (Fig. 2 E, F ), we can distinguish a “test response” (the
component of the response at the test frequency) and a “mask response”
(the component at the mask frequency). The average temporal frequen-
cies of test and mask were 7.3 � 2.5 and 12.6 � 2.9 Hz (n � 34).

In the presence of the mask, the test response is smaller than predicted
by the receptive field and rectification (Fig. 2 E, F, dotted curves). This
masking effect is explained by the full model because adding the mask
increases the output of the suppressive field. From the response suppres-
sion caused by the mask, we deduce the degree to which the mask drives
the suppressive field.

We obtained one parameter of the receptive field, �mask, from the
mask responses and all parameters of the suppressive field from the test
responses. We estimated the strength of the suppressive field c50 by vary-
ing mask contrast over more than six logarithmically spaced values (Fig.
3 A, D). We estimated the size of the suppressive field �SF by varying mask
diameter over �10 logarithmically spaced values (Fig. 3 B, E). We esti-
mated the parameters that describe the filter bank (�u, �d, and kd) by
varying mask spatial frequency over �10 logarithmically spaced values
(Fig. 3C,F ). Finally, we used the mask responses to constrain �mask (Eq.

2). We estimate �mask from data in which mask contrast is varied (Fig.
3D) and use the same value for the remaining experiments (Fig. 3 E, F ).

Model evaluation. To judge the quality of model fits, we calculated the
percentage of the variance in the averaged data that is explained by the
model. This quantity is given by 100(1�n�1¥j(r�j � mj)

2/var[r�j]), where
r�j is the response to stimulus j averaged across trials, and n is the number
of stimuli.

We tested model predictions with drifting gratings varying in contrast
and diameter (see Fig. 5). This experiment included �50 stimuli cover-
ing a full matrix of more than six contrasts and more than eight diameters
distributed on a logarithmic scale. The spatial frequency and temporal
frequency of the gratings were set to the values eliciting maximal re-
sponse. Parameters Vmax and V0 were left free to account for changes in
neural responsiveness. The remaining parameters were held fixed to their
previously estimated values.

To compare data and model predictions, we used two independent
methods. First, to investigate the ability of the model to predict the effects
of contrast on the size tuning curves, we fitted a difference-of-Gaussians
to the tuning curves at each contrast (Sceniak et al., 1999). This function
provided excellent fits (Ozeki et al., 2004). From these fits, we calculated
the preferred stimulus diameter and the degree of size tuning (expressed
as a fraction of the peak responses) and compared results for data and for
model predictions. Second, to investigate the ability of the model to
predict the effects of stimulus size on contrast saturation, we fitted a
power law to the contrast–response curves at each diameter. The power
law provided excellent fits, so the power-law exponent � captures the
linearity of the growth of responses with contrast: a value close to 0
indicates strong saturation, and a value close to 1 indicates linearity.

To measure the precision of model predictions for individual stimuli,
we calculated z-scores of deviations between measured and predicted
responses. The z-score of deviations is given by z � (r� � m)/v̂, where v̂ is
a robust estimate of the SD of responses calculated across trials. To esti-
mate v̂, we fitted a power law relating the observed SD to the mean r� and
used the resulting predictions as estimate of SD.

Properties of the suppressive field. We estimated the sizes of receptive
field and suppressive field from model parameters. We defined size as
the diameter of the stimulus eliciting 95% of the maximum response.
The receptive field center and surround sizes are given by
2�ctr�� 2log�1 � �� and 2�srd�� 2log�1 � ��, where � � 0.95. The
suppressive field size is given by 2�srd�� 2log�1 � �2�. These expres-
sions differ because the Gaussians underlying the receptive field operate
on stimulus intensity, whereas that underlying the suppressive field op-
erates on stimulus energy.

To obtain independent measures of receptive field size, we recorded
the responses to contrast-modulated circular annuli (n � 15, in two
additional animals) and varied annulus inner diameter (see Fig. 7C, sym-
bols). The harmonic responses yield an annulus tuning curve that reflects
the center–surround organization of the receptive field (Kilavik et al.,
2003; Kremers et al., 2004). Responses are small for small inner diameter,
because the annulus covers both the receptive field center and surround.
Responses increase as the overlap between the annulus and the receptive
field center decreases and reach a maximum when the annulus fills the
receptive field surround. Responses then fall off as the annulus exits the
receptive field surround. The inner diameter for which responses reach
the floor (within �1 SD of the response to a blank stimulus) indicates the
size of the receptive field surround (see Fig. 7C, open arrow). We com-
pared the estimates of receptive field size obtained with this method with
those obtained from the spatial frequency tuning of responses and found
them consistent.

We used model fits to compare the selectivity of receptive field and
suppressive field for spatial frequency. We calculated the low- and high-
frequency cutoffs of the outputs of receptive field and suppressive field.
We defined cutoff as the frequency at which the outputs reach 50% of
their maximum power (71% of the maximum amplitude).

We used masking experiments to measure the selectivity of the sup-
pressive field for temporal frequency and orientation (see Fig. 8). Exper-
iments were similar to those described above in “Model characteriza-
tion” but with masks of either more than seven incommensurate
temporal frequencies or 12 orientations. We estimated the selectivity of

Figure 2. Masking experiments. Solid curves are firing rate responses of an example neuron.
Dotted curves are predictions of receptive field followed by rectification. A, Responses to test
grating presented alone. B, Same, but showing amplitude spectrum of responses. C, D, Mea-
sured and predicted responses to mask alone. E, F, Measured and predicted responses to sum of
test and mask. Calibration bars in A and B indicate 50 spikes/s. Cell 44.4.2.
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the suppressive field by subtracting the test responses measured with
mask from the test response measured without mask, normalizing and
averaging across cells. We estimated the preferences of the receptive field
by normalizing and averaging mask responses.

Results
Our results are organized as follows. First, we devise a simple
model of contrast gain control based on the established model of
ganglion cell responses proposed by Shapley and Victor (Shapley
and Victor, 1981; Victor, 1987). We extend this model to the
domain of arbitrary spatial images, by specifying how local con-
trast should be integrated across space. Then we test the model on
a large array of responses of cat LGN neurons and show that it
captures response suppression. Finally, we measure the visual
properties of contrast gain control and discuss how these prop-
erties constrain the possible sources of the suppressive signals.

