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Abstract

A key goal in the study of visual processing is to obtain a comprehensive description of the relationship between visual stimuli and

neuronal responses. One way to guide the search for models is to use a general nonparametric regression algorithm, such as a neural network.

We have developed a multilayer feed-forward network algorithm that can be used to characterize nonlinear stimulus-response mapping

functions of neurons in primary visual cortex (area V1) using natural image stimuli. The network is capable of extracting several known V1

response properties such as: orientation and spatial frequency tuning, the spatial phase invariance of complex cells, and direction selectivity.

We present details of a method for training networks and visualizing their properties. We also compare how well conventional explicit

models and those developed using neural networks can predict novel responses to natural scenes.
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1. Introduction

One of the central goals of visual neuroscience is to

obtain comprehensive descriptions of the relationship

between visual stimuli and neuronal responses. This task

has proven quite daunting. Responses from any neuron can

only be recorded for a limited amount of time, with a limited

range of stimuli. In addition, the behavior of many neurons

in the visual cortex is complex and inherently nonlinear.

This causes problems for both the selection of effective

stimuli and the choice of appropriate models.

The nonlinear behavior of visual cortical neurons will

cause their response characteristics to vary when probed

with different stimuli (David, Vinje, & Gallant, 1999). In

theory, a nonlinear neuron can be characterized using the

white noise approach (Marmarelis & Marmarelis, 1978).

In practice, white noise is inefficient, especially when

used to characterize neurons at higher stages of visual

processing. Neurons in visual cortex do not respond well

to white noise stimuli, making them difficult or impossible

to characterize. One alternative is to use natural images as

stimuli.

Because a nonlinear function such as the ones governing

neuronal responses can be fit by an infinite number of

nonlinear models, it is difficult to select an explicit model a

priori. One alternative approach to explicit model testing is

to use a machine learning-based nonparametric regression

algorithm, such as a neural network, to estimate the

nonlinear relationship between stimulus and response.

The nonparametric algorithm requires no assumptions

about the function it models, but the resulting model can

be analyzed to reveal the nonlinear stimulus-response

transfer function that has been recovered. Two previous

studies have used multilayer neural networks to recover the

nonlinear response properties of neurons in the visual cortex

(Lau, Stanley, & Dan, 2002; Lehky, Sejnowski, &

Desimone, 1992). However, these algorithms were not

optimized for naturalistic stimuli.
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We have developed a method for the training and

interpretation of a multilayer feed-forward network that can

be applied to data sets consisting of complex natural image

stimuli and associated neuronal responses. To test the

validity of this approach, we have applied it to data recorded

from primary visual cortex (area V1), where some nonlinear

response properties have already been described. Our study

demonstrates that a neural network can recover not only the

known linear response properties of V1 neurons, such as

spatial frequency and orientation tuning, but also nonlinear

response properties such as direction selectivity and the

spatial phase invariance of complex cells.

Explicit models often require fewer free parameters than

neural networks, and allow individual model components to

be tested separately. Neural network analyses can guide the

search for novel response properties that can then be

incorporated into an explicit model. Our neural networks

‘discovered’ several known response properties of V1

neurons, deriving them entirely from the natural image

stimuli and response data. We implemented the response

properties found by the networks in an explicit model and

demonstrated an increase in its predictive power. This

approach may prove useful in higher visual areas, where

there is little knowledge to guide the a priori choice of an

explicit model.

2. Methods

2.1. Stimuli and data collection

We recorded responses from 34 well isolated neurons in

parafoveal area V1 of an awake, behaving male macaque

(Macaca mulatta). The animal performed a fixation task for

a liquid reward. Eye position was monitored with a scleral

search coil. Trials were aborted if eye position deviated

more than 0.358 from the fixation point. Action potentials

were identified using a custom hardware window discrimi-

nator with a temporal resolution of 0.1 ms. All procedures

conformed to NIH guidelines and were approved by the

University of California, Berkeley Animal Care and Use

Committee (Procedural details can be found in (Vinje &

Gallant, 2002))

The spatial receptive field size and location of each

isolated neuron were estimated manually during fixation,

using bar and grating stimuli. Estimates were confirmed by

reverse correlation of responses to a dynamic sequence of

randomly positioned black and white squares on a gray

background (i.e. a sparse noise stimulus) (Connor, Gallant,

Preddie, & Van Essen, 1996; Deangelis, Ohzawa, &

Freeman, 1993). Six to eight squares spanned the manual

estimate of the receptive field (0.1–0.58/square). The region

over which sparse noise stimulation elicited spiking

responses was designated the classical receptive field

(CRF). The manual and automatic estimation procedures

were generally in good agreement.

Stimuli consisted of a dynamic sequence of natural

images in which a new image appeared on each refresh

cycle of the 72 Hz display (see Fig. 1A). Image sequences

were designed to have temporally white statistics and the

spatial statistics of natural scenes. Each frame contained a

circular image patch extracted at random from

1280 £ 1024 pixel images obtained from a high-resol-

ution, commercial digital photo library (Corel, Inc.).

Images included animals, humans, landscapes, and man-

made objects. Color images were converted to gray scale

before presentation. All image patches were two to four

times larger than the CRF, and their outer edges (10% of

the radius) were linearly blended into the gray background

of the display. Each 100–350 s image sequence was

divided into 20–70 five second segments. One segment,

centered on the CRF, was presented during each fixation

trial. Each sequence was shown only once. All stimuli

were presented on a standard CRT using a neutral gray

background. In order to avoid any transient trial onset

effects, the first 196 ms of data acquired on each trial were

discarded.

2.1.1. Stimulus preprocessing

Stimuli were preprocessed to decrease computational

demands and make network estimation more efficient. First,

information from the quantitative spatial receptive field

mapping procedure was used to identify the stimulus region

that circumscribed the CRF of each neuron. Image

sequences were then cropped around the CRF and down-

sampled to 20 £ 20 pixels.

Nomenclature

r̂ðtÞ; Network predicted response at time t

xjðtÞ; Input vector at time t

bo; Network parameter, output bias

bi; Network parameter, input bias

wi; Network parameter, output weights

uij; Network parameter, input weights

m; Mean of the distribution

s2; Variance of the distribution

E; Value of the objective function

b; Empirical error hyperparameter

N; Number of data points

d; Dimensionality of the input vector

j; Network parameter regularization grouping index

aj; Hyperparameter for group j

mj; Number of parameters in group j

G
j
k; The kth parameter in the jth group
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Fig. 1. Network model training and visualization. (A) One brief segment of a typical dynamic natural image sequence. Each frame contained one grayscale

natural image drawn at random from a large database. Images were 1–4 times the size of the classical receptive field. (B) To facilitate network performance,

the dimensionality of the stimulus was reduced by projecting each frame onto the first 25 principal components of the image sequence. The top row represents a

portion of a stimulus sequence and its associated response. The middle row represents the projection of a single stimulus frame onto the principal components

of the natural image sequence, resulting in a column of coefficients for each frame in the stimulus sequence. (C) The preprocessed stimulus coefficients were

used as inputs into a multilayer, feed-forward neural network, which predicted the corresponding neuronal responses. At each point in time the network had

access to seven frames of the stimulus sequence. (D) During network training, regularization procedures were used to remove parameters and simplify the

network. This procedure prevented overfitting and aided in network interpretation. (E) After training was complete a separate procedure was used to visualize

the network. First, the nonlinear mapping function implemented by the network was re-expressed in terms of its principal dimensions. In this schematic we

show a network that produces two dimensions. Then the observed and predicted responses were projected onto these principal network dimensions.
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Second, for each neuron, the spatial principal com-

ponents of the image patches were computed using singular

value decomposition. Patches were then projected onto the

first 25 principal components (see Fig. 1B). Note that image

luminance was not normalized before projection, so the

principal components include mean luminance. The first 25

principal components accounted for 94% of the image

variance on average. Increasing the number of principal

components beyond 25 had little effect on the final network

solution, but it dramatically increased network convergence

time.

Finally, projections into the principal component domain

were scaled to have a mean of zero and variance of one. This

scaling operation removed the low frequency bias present in

natural images (Field, 1987). The gradient descent algor-

ithm used here minimizes squared error regardless of

stimulus correlations, so in principle the low frequency bias

of natural images could simply be ignored. However,

explicit bias removal reduces network training time.

2.1.2. Network architecture

We used a three-layer neural network (input layer,

hidden layer, and output layer) with a tapped delay line

architecture (see Fig. 1C and (Waibel, Hanazawa, Hinton,

Shikano, & Lang, 1989)) to learn the optimal mapping of a

dynamic image sequence into the neuronal responses

recorded from each neuron. The principal component

projection of a dynamic image stimulus is treated as a

vector, and used as input to the neural network. Each hidden

unit of the network sums the elements of this vector,

weighted by network parameters referred to as input

weights. A constant term called the input bias is added to

the output of each hidden unit, and the resulting vector

serves as the argument to a sigmoidal function (the

hyperbolic tangent). The outputs from the sigmoidal

functions are summed, weighted by network parameters

referred to as output weights. The output of the network is

this weighted sum plus another constant term, called the

output bias. The output of the network represents the

predicted instantaneous firing rate of the neuron to the input

vector.

Given an input vector, x; the response, r̂ of the network

can be written as:

r̂ðtÞ ¼ bo þ
Xh

i¼1

wi tanh bi þ
Xd
j¼1

uijxjðtÞ

0
@

1
A:

where wi are the output weights, uij are the input weights, bi

and bo are the input and output bias, h is the total number of

hidden units in the network, and d is the length of the input

vector. Given enough hidden units this series can theoreti-

cally fit any continuous function (Barron, 1993; Hornik,

Stinchcombe, & White, 1989). However, our current

understanding of neural coding and a previous study (Lau

et al., 2002) suggest that many neural response properties

can be characterized using relatively few hidden units.

In our analysis the input vector had length 175,

consisting of the 25 principal component coefficients at

seven time lags. The first time lag represented responses that

were simultaneous with stimulus presentation and the

seventh time lag represented a latency of seven frames

between stimulus onset and response (14–16 ms per frame).

The network was initialized with 12 hidden units. This

number was chosen to allow it to obtain a very accurate (i.e.

overfit) initial fit. The input weights and input bias

parameters were initialized by sampling randomly from a

normal distribution,

m ¼ 0;s2 ¼
1ffiffiffiffiffiffiffiffiffiffi

175 þ 1
p

� �
:

The output weights and output bias were similarly

initialized from a normal distribution,

m ¼ 0;s2 ¼
1ffiffiffiffiffiffiffiffiffi

12 þ 1
p

� �
:

2.1.3. Gradient descent

The parameters of the network were optimized using

a back propagation algorithm (Rumelhart, Hinton, &

Williams, 1986) that implements the scaled conjugate

gradient (SCG) method (Moller, 1993). SCG prevents

oscillations in parameter space by computing the conjugate

direction rather than the steepest descent direction, but it

may have slow convergence due to small step size. To

maximize convergence speed SCG approximates the

Hessian matrix, describing the curvature of the local search

space, to compute the optimal step size along the conjugate

direction. This algorithm minimizes the squared error

between the network predictions and observed neuronal

responses, and it is an order of magnitude faster than

conventional back propagation with steepest descent.

2.1.4. Regularization

A common problem with nonlinear regression pro-

cedures is that they tend to overfit the training data.

Overfitting is undesirable because it reduces the ability of

the network to predict responses to novel data sets. In

addition, overfit models often contain more parameters than

required for optimal prediction, making network interpret-

ation more difficult.

Regularization procedures are designed to prevent over-

fitting by constraining network parameters. In a Bayesian

framework, network parameters can be constrained by

assuming they are drawn from a prior probability distri-

bution (Mackay, 1995). We grouped network parameters

into related sets and imposed an appropriate prior

distribution on each parameter group. These prior assump-

tions are expressed as weight decay terms, controlled by

regularization hyperparameters that were assigned indepen-

dently to each group. The hyperparameters are chosen such

that the weight decay terms continually decreased the

influence of unimportant parameters during training.
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2.1.5. Parameter grouping

Because visual cortical neurons may be tuned to a narrow

range of stimuli, many of the principal components of the

stimulus are likely to be unrelated to the response of a

specific neuron. To allow any individual principal com-

ponent to be ignored, all of the input weights corresponding

to given component of the input vector were grouped and

assigned a single hyperparameter (see Fig. 2). We used d

groups of parameters to describe all d £ h input weights of

the network, denoted G j for j ¼ 1;…; d: Three additional

groups were defined, for the input bias terms ðG dþ1Þ; the

output weights ðG dþ2Þ; and the output bias term ðG dþ3Þ:

Each of the d þ 3 parameter groups, j ¼ 1;…; d þ 3; was

controlled by a separate regularization hyperparameter aj:

We assumed that the parameters in the jth group are

normally distributed,

m ¼ 0;s2 ¼
1

aj

 !
:

Each aj was initialized and updated by the training

algorithm, as described in Section 2.2.