Model
Our hypothesis is that LGN responses, and in particular the sup-
pressive phenomena, can be explained by a model of contrast
gain control such as the one proposed by Shapley and Victor for
retinal ganglion cells (Shapley and Victor, 1981; Victor, 1987). In
this model, the temporal responses of ganglion cells result from a
cascade of low-pass and high-pass filters, whose time constants
depend on contrast.

We reformulated the Shapley–Victor model to directly ex-
press the effect of contrast on response gain. In Appendix, we
simplify the expressions of the model by concentrating on re-
sponses to stimuli that vary slowly, because these responses are
most affected by gain control. We considered only the effects on
response amplitude, ignoring the effects on response timing. The
result is a single divisive stage, in which the output of the receptive
field appears in the numerator and a measure of local contrast
appears in the denominator:

R �
L

c50 � c local
, (6)

where R is the response of the neuron, L is
the response of the receptive field (which
grows linearly with contrast), c50 is a con-
stant, and clocal is local contrast. This ex-
pression resembles models of divisive nor-
malization used in visual cortex (Albrecht
and Geisler, 1991; Heeger, 1992; Caran-
dini et al., 1997).

Shapley and Victor (1978) did not
specify how to compute local contrast clocal

but revealed important constraints. First,
clocal is invariant to stimulus position
within the receptive field. Second, clocal is
an “even function” of stimulus intensity
(Victor, 1987) (i.e., one that is the same for
stimuli that are lighter or darker than the
mean luminance). Third, clocal grows with
stimulus area (Shapley and Victor, 1981).

Guided by these constraints, we as-
sumed that local contrast clocal is the SD of
the luminance falling under a Gaussian re-
gion concentric with the receptive field.
We call this region “suppressive field,” be-
cause its properties match the term coined
by Levick et al. (1972) to describe a region
that (1) is engaged equally by light or dark

stimuli and (2) suppresses the responses of a cell. The SD is pro-
portional to root-mean-square contrast. It fulfills the above con-
straints, and it can be generalized to arbitrary images.

The resulting model contains two image-processing path-
ways, the receptive field and the suppressive field (Fig. 1). The two
pathways meet at a divisive stage, in which the receptive field
provides the numerator and the suppressive field provides the
denominator. The resulting output V is then rectified to obtain a
positive firing rate R.

The receptive field operates linearly: its output involves a sim-
ple weighted sum of the image intensities, with weights given by
the receptive field profile. We model the receptive field with a
difference-of-Gaussians (Rodieck, 1965; Enroth-Cugell and
Robson, 1966), which has three free parameters: the width of the
center Gaussian, the width of the surround Gaussian, and the
strength of the surround relative to the center.

The operation of the suppressive field, instead, is nonlinear,
because it involves square root and squaring operations. To com-
pute local contrast, in particular, the suppressive field (1) pro-
cesses the image through a bank of filters [“subunits” (Shapley
and Victor, 1978)], (2) weights the filter outputs by a two-
dimensional Gaussian, a window that represents the spatial ex-
tent of the suppressive field, and (3) computes the SD of the
resulting signals.

We next show that, with a single set of parameters, the model
predicts masking, size tuning, and contrast saturation. We obtain
the parameters of the model by fitting a series of masking exper-
iments and then hold those parameters fixed and show that they
account for size tuning and contrast saturation.

Masking
The model predicts masking, the suppression observed when two
stimuli are overlaid (Fig. 3). Masking occurs when either one
grating extends in the region surrounding the other (Sillito et al.,
1993; Felisberti and Derrington, 1999; Solomon et al., 2002) or
two gratings are superimposed (Freeman et al., 2002). In our
measurements, the two gratings are a fixed optimal test at 50%

f les

Figure 3. Masking. Stimuli are sums of a test grating and a mask grating drifting with incommensurate temporal frequencies.
Responses are measured at the frequency of the test, 7.8 Hz (test response; A–C) and at the frequency of the mask, 12.5 Hz (mask
response; D, F). Unless otherwise stated, in this figure and in subsequent ones, the error bars indicate �1 SD. Curves show model
fit. Dashed lines indicate predictions of receptive field followed by rectification. A, D, Responses as function of mask contrast
(Vmax � 273; V0 � �6). B, E, Responses as function of mask diameter (Vmax � 242; V0 � �6). C, F, Responses as function of
mask spatial frequency (Vmax � 275; V0 � �4). Test and mask had spatial frequency of 0.24 cycles/deg (unless varied) and
diameter of 1.4° and 14.1° (unless varied). Cell 33.1.3.
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contrast and a mask whose attributes are
varied. Test and mask have incommensu-
rate temporal frequencies, which elicit dis-
tinct response components (Bonds, 1989):
a test response that oscillates at the tempo-
ral frequency of the test and a mask re-
sponse that oscillates at the frequency of
the mask. We first investigate how test re-
sponses are affected by mask attributes.

The model predicts that adding a mask
should reduce test responses. The pre-
dicted test responses are given by Equation
6, in which the mask affects only the out-
put of the suppressive field (the term clocal

in the denominator). Adding the mask,
therefore, increases clocal and thus reduces
test responses.

We test the predictions of the model by
varying mask contrast (Fig. 3A), diameter
(Fig. 3B), and spatial frequency (Fig. 3C)
and find that the model yields good fits
(solid curves). (1) Increasing mask con-
trast progressively suppresses the test re-
sponse (Fig. 3A). The model predicts this
effect because increasing mask contrast in-
creases the local contrast clocal. With masks
of low contrast, there is little suppression
because clocal is dominated by the constant
c50. (2) Increasing mask diameter progres-
sively suppresses test responses until re-
sponses reach a plateau (Fig. 3B). The
model captures this decrease because in-
creasing mask diameter increases local
contrast clocal. The plateau is reached once
the mask extends beyond the suppressive
field. (3) Suppression depends on mask
spatial frequency (Fig. 3C), being strong at
low spatial frequencies and absent at high frequencies. The model
captures this behavior because of the filters at the front end of the
suppressive field, which endow the suppressive field with fre-
quency preferences.

The suppressive field plays a critical role in explaining these
observations. The fits performed without it (Fig. 3, dashed
curves) are clearly inadequate, indicating that neither the recep-
tive field nor the rectification stage can account for masking. The
fits performed including the suppressive field, instead, have high
quality: overall, the model explains 94.4% of the variance (me-
dian, n � 34).