In addition to regularizing network parameters, we also

regularized the empirical error (the sum of squares of the

differences between predicted and actual responses). This

was controlled by another regularization hyperparameter, b:

We assume that the error between a given response and the

actual response is normally distributed,

m ¼ 0;s2 ¼
1

b

� �
:

b was initialized and updated by the training algorithm, as

described in Section 2.2.

Given these prior assumptions, the most probable

network configuration is the one that minimizes the

objective function (Mackay, 1995):

E ¼
b

2

XN
t¼1

ðr̂t 2 rtÞ
2 þ

Xdþ3

j¼1

aj

2

Xmj

k¼1

ðG
j
kÞ

2
:

The first term is the empirical error, and the second is the

weight decay function. Here E is the current value of the

objective function. In the first term b is a regularizing

hyperparameter, N is the number data points (input–output

pairs), r̂t is the predicted response at time t to a specific

stimulus, and rt is the actual response at time t: In the second

term d þ 3 is the number of parameter groups, mj is the

number of parameters in group Gj;G
j
k is the kth parameter in

the jth group, and aj is the hyperparameter for the jth group.

As the constant b grows the algorithm gives more emphasis

to minimizing the empirical error and as each aj grows, the

algorithm emphasizes driving the parameters in the jth

group to zero.

2.1.6. Initial values of regularization hyperparameters

The optimal values of aj and b are not known a priori;

they must be estimated during training. We therefore

initialized the hyperparameter on each group of input

weights aj to be proportional to the inverse of the total

stimulus power in the corresponding input vector com-

ponent, prior to scaling:

ainitial
j ¼

AXN
t¼1

I2
tj

;

A ¼ ð0:0001 , 1Þ £ max
XN
t¼1

I2
tj

 !
for j ¼ 1;…; d

Here ainitial
j is the initial value of aj in group j; Itj is the

amplitude of input vector component j and time point t prior

to scaling, and N is the number of time points. The initial

value of aj; for the remaining groups was set to 0.00001, so

that the initial stages of weight decay have little influence on

these parameters. In practice, we find that the choice of

initial values for the aj terms has little effect on the final

network solution, provided the values are low enough to

allow the network to overfit initially. The parameter b was

initially set to 1.

2.2. Training the network

The parameters of the network were optimized using a

back propagation algorithm that minimizes the objective

function (See ‘Parameter grouping’ above). It is usually

desirable to overfit initially, because this ensures that the

regularization algorithm does not converge on an underfit

Fig. 2. Parameter grouping for automatic relevancy determination. All

network parameters are shown, along with their associated parameter

groups (groups labeled G1 2 Gdþ3). Each weight corresponding to a given

input was assigned its own group with a separate regularization parameter

(groups labeled G1 2 Gd). Three additional groups were defined for the

input bias terms ðGdþ1Þ; output weights ðGdþ2Þ; and output bias ðGdþ3Þ:
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solution. However, drastic overfitting increases compu-

tational time dramatically. To achieve a reasonable degree

of initial overfitting, the network was trained for 500

iterations with the initial values of the hyperparameters held

constant; if the mean squared error fell below 0.2 during this

initial training we assumed that overfitting had been

achieved and training was stopped immediately.

After the initial training, the hyperparameters were

updated using the current values of the network parameters

and empirical error, and training continued using the revised

objective function. Hyperparameters were then updated

after every 30 training steps. The process was stopped when

both the squared error and the regularization error changed

by less than .01 for 5 updating steps.

The aj hyperparameters were updated as follows:

aj ¼
1

varð{ 2 G
j
k;G

j
k}

mj

k¼1Þ
¼

mj 2 0:5Xmj

k¼1

ðG
j
kÞ

2

:

G
j
k are the parameters in group Gj and mj is the number of

parameters in the group. As stated earlier, the weight decay

term in the objective function corresponds to a prior

assumption that the parameters in a group are sampled

from a normal distribution,

m ¼ 0;s2 ¼
1

aj

 !
:

This method of updating aj corresponds to using the

variance of the group to determine the value of aj: The

notation varð{ 2 G
j
k;G

j
k}

mj

k¼1Þ means that the variance of

both the parameters and the negatives of the parameters are

calculated together. Including both the positive and negative

values of the parameters forces the collection of parameters

to have a mean of zero. Updating aj this way is

mathematically equivalent to setting aj equal to the

reciprocal of the average power in the parameters. The 0.5

in the numerator of the updating function is a correction for

using finite data to estimate variance. The net result of this

updating procedure is that the groups with smaller

parameters will be driven to zero more quickly.

The hyperparameter b was updated similarly:

b ¼
1

varð{ 2 dt; dt}
N
t¼1Þ

¼
N 2 0:5XN

t¼1

d2
t

with dt ¼ ðr̂t 2 rtÞ:

Here r̂t corresponds to the predicted response of the

network to a stimulus, rt is the observed neuronal response

to that stimulus and N is the training sample size. As stated

earlier, the empirical error term in our objective function

corresponds to a prior assumption that the residuals are

sampled from a normal distribution,

m ¼ 0;s2 ¼
1

b

� �
:

This method of updating b corresponds to using the

variance of the error to determine the value of b:

The critical aspect of our regularization procedure is that

weight decay is based on the average power of the weights

in a group, but independently of all other groups. Whenever

a for a given group of weights was greater than 1010, the

weights were pruned from the network permanently. This

made the network smaller, increasing training speed and

making the network more interpretable. This entire method

of regularization corresponds to a form of Bayesian

automatic relevancy determination (Mackay, 1995).

2.2.1. Hidden unit pruning

The neural network algorithm described above produces

good fits to our experimental data using a maximum of 12

hidden units. However, it is important to minimize the

number of hidden units if possible; networks with too many

hidden units are difficult to interpret and tend to overfit the

training data. To solve this problem we introduce an

additional procedure that prunes hidden units until an

optimal solution is achieved.