The model can also predict the mask responses, the compo-
nents of responses at the temporal frequency of the mask (Fig.
3D–F). In this case, varying mask attributes varies the outputs of
both receptive field and suppressive field. Mask responses display
strong saturation (Fig. 3D), they are tuned for stimulus size (Fig.
3E), and their tuning for spatial frequency is bandpass (Fig. 3F).
The resulting model predictions yield good fits to the mask re-
sponses (Fig. 3, solid curves). Fits of similar quality were obtained
in the remaining cells, with the model explaining 87.9% of the
variance (median, n � 34).

Estimating model parameters
We use these masking experiments to constrain key model pa-
rameters, which we henceforth keep fixed. From the effects of
mask contrast, we estimate the constant c50 (Fig. 3A). From the

effects of mask diameter, we estimate the width of the suppressive
field �SF (Fig. 3B). From the effects of mask spatial frequency, we
estimate the parameters of the filters at the front end of the sup-
pressive field (Fig. 3C). The result is one set of parameters for each
cell (Table 1).

The fits yielded reliable estimates of the parameters (Fig. 4).
For most parameters, the values yielding the best fits fell in a
narrow range. This is the case, for example, for the width of the
receptive field surround �srd (Fig. 4A), for the strength of sup-
pressive field c50 (Fig. 4B), and for the width of the suppressive
field �SF (Fig. 4C). The exception to this rule is the strength of the
surround of the subunits that compose the suppressive field, kd

(Fig. 4D). For this parameter, any value �0.8 would be approx-
imately equally good at fitting the responses, which have a low-
pass behavior (Fig. 3B). Had suppression been bandpass, kd

would have been constrained to the range 0.8 –1.0.

Size tuning and contrast saturation
Having characterized the model, we ask whether it predicts size
tuning and contrast saturation. We test the model on responses to
single drifting gratings whose diameter and contrast are varied
independently. These data provide a stringent test, because they
were not used to constrain the model parameters.

The model predicts size tuning and how this tuning depends
on contrast (Fig. 5A). Size tuning is pronounced at high contrast
(Fig. 5A, lighter symbols) but weak at low contrast (Fig. 5A,

Table 1. Summary of model parameters

Stage Parameter Symbol Units

Example neuron
(cell 33.1.3)

Population
(n � 34)

Min Max Mean SD

Rectification Responsiveness Vmax Spikes/s 167 275 212 206
Threshold V0 Spikes/s �6 �2 �7.8 7.1

Receptive field Center width �ctr Degree 0.5 0.6 0.4
Surround width �srd Degree 1.5 2.0 1.1
Surround strength ksrd 0.9 0.8 0.2
Relative mask drive �mask 0.6 1.1 0.8

Suppressive field Width �SF Degree 1.4 2.5 2.9
Strength c50 0.1 0.3 0.2
Filter center width �u Degree 0.3 0.4 0.2
Filter surround width �d Degree 0.5 1.8 2.6
Filter surround strength kd 0.5 0.4 0.3

Min, Minimum; Max, maximum.

Figure 4. Reliability of four estimated model parameters. To gauge the confidence with which the fits yield model parameters,
we estimated fit quality while imposing a range of values on the parameter of interest. The overall responsiveness Vmax was
allowed to vary to yield the best fit. The other parameters were held at their optimal values, and, as usual, the resting potential V0

was fixed based on the resting firing rate in each experiment. The results are shown for four key model parameters, for the example
cell of Figures 3 and 5. A, Reliability of estimates for the width of the receptive field surround, �srd, which is obtained by varying
grating spatial frequency (Fig. 8A). B, Reliability of estimates for the strength of suppressive field c50, which is obtained by varying
mask contrast (Fig. 3A). C, Reliability of estimates for the width of the suppressive field �SF, which is obtained by varying mask
diameter (Fig. 3B). D, Reliability of estimates for the strength of the surround of the subunits that compose the suppressive field,
kd. This value is obtained by varying mask spatial frequency (Fig. 8B). Any value �0.8 would be approximately equally good at
fitting those responses.
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darker symbols) (Solomon et al., 2002; Ozeki et al., 2004). The
model captures these effects (Fig. 5A, curves). It exhibits size
tuning because extending the stimulus beyond the confine of the
receptive field center increases the output of the suppressive field,
clocal, but not the output of the receptive field. At low contrasts,
instead, clocal is much smaller than the constant c50; the output of
the suppressive field is ineffectual, and size tuning is not
observed.

The dependence of size tuning on stimulus contrast is marked
in our sample (Fig. 6A). In most cells, size tuning is strongest at
high contrasts (Fig. 6A, open symbols) and weakest at low con-
trasts (Fig. 6A, filled symbols). To quantify the degree of size
tuning, we estimate the amplitude of plateau responses, the re-
sponses to the largest stimulus tested, as a fraction of the peak
responses. At 10% contrast, plateau responses are 27 � 20%
smaller than the peak responses (mean � SD; n � 34). The degree
of size tuning increases with contrast and peaks at 100% contrast,
at which plateau responses are 39 � 18% below peak responses.
The model predicts a similar trend, with values of 11 � 9% at
10% contrast and 37 � 15% at 100% contrast.

A consequence of these effects is that preferred stimulus size
decreases with contrast (Kremers et al., 2001; Solomon et al.,
2002; Nolt et al., 2004). To quantify this effect, we estimate the
diameter of the stimulus eliciting maximal response. This pre-
ferred stimulus diameter decreases as contrast is increased, rang-
ing from 3.8 � 2.0° at 10% contrast to 2.4 � 1.7° at 100% con-
trast. The model captures this effect with predicted preferred
diameters of 4.1 � 3.0° at 10% contrast and of 2.5 � 1.6° at 100%
contrast.

The model also predicts how responses saturate with increas-
ing contrast (Fig. 5B). Responses to large stimuli show strong
saturation (Fig. 5B, lighter symbols). For these stimuli, the out-
puts of both receptive field and suppressive field are simply pro-
portional to grating contrast c, so the model predicts that firing
rate obeys R � c/(c50 
 c). This expression is known to capture
the contrast responses of LGN neurons (usually contrast is ele-
vated to a power of n, with n close to 1) (Derrington and Lennie,
1984; Sclar et al., 1990; Felisberti and Derrington, 1999; Kremers
et al., 2001).

The model predicts a novel phenomenon: that contrast satu-

ration is pronounced only for large stimuli
(Fig. 5B). Responses to small stimuli grow
nearly linearly with contrast (Fig. 5B,
darker symbols), whereas responses to
large stimuli show clear saturation (Fig.
5B, lighter symbols). The model predicts
linearity because small stimuli induce in
the suppressive field a response that is neg-
ligible compared with the constant c50.
These data suggest that there is nothing
intrinsically nonlinear about LGN re-
sponses: were it not for the suppressive
field, responses would grow linearly with
contrast.