After the training and weight decay algorithm converged

for a network with 12 hidden units, one of the hidden units

was removed from the network. The output weights and

output bias of the new network were optimized using the

minimum mean squared error criterion. This procedure was

repeated 12 times, each time removing a different hidden

unit from the original network. The network with the best

performance was then selected, and training continued until

this reduced network converged. This pruning process was

repeated until we were left with a network that had only one

hidden unit.

After pruning was completed, the resulting 12 networks

(with 1–12 hidden units) were evaluated in terms of their

ability to predict responses to 10% of the training data that

had been reserved for this comparison. The neural network

with the smallest prediction error on this reserved training

set was selected as the network which best described the

response properties of the neuron. Note that these reserved

training data were entirely separate from the validation data

used in final calculation of prediction scores.

2.2.2. Avoiding local minima

One potential pitfall of all gradient-based regression

procedures is that they can become trapped in a local

minimum that does not represent the optimal solution. To

avoid this problem we repeated the entire training procedure

ten times, using different initial conditions each time. In

previous studies (Lehky et al., 1992), the choice of initial

conditions had a profound effect on the final network

solution. However inspection revealed that our ten networks

displayed very similar response properties, implying that the

local minima lie very near each other in parameter space.

This may be due to our choice of regularization technique.

To choose among these 10 networks the algorithm selected
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the one that best predicted responses in the reserved training

data described above.

2.2.3. Evaluating predictions on validation data

Once we obtained the final network, its predictive power

was determined by computing the correlation coefficient

between observed neuronal responses from a separate

validation data set and the responses predicted by the

network. These data consisted of 10% of the available data

(except for three neurons, for which a separate multiple-trial

validation set was collected). These data were set aside at

the beginning of the analysis and were never used in any

aspect of training or pruning. Therefore, there is no danger

of the network being overfit to the validation data;

prediction scores represent the true predictive power of

each network.

Predictions of the responses in the validation data set

provide two important measures of model performance.

First, predictions allow us to assess statistical significance.

A network may achieve a remarkably small training error by

overfitting the training data set, so it is impossible to

determine whether it provides a good description of the

stimulus-response transfer function by inspecting prediction

error on the training data alone. However, if the network can

achieve good predictions of a separate validation data set,

then it must represent the true transfer function of the

neuron. We estimated statistical significance of network

predictions with a permuted t-test (Theunissen et al., 2001);

predicted responses were compared to the distribution

obtained by repeatedly shuffling the order of responses in

the validation set. Our neural networks achieved statistically

significant predictions for 29 of the 34 neurons in the sample

ðP , 0:05Þ:

Predicting responses to novel stimuli also allows us to

assess the importance of model characteristics. One

common metric of the importance of a model is the

percentage of response variance that it accounts for. The

square of the correlation coefficient between actual and

predicted responses is equal to the percentage of response

variance accounted for by the prediction. Note that

importance is not necessarily related to statistical

significance; it is quite possible to achieve a statistically

significant result that accounts for a negligible portion of

response variance. Significance merely indicates the

likelihood that the correlation between the actual and

predicted response is due to chance.

2.3. Interpreting the network

A neural network implicitly embodies a nonlinear

regression solution, but a separate interpretation algorithm

must be used to visualize the transfer function implemented

by the network. Previous studies have used two methods for

network interpretation: visualization of the network weights

(Lehky et al., 1992), and identification of the stimulus-

response subspace (Lau et al., 2002).

2.3.1. Network weights

Network weight visualization is a simple way to view

all the parameters of the network simultaneously. Recall

that the network consists of a set of hidden units each

followed by a sigmoidal nonlinearity whose outputs are

linearly summed. Fig. 4a illustrates application of this

procedure to data acquired using a model simple cell

(Fig. 3). Each hidden unit is displayed alongside its

sigmoidal activation function which is determined by the

network parameters. Its slope is determined by the gain of

the unit, its x-position by the input bias and its y-position

by the output bias. Although this format clearly

summarizes the network parameters, it does not provide

all of the information necessary to understand the transfer

function implemented by the network. If the hidden units

interact with one another or if the input is limited to a

restricted portion of their potential dynamic range, then

the network function will be difficult to interpret merely

by viewing the network weights.

2.3.2. Principal network dimensions

Another method for interpreting a neural network is to

treat the input weights as a set of vectors that describes the

stimulus subspace to which a neuron is sensitive (Lau et al.,

2002). Multiplication of the stimulus input channels by

Fig. 3. Model simple and complex cells. A simple cell model was constructed by combining a linear spatial Gabor filter and a biphasic temporal response

(center), followed in turn by a rectifying nonlinearity (right). Peak orientation was vertical, peak spatial frequency was two cycles per receptive field, spatial

phase was even and peak latency was two time bins. A complex cell model was constructed by summing the rectified output of four simple cells in quadrature

spatial phase. The input to the model was a dynamic natural image sequence (left).
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the input weights of the network is a linear projection of

the input vector onto a new basis set. All the input weights

corresponding to a given hidden unit constitute one basis

vector. The input weights of the h hidden units define the

h-dimensional input space that the network uses to predict

responses.

It is convenient to choose a basis set that ranks

dimensions by their importance for predicting neuronal

responses. We developed a procedure that accomplishes this

in several stages. First, we performed singular value

decomposition on the input weights to produce a set of

orthonormal basis vectors. Second, all of the stimulus

vectors were projected linearly onto this basis set. Third, the

transformed stimulus vectors were multiplied by the

predicted response of the network to each stimulus vector.

Finally, singular value decomposition was applied to these

transformed, response-weighted stimulus vectors. This

procedure produced a set of orthogonal, linearly indepen-

dent vectors that completely described the input space of the

network, ordered by the variability of the response of

the network. Each vector describes a dimension of stimulus

space and can be displayed as a series of spatial filters at

progressively later time lags.

To determine which principal dimensions were most

important we examined their associated eigenvalues.

Principal dimensions with large eigenvalues were then

visualized on a two dimensional graph in which the x-axis

represents the projection of a stimulus the principal

dimension, and the y-axis represents response rate. Three

functions were plotted on this graph: the mean and

confidence intervals for the observed response of the

model neuron, predicted responses of the network using

the identified principal dimension alone, and predicted

responses using the principal dimension of interest and all

other dimensions simultaneously. By comparing predicted

responses of the dimension of interest alone versus

predictions of the network as a whole, we could determine

whether each principal dimension interacted nonlinearly

with other dimensions. (For an example of this procedure,

see Fig. 4b.)