This pronounced dependence of satu-
ration on stimulus size is seen throughout
our sample (Fig. 6B). In most cells, satura-
tion is strongest for large stimuli (Fig. 6B,
white symbols), weaker for optimal stim-
uli (Fig. 6B, gray symbols), and nearly ab-
sent for the smallest stimuli (Fig. 6B, black
symbols). To summarize the degree of sat-
uration across cells, we fit a power law to

the contrast–response curve at each stimulus diameter. Power-
law exponents close to 0 indicate strong saturation; exponents
close to 1 indicate linear growth. With an average exponent of
0.78 � 0.41, saturation is weakest at the smallest stimulus diam-
eter eliciting a reliable response. Saturation monotonically in-
creases with stimulus diameter, with an average exponent of
0.46 � 0.18 at the largest diameters tested. The model predicts the
trend yielding exponents of 0.61 � 0.11 for small diameters and
0.40 � 0.16 for large diameters.

As expected from previous results (Shapley and Victor, 1978;
Sclar, 1987), the effects of gain control appear stronger in Y cells
than in X cells. The strength of the suppressive field c50 averages
0.21 � 0.06 in X cells (n � 28, bootstrap estimates) and 0.14 �
0.06 in Y cells (n � 6). The power-law fits of the contrast–re-
sponse curve (at the largest stimulus tested) yielded exponents of
0.46 � 0.03 in X cells and 0.40 � 0.10 in Y cells. These differences,
however, did not reach statistical significance (ANOVA, p � 0.1).

There are also indications that gain control is more pro-
nounced in ON-center cells than in OFF-center cells, as has been
demonstrated in retina (Chander and Chichilnisky, 2001;
Zaghloul et al., 2003). The constant c50 averages 0.15 � 0.03 (n �
19) in ON cells and 0.27 � 0.08 in OFF cells (n � 15). The
exponents average 0.39 � 0.05 in ON cells and 0.50 � 0.05 in OFF
cells. These differences are consistent with previous results but
are not statistically significant ( p � 0.1).

Model performance
The model performs well in a vast majority of neurons, explain-
ing overall 91.1% of the variance in the contrast-diameter exper-
iments (median, n � 34). This performance is remarkable, given
that model parameters were estimated from a distinct data set
(Fig. 3). To assess model performance in individual stimulus con-
ditions, we computed z-scores of the deviations between mea-
sured and predicted responses. The amplitude of deviations is
mostly below 1 (|z| � 0.65, median; n � 34) indicating that, for
most stimuli, model predictions approach the level of accuracy
set by the trial-to-trial variability of responses.

The model predictions, however, showed small but significant
biases. We estimated accuracy from the unsigned z-scores, con-
ditioned on stimulus contrast or diameter. Predictions are most

Figure 5. Size tuning and contrast saturation. Stimuli are gratings varying in diameter and contrast. Curves are predictions of
model with parameters held fixed from previous measurements (Fig. 3; Vmax � 128; V0 � �2). A, Responses as a function of
diameter, for selected contrasts. B, Same data, plotted as a function of contrast, for selected diameters. Stimuli had optimal
attributes: 0.24 cycles/deg and 7.8 Hz. Cell 33.1.3 (93.9% explained variance).
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accurate for diameters slightly larger than optimal (|z| � 0.52,
median) and least accurate for smaller and larger diameters (|z| �
0.68 and 0.74). Similarly, predictions are most accurate at 40%
contrast (|z| � 0.52) and least accurate at 5 and 100% contrast

(|z| � 0.86 and 0.64). We estimated bias from signed z-scores.
The model overestimates the amplitudes of responses to large
stimuli (z � �0.71), whereas predictions for small stimuli show
little bias (z � �0.16). Likewise, the model overestimates the
amplitudes of responses to low-contrast stimuli (z � �0.89),
whereas predictions for high-contrast stimuli show little bias (z �
�0.06).

Because fit quality is good and biases are small, we conclude
that our simple model of contrast gain control accounts for sev-
eral suppressive phenomena observed in LGN responses. The
model predicts contrast saturation, size tuning, and masking and
explains how these phenomena are related to one another.

Spatial extent
Studies in LGN suggested that the sources of suppression extend
well beyond the classical receptive field (Levick et al., 1972; Mur-
phy and Sillito, 1987; Cudeiro and Sillito, 1996; Felisberti and
Derrington, 1999; Przybyszewski et al., 2000; Kaplan and Benar-
dete, 2001; Sillito and Jones, 2002; Webb et al., 2002; Alitto and
Usrey, 2003). How large is the suppressive field, and how does its
spatial extent relate to that of the receptive field?

To our surprise, we found that suppressive field rarely extends
beyond the surround of the classical receptive field (Fig. 7A,B).
We obtained the extent of suppressive field and receptive field
from model fits (Fig. 3). To compare the two, we concentrated on
the 31 of 34 cells for which the receptive field surround was strong

Figure 6. Size tuning and contrast saturation in five additional cells. Details as in Figure 5.
Gray areas indicate spontaneous response � 1 SD. A, Responses as a function of diameter,
shown here for two contrasts: the lowest one eliciting a reliable response (black), 40% (gray),
and 100% (white). B, Responses expressed as a function of contrast, shown here for three
diameters: the smallest diameter eliciting a reliable response (black), the optimal diameter
(gray), and the largest diameter tested (white). Dotted lines indicate selected contrasts and
diameters. Top to bottom, Cells 33.3.4 (OFF/X, 98.5% explained variance), 28.2.5 (ON/X,
91.8%), 31.3.3 (OFF/X, 98.7%), 35.3.3 (OFF/X, 93.7%), and 31.2.2 (OFF/Y, 93.3%).

Figure 7. Spatial extent of receptive field and suppressive field. A, Comparison of extent of
suppressive field and receptive field center obtained from model fits. Dashed line indicates
linear regression. B, Same, for receptive field surround. C, Control measurements of spatial
extent of receptive field surround and suppressive field. Filled symbols indicate responses to
disks containing drifting gratings. Open symbols indicate responses to annuli containing a
uniform field whose contrast is modulated in time. Arrows indicate estimated extents of recep-
tive field surround (RF) and suppressive field (SF). Responses averaged across cells. We normal-
ized the abscissa and the ordinate of each curve so that the size tuning curves peak at 1 with a
value of 1. Error bars (invisible because smaller than symbols) indicate �1 SE (n � 15).
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(ksrd � 0.2; see Materials and Methods). The receptive fields of
these cells had an average eccentricity of 13.9 � 9.1° (SD). The
suppressive field has an average extent of 10.3 � 6.6°. This is
300% larger than the receptive field center (3.1 � 2.2°) (Fig.
7A) and approximately the same size as the receptive field sur-
round (9.1 � 5.1°) (Fig. 7B).