Fig. 4. Network analysis of the model simple cell. (a) Hidden units of a network trained on data acquired from model simple cell (see Fig. 3). Model cell was

stimulated with a dynamic natural image sequence. For each hidden unit (1–3), both input weights and sigmoidal nonlinearity are shown. All sigmoids are

shown on the same scale. (b) The first principal network dimension of the network shown in (a). The x-axis describes the projection of the stimulus onto the first

principal dimension, and the y-axis gives response rate. The spatio-temporal filters shown beneath the x-axis correspond to extreme negative and positive

values of the dimension. The inset graph shows the eigenvalues for this dimension (indicated by dot) and the other two principal network dimensions. The large

drop in eigenvalues after the first suggests that this network is well described by a single principal dimension. The gray shaded curve represents the mean

(center of curve) and two standard errors (boundaries of curve) of model simple cell responses along this principal dimension. (Responses were collapsed into

30 bins, with an equal number of data points per bin.) The solid black line shows the responses predicted by the entire network. The dashed line shows the

response of the network using only this particular principal dimension. Because predicted responses of this dimension alone correspond closely to predictions

of the network as a whole, it is likely that this dimension does not interact nonlinearly with other any other dimensions. Inspection of the gray curve confirms

that the model simple cell responded to stimuli with vertical orientation, odd spatial phase and positive sign. However, because of rectification the model cell

did not respond to stimuli with the same orientation and phase, but opposite polarity. The network recovers all the key properties of the model simple cell.
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2.4. Explicit models for comparison

To evaluate the performance of the neural network

approach, we compared network predictions of a separate

validation data set to predictions obtained from two explicit

models: a simple linear image domain model, and a

nonlinear Fourier power domain model that accounts for

phase invariance.

2.4.1. Image domain model

We first constructed a linear image domain model,

similar to those previously used to describe V1 simple cells

(Jones et al., 1987). The image domain model consisted of a

linear spatiotemporal filter followed by rectification. The

spatiotemporal filter had 3840 parameters representing the

gain of 256 spatial channels (16 £ 16 spatial grid) at 15 time

lags. To fit the model, the stimulus was windowed and

downsampled in space. Reverse correlation was then used to

determine the filter providing the minimum mean squared

error estimate of responses (Jones et al., 1987). Natural

image autocorrelation bias was removed by multiplying the

spike-triggered average response by the inverse of the

stimulus autocorrelation matrix (Theunissen et al., 2001).

The rectification function had one parameter, the activation

threshold. This was fit using exhaustive search after

selection of the optimal filter. Regularization was

implemented by cross validation of the training data.

The linear image domain model should perform similarly

to a neural network containing one hidden unit and a

rectilinear activation function. The model assumes expli-

citly that the response is a linear function of stimulus

luminance in space and time. This model can be fit quickly,

however it cannot account for nonlinear response properties

other than spiking threshold.

2.4.2. Fourier power model

We also constructed a Fourier power model that can

account for phase invariant responses of V1 complex cells

(Theunissen et al., 2001). The Fourier power model

consisted of a spectro-temporal filter followed by rectifica-

tion. The spectro-temporal filter had 1920 parameters

representing the gain of 128 spatial channels at 15 time

frames. In this model the spatial channels represent the

Fourier power of the stimulus after windowing and down-

sampling to a 16 £ 16 spatial grid. (Only half of the 256

spatial coefficients are required because the images are all

real, introducing conjugate symmetry into the Fourier

transform of the stimulus.) Other procedures for fitting

and removing stimulus bias were identical to those used to

fit the image domain model.

The Fourier power model assumes explicitly that

neuronal responses are a linear function of stimulus Fourier

power. The model can account for nonlinear phase

invariance and the spiking threshold. However, it discards

phase-dependent responses (other than those that are

captured by stimulus windowing) and cannot account for

other potential nonlinear response properties.

3. Results

The goals of this study were to predict the responses of

V1 neurons to dynamic natural image sequences by

estimating their nonlinear stimulus-response mapping

functions, and to determine whether novel nonlinear

response properties revealed by the neural network could

be incorporated into an explicit model of the neuronal

response function. To accomplish this, we recorded from 34

V1 neurons while stimulating with randomly selected

sequences of natural images. We then trained a neural

network to recover the stimulus-response mapping function

(Fig. 1). Performance of the training algorithm was verified

by applying it to model simple and complex cells with well

defined response properties.

3.1. Neural network analysis of model neurons

3.1.1. Model simple cell

Performance of the neural network algorithm was first

assessed by estimating the stimulus-response function of a

model simple cell (Fig. 3). The model consisted of a linear

spatial Gabor filter modulated by a biphasic temporal

response (Jones & Palmer, 1987), followed by a rectifying

nonlinearity. The model neuron preferred vertical orien-

tations, a spatial frequency of two cycles per receptive field,

and odd spatial phase. Its maximum response was two time

bins (28 ms) after stimulus onset. Responses were generated

by stimulating the model cell with a dynamic natural image

sequence consisting of 7228 images, typical of those used in

our experiments. A multilayer perceptron neural network

was then trained using 90% of the available data (see

Section 2). Network performance was evaluated by

calculating its ability to predict responses to the remaining

10% of the data.

The correlation between the model simple cell responses

and the predicted responses of the neural network was 0.88,

confirming that the network captured the critical response

properties of the model neuron. Note that predictions were

not perfect, even though the model contained no noise.

These imperfect predictions reflect the limited number of

stimuli used to probe the model, and the regularization

procedure, which has been optimized for noisy data (see

Section 2).

Fig. 4a provides a compact illustration of every

parameter of the resulting network. Each hidden unit is

displayed along with its sigmoidal activation function. If the

hidden units are interpreted as linear spatio-temporal filters,

then each panel represents a series of spatial filters at

progressively later time lags. The gain of each

filter determines the slope of the corresponding

sigmoidal nonlinearity. The input and output bias terms
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determine x- and y-position, respectively, and output

weights determine amplitude. The hidden units all have

similar orientation and spatial frequency tuning, and similar

temporal responses. They differ primarily in sign and in the

amplitude of their activation functions. This redundancy

highlights a limitation of the neural network approach: it is

difficult to draw conclusions about the function

implemented by the network merely by inspecting the

hidden units. Because hidden units are combined non-

linearly, complex interactions may arise that cannot be

visualized directly.