The sizes of receptive field and suppressive field are strongly
correlated across the population. The correlation between the
sizes of receptive field center and suppressive field (r � 0.67 �
0.12, bootstrap estimates) is comparable with the correlation be-
tween the sizes of receptive field center and surround (r � 0.53 �
0.16). The sizes of suppressive field and receptive field surround
are also significantly correlated (r � 0.38 � 0.16).

These results seem discordant with previous studies, which
describe suppression as originating beyond the classical receptive
field (Levick et al., 1972; Murphy and Sillito, 1987; Cudeiro and
Sillito, 1996; Felisberti and Derrington, 1999; Przybyszewski et
al., 2000; Kaplan and Benardete, 2001; Sillito and Jones, 2002;
Solomon et al., 2002; Webb et al., 2002; Alitto and Usrey, 2003).
We therefore felt the need to confirm them with independent
measurements (Fig. 7C). Indeed, the measures of receptive field
extent presented above were obtained by fitting a difference-of-
Gaussians to responses to moving gratings of different spatial
frequencies. Although this method is standard and has been thor-
oughly validated, it is indirect because it involves Fourier analysis.

To obtain a more direct measure of receptive field size, we
recorded responses to contrast-modulated circular annuli (n �
15, in two additional animals) and varied annulus inner diameter
(Fig. 7C, open symbols). The harmonic responses to these stimuli
yield an annulus tuning curve that reflects the center–surround
organization of the receptive field (Kilavik et al., 2003; Kremers et
al., 2004). The inner diameter at which this curve reaches the
floor (within �1 SD of the response to a blank stimulus) indicates
the size of the receptive field surround (Fig. 7C, open arrow).
From the same cells, we also recorded responses to optimal drift-
ing gratings and varied the diameter of the disk window (Fig. 7C,
filled symbols). The diameter for which these curves reach a pla-
teau (within �1 SD of the response to the largest stimulus) indi-
cates the size of the suppressive field (Fig. 7C, filled arrow). The
results of these analyses confirm that, just as seen earlier using
model parameters, the suppressive field does not extend beyond
the region of the receptive field. On average, the estimated recep-
tive field and suppressive field sizes were undistinguishable
(8.2 � 0.9 and 7.9 � 1.9 times larger than the optimal disk diam-
eter, SE; n � 15). The normalized receptive field size had a me-
dian of 8.1 and a 50% confidence interval of 4.7–11.9 (Fig. 7C,
open arrow and error bar). The normalized suppressive field size
had a median of 4.6 and a confidence interval of 2.8 –11.9. Al-
though the suppressive field may appear smaller than the recep-
tive field, this difference is not statistically significant (Wilcoxon’s
rank sum test, p � 0.2).

These findings confirm that the suppressive field is typically
not larger than the surround of the classical receptive field and
suggest an explanation for the discrepancy with the literature.
Previous studies might have underestimated the actual extent of
the receptive field and, in particular, of the receptive field sur-
round. The surround only provides a weak drive to the cell, which
can easily go unnoticed. Indeed, our results reveal that the
method commonly used to estimate receptive field size system-
atically underestimates true size, typically by a remarkable factor
of 8. Previous studies of LGN responses (Jones et al., 2000; Sillito
and Jones, 2002; Solomon et al., 2002; Alitto and Usrey, 2003; Sun
et al., 2004; Webb et al., 2005) have estimated the extent of the

classical receptive field by measuring responses to high-contrast
moving gratings windowed by disks of various sizes and finding
the disk size that results in the maximal response. As we have seen
(Fig. 7C), this measure underestimates the size of the receptive
field surround by a factor of 8.2 � 0.9. Given that the receptive
field surround is approximately three times larger than the center
(Table 1), this measure also underestimates the size of the recep-
tive field center by a factor of 2.4. Given that previous studies
were most likely underestimating the size of the receptive field
surround, it is not surprising that they would describe the sup-
pressive influences as originating outside the receptive field.

Visual preferences
We complete our characterization of gain control in LGN by
studying the preferences of the suppressive field for spatial fre-
quency, temporal frequency, and orientation. A quantitative as-
sessment of these preferences provides constraints on the possi-
ble sources of suppressive signals (retina, thalamus, or cortex). It
is also a necessary step toward a future application of the model to
complex stimuli such as natural scenes.

As expected from previous qualitative assessments in retina
and in LGN (Shapley and Victor, 1979; Cudeiro and Sillito, 1996;
Sun et al., 2004), the suppressive field responds to a broader range
of spatial frequencies than the receptive field (Fig. 8A,B). To
estimate the tuning of receptive field and suppressive field for
spatial frequency, we relied on model parameters obtained as
described above. The tuning of the suppressive field is low pass in
spatial frequency (Fig. 8B), with low-frequency cutoffs mostly
below 0.01 cycles/°, the lowest spatial frequency tested. By com-
parison, the tuning of the receptive field has strong bandpass
characteristics (Fig. 8A) and low-frequency cutoffs in the range
of 0.05– 0.2 cycles/° (Maffei and Fiorentini, 1973; Dawis et al.,
1984; Cheng et al., 1995). The low-frequency cutoff of the sup-
pressive field was only 0.23 � 0.12 times that of the receptive field
(n � 34, bootstrap estimates). The suppressive field also responds
to frequencies that often extend beyond the resolution limit of the
receptive field: on average, its high-frequency cutoff is 1.27 �
0.19 times that of the receptive field. Being broadly tuned, the
suppressive field barely affects the spatial frequency selectivity of
the neurons. Indeed, this selectivity depends only weakly on con-
trast. We measured spatial frequency tuning curves for stimuli at
three contrast levels (15, 50, and 100%) and calculated the
high-frequency cutoff of each curve. The cutoff frequencies
changed little with increasing contrast, from 0.33 � 0.04 to
0.37 � 0.07 to 0.39 � 0.07 cycles/° (mean � SE; n � 7). These
values were not significantly different from one another
(ANOVA, p � 0.7). This contrast invariance of spatial frequency
tuning seems consistent with the data, if not with the interpreta-
tion, of recent studies of spatial frequency tuning at different
contrasts (Kremers et al., 2001; Nolt et al., 2004).

The suppressive field is broadly selective for temporal fre-
quency and prefers frequencies of 10 –20 Hz or higher (Fig.
8C,D). To estimate the preferences of suppressive field and recep-
tive field, we recorded responses to sums of test and mask gratings
and varied mask temporal frequency. By measuring the reduction
in test response caused by the different mask temporal frequen-
cies, we estimated the temporal frequency tuning of the suppres-
sive field. By measuring the response to the mask itself, we esti-
mated the temporal frequency tuning of the receptive field. We
obtained these measurements in 40 neurons (which include the
34 of our main sample). The suppressive field and receptive field
exhibit similar selectivity: both respond weakly at low frequencies
and strongly at high frequencies (Fig. 8C,D). These selectivity
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profiles resemble those obtained from re-
sponses to single drifting gratings varying
in temporal frequency (Fig. 8C, dashed
line) (Dawis et al., 1984; Saul and Hum-
phrey, 1990; Alitto and Usrey, 2004). We
did not explore frequencies above 21 Hz
because, in our stimuli, test and mask were
interleaved, and the refresh rate of the
monitor was 124 Hz. Therefore, we do not
know how the suppressive field responds
to very high frequencies.

This assessment of the selectivity of the
suppressive field for temporal frequency
complements previous studies of gain
control in retina and LGN (Shapley and
Victor, 1978, 1981; Benardete and Kaplan,
1999). These studies found that gain con-
trol affects responses to low frequencies
and barely affects responses to high fre-
quencies. Here, we concentrated on the re-
sponses to low frequencies, and we inves-
tigated the selectivity for temporal
frequency of the suppressive field. Consis-
tent with an early anecdotal report in ret-
ina (Shapley and Victor, 1979), we found
this signal to be strong at high temporal
frequencies but weak at low frequencies.

The suppressive field has no prefer-
ences for orientation: its bias for orienta-
tion is even weaker than that of the recep-
tive field (Fig. 8E,F). To measure the
orientation preferences of suppressive field and receptive field,
we recorded responses to sums of test and mask gratings and
varied mask orientation, following the same logic as the experi-
ments in which we varied temporal frequency. We obtain these
measurements in 30 of the 34 neurons in the main sample. The
responses of the suppressive field are poorly tuned for orientation
(Fig. 8F), reaching significance (ANOVA, p � 0.05) in only 7 of
30 neurons. By comparison, the receptive field often shows con-
sistent biases for orientation (Fig. 8E) (Vidyasagar and Urbas,
1982; Soodak et al., 1987; Shou and Leventhal, 1989; Sun et al.,
2004), which reach significance (ANOVA, p � 0.05) in 20 of 30
neurons. This bias had no consistent relationship with that seen
occasionally in the suppressive field: aligning responses with the
orientation that gave the peak receptive field response (Fig. 8E)
and averaging across neurons yields a curve that is essentially flat
(Fig. 8F). The suppressive field, therefore, is essentially insensi-
tive to stimulus orientation.

This finding agrees with some reports (Solomon et al., 2002;
Webb et al., 2002; Sun et al., 2004) but not with others (Sillito et
al., 1993; Cudeiro and Sillito, 1996). The latter studies used grat-
ings enclosed in a disk and an annulus and found that the orien-
tation of the grating in the annulus affected the responses to the
disk. We suggest that this result might be attributable to interac-
tions between responses elicited by the disk and the annulus in
the receptive field. The annulus in these studies was placed just
outside the diameter that yields the maximal response for high-
contrast disk stimuli. We have seen (Fig. 7C) that this diameter is
approximately two times smaller than the receptive field center
and eight times smaller than the receptive field surround. It is
thus reasonable to assume that the annulus stimulated the recep-
tive field surround and elicited some response of its own. This
response would oscillate at the same frequency as the response to

the disk. Depending on the details of the stimulus and of the
receptive field, the two responses could interact destructively or
constructively. The result could be an apparent effect of mask
orientation.

In summary, we characterized the spatial extent and visual
preferences of the suppressive field and found that it is generally
(1) not larger than the receptive field surround, (2) broadly tuned
for spatial frequency, (3) broadly selective for high temporal fre-
quencies, and (4) not selective for orientation.

Discussion
We have formalized a simple model of gain control and have
shown that it provides a parsimonious explanation for the diverse
suppressive phenomena seen in LGN responses. The model pre-
dicts the phenomena of masking, size tuning, and contrast satu-
ration and explains how these phenomena are interrelated. In
particular, it explains how size tuning is pronounced at high con-
trast and weak at low contrast, and how increasing stimulus con-
trast reduces the size of the preferred stimulus. Furthermore, the
model predicts a novel phenomenon: contrast saturation is
present only for large stimuli, and responses to small stimuli grow
almost linearly with contrast. This result indicates that there is no
saturating nonlinearity at the output of LGN neurons: for stimuli
that are small enough, LGN responses grow nearly linearly with
contrast, with saturation being entirely explained in contrast gain
control.

Origins of the suppressive field
Our measurements of the visual preferences of the suppressive
field provide some constraints on the sources of suppression. The
possible sources include the following: (1) mechanisms of sup-
pression or gain control operating in retina (Cleland et al., 1983b;

Figure 8. Visual preferences of receptive field and suppressive field. A, Response of receptive field as function of spatial
frequency. Curve is average across cells. Shaded areas indicate response scatter (�1 SD). The tuning of each cell was rescaled
along the x-axis so that high-frequency cutoff of receptive field response equals 1. B, Same, for responses of suppressive field. C,
Response of receptive field as function of temporal frequency. Dashed curve is average responses of LGN cells to single grating
varying in temporal frequency. D, Same, for responses of suppressive field. E, F, Same, for responses as function of orientation.
Responses were aligned so that maximum receptive field response is centered on 0°.
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Kaplan et al., 1987; Sclar, 1987; Cheng et al., 1995; Girardin et al.,
2002; Nolt et al., 2004); (2) inhibitory circuitry in thalamus
(Hubel and Wiesel, 1961; McIlwain and Creutzfeldt, 1967; Singer
and Creutzfeldt, 1970; Levick et al., 1972; Cleland et al., 1983b;
Cleland and Lee, 1985; Sherman and Koch, 1986; Kaplan et al.,
1987; Funke and Eysel, 1998); and (3) negative feedback from
visual cortex (Ahlsén and Lindström, 1983; Sherman and Koch,
1986; Murphy and Sillito, 1987; Sillito et al., 1993; Cudeiro and
Sillito, 1996; Sillito and Jones, 2002; Webb et al., 2002; Worgotter
et al., 2002; Alitto and Usrey, 2003).