The underlying function of the network can be visualized

more completely by expressing the network in terms of its

principal dimensions. The principal network dimensions

represent the directions in stimulus space that best describe

the predicted neuronal responses. (The procedure for

determining network dimensions is fairly involved. It is

presented in detail in Section 2.) The first principal

dimension of the network trained on model simple cell

data accounts for 69% of the total network response

variability (i.e. 69% of the total power of all eigenvalues

of the principal network dimensions). The first network

dimension is shown in Fig. 4b, along with the predicted and

observed responses of the model neuron. This dimension

clearly recovers the orientation and spatial frequency tuning

of the model simple cell. The model neuron and the network

both tend to respond when the stimulus takes on positive

values in this principal dimension, and neither responds

when the stimulus takes on negative values. Thus, the

network recovers the behavior of the model simple cell,

which is sensitive to stimulus phase.

3.1.2. Model complex cell

In a second test we applied the neural network training

algorithm to data acquired using a model complex cell. This

model was constructed by summing the rectified output of

four simple cells in quadrature phase (see Fig. 3 and Spitzer

& Hochstein, 1985). Orientation, spatial frequency, and

temporal tuning were identical to the model simple cell, and

the same natural image stimulus sequence was used. Once

again, the neural network was trained using 90% of the data

and performance was assessed with the remaining 10% of

the data. The correlation between model complex cell

responses and predictions of the neural network is 0.87. As

before, this imperfect fit is due to limited stimulus sampling

and regularization.

The hidden units of the trained neural network are shown

in Fig. 5a. The peak orientation and spatial frequency of

several of the hidden units match those of the model neuron.

However, the hidden units have different spatial phases,

reflecting the phase invariance of the model neuron. Once

again, it is difficult to understand the underlying function of

the network from a cursory examination of the hidden units.

Fig. 5b and c shows the first two principal dimensions of

the network trained on data from the model complex cell.

The first two principal dimensions together account for 70%

of the network response variability. These dimensions

recover the orientation and spatial frequency tuning of the

model cell. In fact, they appear to represent the even and odd

phases of the linear filters used to construct the model. Both

model neuron and network tend to respond when the

stimulus takes on either positive or negative values along

these two dimensions. (This is in contrast to the network

trained on data from the model simple cell, where responses

are affected only by positive values of the stimulus along the

principal dimension.) The principal dimension analysis

reveals that the network captured the response properties of

the model complex cell without the need for any prior

assumptions about the specific form of the nonlinearities in

the response function of the model.

3.2. Neural network analysis of V1 neurons

We trained separate neural networks on data acquired

from each of 34 V1 neurons during stimulation with

dynamic natural image sequences. Fig. 6 shows the first

principal network dimension of the neural network obtained

for one neuron. This principal dimension accounts for 47%

of the network response variability, and all other network

dimensions are substantially less important (see inset,

Fig. 6). Inspection of this first principal dimension reveals

that the neuron has peak orientation tuning about 308 from

vertical, and peak spatial frequency tuning of approximately

one cycle per receptive field. The neuron tends to respond

when the stimulus is positive along this dimension, but not

when the stimulus is negative along this dimension.

The asymmetric response pattern suggests that this is a

simple cell.

Fig. 7a and b shows the first two principal dimensions of

the network obtained for a second neuron. These two

dimensions together account for 39% of the network

response variability. Both dimensions show peak orientation

tuning at vertical and peak spatial frequency tuning of about

two cycles per receptive field. These dimensions appear to

have even and odd phases, respectively, and the network

responds to stimuli with large positive and negative

projections along both dimensions. This pattern suggests

that this is a complex cell.

3.2.1. Predictions of the neural network versus the image

domain model

If the neural network can capture functionally important

nonlinear response properties of V1 neurons, it should

predict their responses better than a linear model (e.g. the

linear spatio-temporal receptive field (Theunissen et al.,

2001)). We compared predicted responses to a validation

stimulus set from the neural network and a linear image

domain model (See Section 2) fit using the same training

data.

Fig. 8a compares the predictions obtained using the

neural network against those obtained using the linear

image domain model for 34 V1 neurons. In 16 neurons
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(almost 50%), the neural network predicts responses

significantly better than the image domain model; in 11

neurons (about 30%) the two models predict equally

well; in the remaining 7 neurons the image domain

model predicts significantly better (P , 0:05; randomized

paired t-test).

The neural network can model a wide range of linear and

nonlinear functions. However, when the explicit model

provides an appropriate description of neuronal responses,

the neural network may produce poorer predictions. For

example, consider cell r0158A. We have already deter-

mined that this appears to be a simple cell (Fig. 6) and the

image domain model predicts its responses more accurately

than the neural network (Fig. 8a).

3.2.2. Predictions of neural network versus Fourier

power model

The neural network predicts the activity of many V1

neurons better than the image domain model. This is

consistent with previous theoretical and experimental

studies suggesting that the image domain model cannot

account for responses of V1 complex cells, which are

insensitive to spatial phase (Deangelis et al., 1993;

Theunissen et al., 2001). The example in Fig. 7 suggests

that the neural network can capture phase invariance. To

look at this issue more generally we compared the predicted

responses of the neural network to those of a nonlinear

Fourier power model that accounts explicitly for phase

invariance (see Section 2). Once again both models were fit

Fig. 5. Network analysis of the model complex cell. (a) Hidden units of a network trained on data acquired from the model complex cell (Fig. 3). The model

complex cell was stimulated using the same dynamic natural image sequence as the model simple cell. The layout is as in Fig. 4a. The network used six hidden

units to describe the model complex cell. (b) First principal dimension of the network shown in (a). The layout is as in Fig. 4b. Inspection of the gray curve

confirms that the model complex cell responded to stimuli with vertical orientation, odd spatial phase and either positive or negative sign. The network recovers

this property (black line). (c) Second principal dimension of the network shown in (a). The gray curve reveals that the model cell also responded to stimuli with

vertical orientation, even spatial phase and either positive or negative sign. The network also recovers this response property (black line).
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with the same training data and evaluated using the same

validation data.