The visual preferences of the suppressive field are entirely con-
sistent with an origin in retina: just as the suppressive field, retinal
ganglion cells respond as well to low spatial frequencies, follow
high temporal frequencies, and are barely tuned for stimulus
orientation. The mechanisms of contrast gain control in retina
have been described by the work of Shapley and Victor (1978,
1981) and are beginning to be understood in terms of anatomy
and biophysics (Chander and Chichilnisky, 2001; Kim and Rieke,
2001; Baccus and Meister, 2002; Demb, 2002; Zaghloul et al.,
2005). To test whether the suppressive field in LGN is entirely
inherited from retinal afferents, one could perform experiments
with a test grating in one eye and a mask grating in the other eye.

Our measurements, however, cannot exclude a contribution
from thalamic inhibition. There is evidence that gain control is
stronger in LGN than in retina (Kaplan et al., 1987; Cheng et al.,
1995). LGN cells receive inhibition from two sources (Dubin and
Cleland, 1977; Ahlsén et al., 1982; Sherman and Koch, 1986):
feedforward from local interneurons and feedback from the peri-
geniculate nucleus (PGN). Interneurons have visual properties
that resemble the properties of relay cells (Dubin and Cleland,
1977). It might therefore not be trivial to obtain a broad tuning
for spatial frequency by pooling the outputs of interneurons. A
more likely source of suppression lies in PGN neurons, whose
visual preferences resemble those of the suppressive field. PGN
neurons (1) have large receptive fields (Sanderson, 1971; Uhlrich
et al., 1991; Wrobel and Bekisz, 1994; Funke and Eysel, 1998), (2)
respond well to low spatial frequencies (Price and Morgan, 1987;
Xue et al., 1988; Murphy et al., 1994; Wrobel and Bekisz, 1994),
(3) respond equally to light increments and decrements (ON/
OFF responses) (Sanderson, 1971; Dubin and Cleland, 1977; So
and Shapley, 1981; Xue et al., 1988; Uhlrich et al., 1991; Wrobel
and Bekisz, 1994; Funke and Eysel, 1998), and (4) show poor
selectivity for stimulus size (Jones and Sillito, 1994). The last
property is consistent with the observation that suppression is
maintained for large diameters (Fig. 3B).

Finally, the visual preferences of the suppressive field are
hardly consistent with a cortical origin. The suppressive field has
the same extent as the receptive field surround, whereas neurons
in primary visual cortex (V1) have larger receptive fields (Jones et
al., 2000). More importantly, the suppressive field responds
strongly to low spatial frequencies (Fig. 8B) and high temporal
frequencies (Fig. 8D), which elicit little response in V1 neurons
(Ikeda and Wright, 1975; Movshon et al., 1978; Saul and Hum-
phrey, 1992; DeAngelis et al., 1993; Freeman et al., 2002).

Cortical feedback, however, does seem to affect LGN re-
sponses (Alitto et al., 2002; Sillito and Jones, 2002; Worgotter et
al., 2002). Cortical ablation or inactivation modifies the gain of
the neurons (Przybyszewski et al., 2000; Webb et al., 2002) and
reduces size tuning (Murphy and Sillito, 1987; Alitto and Usrey,
2003). These effects might possibly be explained if cortex modu-
lated the strength of the suppressive field, for example by control-
ling the value of the parameter c50, which we have considered to
be constant (Fig. 3A,B).

Limitations of our study
A limitation of our study is that we did not consider the nonlinear
spatial summation seen in both retina and LGN. We have mod-
eled the component of the responses oscillating at the stimulus
frequency. This component accounts for most of the variance in
the responses of X cells. Y cells, however, also respond to moving
gratings with an elevated mean firing rate (Enroth-Cugell and
Robson, 1966; Hochstein and Shapley, 1976; Derrington et al.,
1979; Demb et al., 1999). We did not consider the mean rate of
responses and therefore could not test the suggestion that the
subunits underlying the responses of Y cells correspond to the
bank of filters in the suppressive field (Shapley and Victor, 1978,
1981; Victor, 1987).

Another example of nonlinear summation that we have not
considered is the “shift effect” (also known as the “periphery
effect”), whereby the firing rate of a neuron can be increased by
stimulus moving well outside the receptive field (McIlwain and
Creutzfeldt, 1964; Levick et al., 1965; Ikeda and Wright, 1972;
Kruger and Fischer, 1973; Derrington et al., 1979; Passaglia et al.,
2001). Our model cannot explain this increase. Remote stimula-
tion, however, can also induce suppressive effects that have been
related to the shift effect (Felisberti and Derrington, 1999, 2001;
Passaglia et al., 2001; Girardin et al., 2002). These effects resemble
the effects of the suppressive field in many aspects. First, remote
stimulation has a divisive effect on the responses to a central
target (Felisberti and Derrington, 1999). Second, it affects the
contrast gain of the neurons (Felisberti and Derrington, 1999;
Girardin et al., 2002). Third, suppression can be induced by stim-
uli as distant as 10° away from the receptive field center. This
finding might be consistent with our finding that the suppressive
field extends over a large region of visual field (10.3 � 6.6° in
diameter at an average eccentricity of 13.9 � 9.1°).

A major limitation of our work is that we have not considered
the time course of the responses. Contrast gain control not only
affects the gain of the responses but also their temporal dynamics
(Shapley and Victor, 1978, 1981). Increasing contrast reduces the
integration time of the neurons affecting the phase of responses
and their selectivity for temporal frequency. The model does not
capture these effects: in fact, we intentionally simplified the Shap-
ley–Victor model so that it would predict only the amplitude of
the responses. Our model therefore only works for stimuli of
fixed temporal frequencies.

Moreover, we have not considered the dynamics of contrast
gain control (i.e., how a change in contrast at a given time can
influence gain at a later time). We cannot study these dynamics
because, in our stimuli, contrast was fixed through time. In par-
ticular, we cannot distinguish the fast mechanism of contrast gain
control (Victor, 1987; Baccus and Meister, 2002; Mante et al.,
2005; Zaghloul et al., 2005) from the slower mechanism of con-
trast adaptation (Chander and Chichilnisky, 2001; Kim and
Rieke, 2001; Baccus and Meister, 2002; Solomon et al., 2004). We
suspect that slow adaptation plays little role in our results, be-
cause it is pronounced only for high-frequency stimuli (Solomon
et al., 2004) and is weak at lower frequencies (Ohzawa et al., 1985;
Shou et al., 1996; Sanchez-Vives et al., 2000; Yang et al., 2003;
Solomon et al., 2004). Moreover, our stimuli were brief (typically
1–2 s, always �4 s), presented in randomized order, and sepa-
rated by 1 s of blank screen; these properties would minimize
the effects of slow adaptation, which take seconds to develop and
are strongest when low contrast stimuli are preceded by long
periods of strong stimulation (Solomon et al., 2004).
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Implications for V1 responses
Our formulation of retinal contrast gain control in terms of divi-
sion reveals close similarities with models of gain control or nor-
malization in primary visual cortex (Albrecht and Geisler, 1991;
Heeger, 1992; Carandini et al., 1997). These models predict ex-
pressions similar to Equation 6. In fact, neurons in primary visual
cortex exhibit contrast saturation (Albrecht and Hamilton, 1982;
Sclar et al., 1990), masking (Bonds, 1989; Freeman et al., 2002),
and size tuning (Sceniak et al., 1999; Cavanaugh et al., 2002). The
exact contribution of LGN suppression to these phenomena is
not clear. It is evident that some cortical effects, such as the ori-
entation selectivity of surround suppression (Cavanaugh et al.,
2002), are not easily explained by suppression in LGN. Nonethe-
less, our results indicate that the suppressive phenomena seen in
LGN would be expected to contribute to those seen in V1.

The fact that a model with similar structure can explain gain
control in retina, in LGN, and in cortex is very good news. It paves
the way for a long-due assessment of the relative roles of these
stages of visual processing to phenomena of suppression, gain
control, and normalization. Once these phenomena are fitted
with the same model in the different stages, then the contribution
of each stage can be described by the parameters of the model
(Sclar, 1987; Sclar et al., 1990).

Function of the suppressive field
The suppressive field is distinct from the receptive field in many
respects. First, it is responsible for suppressive phenomena that
cannot be explained by the receptive field alone (Fig. 3, dashed
lines). Second, it responds well to high and low spatial frequen-
cies (Fig. 8B), frequencies that generally elicit poor responses in
the receptive field (Fig. 8A). Third, it computes the SD of stimu-
lus intensities (Fig. 1).

What use might the visual system make of divisive suppres-
sion? One possible use is to map the wide range of contrasts
encountered in the natural environment onto the limited dy-
namic range of the neurons (Heeger, 1992). Suppression may
also play a role in encoding of visual information by populations
of neurons: a divisive gain control model applied to responses in
primary visual cortex was shown to increase independence of the
responses across neurons (Schwartz and Simoncelli, 2001; Vale-
rio and Navarro, 2003).

We suggest that the suppressive field could also play a role in
the joint encoding of spatial frequency and spatial position,
which are subject to a stringent tradeoff (Daugman, 1985). In
LGN, selectivity for spatial frequency results from the antagonis-
tic effect of the receptive field center and surround. This selectiv-
ity comes, however, at the cost of lower spatial localization be-
cause of the large size of the receptive field surround. The
suppressive field counteracts this effect by reducing the effective
integration area of the neuron. This improvement in encoding of
spatial position comes at no cost because the suppressive field
barely affects the tuning of responses for spatial frequency (Fig.
3F).

Toward a functional model of LGN neurons
Our model is a parsimonious description of the processing per-
formed by LGN neurons on spatial images. It features few free
parameters, each of which has a clear functional interpretation.
These parameters can be reliably estimated from a limited set of
measurements and held fixed to predict data obtained in new
experiments.

This research, thus, brings us closer to a central goal of visual
neuroscience, the development of functional models of neural

responses to visual stimuli. Functional models summarize the
image processing performed by neural circuits, guide research in
the underlying biophysics, and facilitate the study of subsequent
visual stages. Functional models are particularly desirable for
LGN, whose responses reflect the complex computations per-
formed in retina, and constitute the principal input to the visual
cortex. As the first inroads toward thalamic visual prostheses are
being made (Pezaris and Reid, 2004), the need for such a model
may become much more pressing.

Appendix: divisive effect of gain control
Here we show that the model of retinal contrast gain control by
Shapley and Victor (1981) predicts that contrast has a divisive
effect on the responses. The model consists of a fixed low-pass
filter followed by a high-pass stage whose time constant varies
with contrast.

For simplicity, we consider the version of their model de-
scribed by Victor (1987), in which responses to a stimulus with
contrast c and temporal frequency 	/(2�) are given by the
following:

R�c, 	� � cL�	��1 �
h

1 � i	
�c�� , (7)

where L(	) is a low-pass filter, and the expression in the large
parentheses is a high-pass filter with gain h and time constant

(c). Following Victor (1987), we take the latter to depend on
contrast c as follows:


�c� �

0

1 � �c/c50�
n , (8)

with n, 
0, c50 constants.
Fixing h � 1 (Benardete and Kaplan, 1999), we substitute

Equation 8 into Equation 7 and calculate the absolute value to
obtain the following:

�R�c, 	�� � �L�	��
c

��c50
n � cn�2 � 	2
0

2c50
2n

, (9)

where |L(	)| is the amplitude of the linear response, and the
right-hand term captures the effect of gain control. The denom-
inator in Equation 9 is responsible for the effects of gain control.
Gain control is pronounced at low temporal frequencies (	 ��
1/
0) for which the denominator grows with contrast. Gain con-
trol is absent at high frequencies (	 �� 1/
0) for which the de-
nominator becomes independent of contrast. With 	 close to 0,
Equation 9 reduces to a hyperbolic ratio:

�R�c�� � �L�0��
c

�c50
n � cn�

, (10)

which demonstrates that contrast gain control in retina is divi-
sive, because contrast appears not only in the numerator but also
in the denominator.

In cat X ganglion cells, 
0 has a median value of 0.23 s (Victor,
1987), so the approximation provided by Equation 9 is exact only
for frequencies less than 1/0.23/(2�) � 0.69 Hz. However, we
found that the expression provides good fits to responses at fre-
quencies as high as 12 Hz.

Our Equation 6 follows from Equation 10 once one sets n � 1.
Indeed, this value seems more consistent with the data (Fig. 3)
(Sclar et al., 1990) than the value n � 2 used by Victor (1987).
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