Fig. 8b compares the predictions of the neural network to

those obtained using the Fourier power model for all 34 V1

neurons. For five neurons (about 15%), the neural network

predicts responses significantly better than the Fourier

power model; in 16 neurons (about 50%) the two models

predict equally well; in 13 neurons the Fourier power model

predicts significantly better (P , 0:05; randomized paired t-

test). As mentioned earlier, the neural network may produce

poorer predictions when the explicit model provides an

appropriate description of neuronal responses. Cell r0284

appears to be a stereotypical complex cell (Fig. 7) and its

responses are better predicted by the explicit Fourier power

model (Fig. 8b).

For most neurons the predictive power of the Fourier

power model is comparable to or slightly better than that of

the neural network. In contrast, the image domain model

predicts more poorly than the neural network in most cases

(compare Figs. 8a and b). Across our sample the mean

prediction correlations were 0.24, 0.16 and 0.27 for the

neural network, the image domain model and the Fourier

power model, respectively. (These seemingly low corre-

lation scores are primarily due to the fact that these data sets

consisted almost entirely of single-trial data; see Section 4).

This pattern of results suggests that the primary nonlinearity

captured by the neural networks is phase invariance, a key

feature of V1 complex cells.

3.2.3. Directional selectivity

The responses of many neurons in our sample are

predicted equally well by the neural network and the Fourier

power model. However, the neural network makes more

accurate predictions in a subset of the neurons (see Fig. 8b).

These neurons likely possess functionally important proper-

ties other than phase invariance.

One such neuron is illustrated in Fig. 9. The

correlation between its observed responses and

the responses predicted by the network is 0.45, while

the correlation with the responses predicted by the

Fourier power model is only 0.33. The first two principal

network dimensions are shown in Fig. 9. These

dimensions reveal that the neuron has peak orientation

tuning near horizontal and peak spatial frequency tuning

of approximately 2 cycles per CRF. The network

responds to stimuli with large positive and negative

projections along both dimensions. In addition,

inspection of spatial phase tuning over time suggests

that this cell is directionally selective. For example, the

horizontal bar shown in the first principal dimension

moves in a downward direction between frames 3 and 5

Fig. 6. Network analysis of a V1 simple cell. First principal dimension of a network trained on data acquired from a real V1 neuron (r0158A). The layout is as in

Fig. 4b. The eigenvalue plot suggests that this network is well described by a single principal dimension. This dimension represents an orientation of about 308

and low spatial frequencies; peak latency appears to be about 28 ms. Images which are darker on the left and brighter on the right fall on positive values of this

dimension while negative values represent images which are brighter on the left and darker on the right. The gray line shows that this neuron responds strongly

to positive values of the dimension, but it gives little or no response to negative values. Thus, this appears to be a simple cell which is sensitive to spatial phase.
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(28–56 ms). Such a shift is characteristic of directional

selectivity (Deangelis et al., 1993).

Because the Fourier power model cannot model changes

in spatial phase over time, it cannot capture directional

selectivity. This might explain why the network produces

better predicted responses than the Fourier power model

does for neurons such as this one. In a larger sense, this

example illustrates how neural network analysis can reveal

Fig. 7. Network analysis of a V1 complex cell. (a) First principal dimension of a network trained on data acquired from a second V1 neuron (r0284). The

eigenvalue plot suggests that this network requires two principal dimensions; the first dimension is shown in this panel. This dimension represents vertical

orientation, a spatial frequency of about two cycles per receptive field, and even spatial phase; peak latency is about 32–48 ms. This neuron responds to both

positive and negative values of the dimension, suggesting that it is a complex cell. (b) The second principal dimension of the network trained on data acquired

from the cell shown in (a). The second dimension is similar to the first, except that it has odd spatial phase. The cell also responds to both positive and negative

values of this dimension, confirming that it is a complex cell.
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nonlinear response properties without an explicit model, and

without requiring any prior knowledge of the relevant

nonlinearity.

4. Discussion

Our experiments demonstrate that neural networks can

be used to recover and identify nonlinear response proper-

ties of neurons in primary visual cortex. Moreover, these

response characteristics can be recovered when complex

natural images are used as stimuli, suggesting that this

method will be useful for analyzing neuronal responses

during natural vision. The neural network method does not

require an explicit model, but the response characteristics it

recovers can be incorporated into an explicit model if

desired. Our success suggests that this method may be

useful for analyzing the response properties of neurons in

extrastriate visual areas, where few explicit models exist.

Lehky et al. (1992) pioneered the use of artificial

neural networks to analyze receptive field properties of

neurons in area V1. The same study also included several

other important innovations. It was one of the first

studies to employ complex naturalistic stimuli in area V1

(see also Creutzfeldt & Nothdurft, 1978), and it

evaluated models on the basis of their predictive

power. To our knowledge, the only other study to use

neural networks to estimate the receptive field properties

of neurons in V1 was published by Lau et al. (2002).

That study examined both spatial and temporal response

properties, and it included a method to facilitate

interpretation of the functional properties of the network.

Our study also used an artificial neural network to

recover the nonlinear stimulus-response functions of V1

neurons and incorporated the advances of the earlier

experiments (Lau et al., 2002; Lehky et al., 1992). Like

Lehky et al. (1992), we used complex, natural scenes as

stimuli. Like Lau et al. (2002) we investigated both the

spatial and temporal aspects of responses. Like both

earlier studies we quantified performance by assessing

predictive power.

In addition, we developed several other innovations. Our

regularization procedures were optimized for high dimen-

sional natural image stimuli and the smaller data sets

typically obtained in experiments conducted with awake,

behaving animals. We also expanded the network visual-

ization and interpretation methods pioneered by Lau et al.

(2002), using our principal network dimension analysis to

find the dimensions of stimulus space used by the network

and order them by the variability of the network responses to

the training data set.

4.1. Comparison of current predictions with those

of previous studies

Our study quantified network performance by predicting

responses to a novel validation data set not used to train the

network. Lau et al. (2002) and Lehky et al. (1992) also used

predictions to assess network performance. However, the

average prediction scores achieved in the three studies differ

substantially. Lehky et al. (1992) reported a mean prediction

score of r ¼ 0:78; Lau et al. (2002) found r ¼ 0:45 for

simple cells and 0.31 for complex cells, and we obtained a

mean of r ¼ 0:24 across the sample. This discrepancy likely

Fig. 8. Predictive power of the neural network versus explicit models. (a) The x-axis gives the correlation between the predicted response of the linear image

domain model and the validation data for each neuron; the y-axis gives the correlation between predicted response of the neural network and the same

validation data. Labels indicate the two neurons described in Figs. 6 and 7. Fig. 6 suggested that neuron r0158A is a simple cell, and the responses of this neuron

are best predicted by the linear model. In contrast, Fig. 7 suggested that neuron r0284 is a complex cell, and its responses are better predicted by the network. (b)

The x-axis gives the correlation between the predicted response of the phase invariant Fourier power model and the validation data; the y-axis gives the

correlation between the predicted response of the neural network and the validation data. Labels indicate the two cells described in Figs. 7 and 9. Responses of

neuron r0284 were predicted poorly by the image domain model (a), but are well predicted by the Fourier power model, which accounts for phase invariance.

The neural network predicts responses of neuron r0164C better than does the Fourier power model (see Fig. 9).
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reflects several methodological differences between the

studies.

The factor most likely to affect the quality of predictions

is the number of repeated trials in the validation data set.

Because spike trains exhibit Poisson statistics (Tolhurst,

Movshon, & Dean, 1983), they tend to have high variability.

One way to reduce variability is to average across repeated

trials (Tolhurst et al., 1983). Averaging removes Poisson

Fig. 9. Network analysis of a directionally selective V1 neuron. (a) First principal dimension of a network trained on data acquired from a third V1 neuron

(r0164C). The eigenvalue plot suggests that this network requires two principal dimensions; the first dimension is shown in this panel. This dimension

represents horizontal orientation and a spatial frequency of about 2 cycles per receptive field. In contrast to the dimensions recovered in earlier figures, along

this dimension spatial phase appears to change continuously over time. This neuron responds to both positive and negative values of the dimension. (b) The

second principal dimension of the network trained on data acquired from the neuron in (a). The second dimension is similar to the first, but with orthogonal

spatial phase. The neuron also responds to both positive and negative values of this dimension, suggesting that this is a directionally selective complex cell.
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noise, and hence predictions of average responses are much

more accurate than predictions of single spike trains. Both

Lau et al. (2002) and Lehky et al. (1992) used repeated trials

of validation data. In contrast, our analysis was based almost

entirely on data that had been collected as single trials.

Another way to reduce response noise is to integrate

responses over a longer time period. This tends to average

out variability due to spike timing and accentuate the mean

response rate. Lehky et al. (1992) used a slow stimulus

refresh rate, and responses were binned at 160 ms. Lau et al.

(2002) smoothed data with a Gaussian filter ðs ¼ 10 msÞ

and used a binning window of 16 ms. We also used a

binning window of either 14 or 16 ms, but with no

smoothing. These differences in temporal integration also

likely affected predictions. However, our own analyses

suggest that the number of unique stimuli in the training

data set has a much larger effect on predictions than the

temporal integration window.

One other factor that might influence predictions is eye

movements smaller than the size of the fixation window.

Both Lau et al. (2002) and Lehky et al. (1992) recorded from

neurons in anesthetized animals, while our experiments

used awake, behaving animals trained to perform a fixation

task. We limited fixation to within 0.358 of the fixation spot,

but data from awake animals are always contaminated by

microsaccades and slow drifts whose effects cannot be

removed entirely (Gur & Snodderly, 1997). These residual

eye movements introduce noise and tend to reduce

prediction scores.

4.2. Comparison of stimuli and response characterization

with previous studies

One of the most important factors determining network

performance and prediction scores is the nature of the

stimuli used to train the network. In general, the smaller the

stimulus space, the fewer stimulus-response data points will

be required to achieve a good prediction. On the other hand,

the smaller the stimulus space, the less likely that the

network will accurately predict responses to stimuli falling

outside the range of the training set.

Lehky et al. (1992) used a range of complex stimuli,

including both synthetic patterns and naturalistic textures.

The stimulus set included 400 different images and these

were repeated 30 times each. These authors only visualized

the network by examining the hidden units, so it is unclear

how well the estimated networks recovered tuning for

orientation, spatial frequency and phase. However, the

estimated networks produced predictions with a substan-

tially higher correlation to actual responses than those of the

later studies, even though the stimulus set was rather small.

Lau et al. (2002) used bars aligned with the optimal

orientation of each neuron. An array of 16 bars spanned the

receptive field on an axis orthogonal to the preferred

orientation. Their contrast was controlled by an m-

sequence that was 32,767 frames long and repeated

3 times. When trained with this data set, each network

provided an efficient estimate of phase and direction tuning.

However, their networks provided no information about

orientation tuning, as this was established for each neuron in

a preliminary test.

Our experiments used random natural image sequences

and preliminary tests were only used to identify the location

of the receptive field. The image sequences were 9937

frames long on average and for most neurons they were

never repeated. Still, our networks were able to recover

spatial frequency, orientation, phase and direction tuning.

Considering the results of all three studies, it appears that

repeated trials of validation data can be predicted more

accurately, but repeated trials of training data necessarily

reduce the number of different stimuli that can be presented

in finite time. In contrast, a large and varied training

stimulus set is most useful for characterizing linear and

nonlinear responses across many stimulus dimensions.

4.3. Comparison with other methods for estimating

receptive field properties

Previous studies have used other nonlinear regression

methods to characterize the stimulus-response transfer

function of V1 neurons. Early experiments used Wiener

kernel analysis (Emerson, Citron, Vaughn, & Klein, 1987;

Jones et al., 1987). Wiener kernel analysis requires spectrally

and temporally white stimuli and requires impractically large

data sets to recover more than lower-order nonlinearities.

More recent studies have approached this same problem

by means of spike triggered covariance (Brenner, Bialek, &

de Ruyter van Steveninck, 2000; Touryan, Lau, & Dan,

2002). Spike triggered covariance produces ordered dimen-

sions of visual space similar to those of our principal

network dimension analysis. In theory it can be used even

when stimulus statistics are biased (e.g. with natural

scenes), and it is less computationally intensive than the

neural network approach. However, spike triggered covari-

ance only assesses the second order statistics of the

stimulus-response function. It is not sensitive to higher-

order nonlinearities and does not model interactions

between the recovered dimensions.

The neural network method does not require that the

stimuli have any particular statistical properties. It can

recover arbitrary nonlinear response properties, even when

they represent nonlinear interactions between many orthog-

onal dimensions. We expect that the generality of the neural

network approach will prove critical for recovering non-

linear stimulus-response functions in extrastriate visual

areas, where no explicit processing model is available.
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