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Motivation and Background
• V1 neurons as linear filters: an admitted caricature
• V1 neurons are nonlinear: the apparent RF map 

depends on spatial context (basis set)
• Analytic stimuli (spots, bars, gratings) vs. natural 

stimuli
– Analytic stimuli fail to predict responses to natural scenes
– What is special (if anything) about natural scenes? 

• Typical analytic stimuli
– Spots and bars: one position, uniform in spatial frequency
– Sine gratings: uniform in space, one spatial frequency

• But “real features” are typically local (neither pointlike
nor uniform) in space and spatial frequency

• Let’s use analytically convenient stimuli that are local 
in space and spatial frequency



Joint Localization in Space and 
Spatial Frequency

• Rationale as a design for V1 receptive fields
– Analysis at one location
– Analysis at one spatial scale

• Quantum-mechanical analogy
– Spread in space or spatial frequency measured as variance
– Heisenberg principle limits joint localization

• Gabor functions minimize joint spread in space and 
spatial frequency

• Gabor functions are a reasonable approximation for 
sensitivity profiles of V1 receptive fields



Traditional View in More Detail
(one spatial dimension)

The Gabor functions minimize the product Δx Δωx.

Marcelja (1980), Daugman (1985)

Spatial spread Δx of a sensitivity profile f(x):

Find the centroid x0  of f(x).

Spread in x-direction, Δx: dxxfxxx ∫ −=Δ
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Spatial frequency spread Δωx of f(x):
Determined analogously from the
Fourier transform            of f(x).)(~
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Traditional View: Concerns

• Relies on complex nature of f
– the real and imaginary parts together constitute 

an optimum, but not separately
• Only | f | matters, so carrier frequency is 

irrelevant

• What to do after V1?

as optimal as



Alternative View

• Confinement in space: no change after 
windowing in space

• Confinement in spatial frequency: no change 
after windowing in spatial frequency

• Seek functions f that are (nearly) preserved 
after windowing in space and spatial 
frequency



Alternative View in More Detail
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D

The linear operator D windows f in space.
D multiplies f(x) by a windowing function D(x). x

We seek functions f for which successive application of 
D and B leaves f (nearly) unchanged.
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The linear operator B windows f in spatial frequency.
B multiplies          by a windowing function B(ω).)(~ ωf ω

f
B

Bf



Alternative View: Concerns
• Apply BD or DB?
• What shape to choose for D and B?

Order of application:
B D

B1/2 D1/2

B1/4 D1/4

...
With infinitesimal B’s and D’s, order of application doesn’t matter. 
Infinitesimals: D

D1/2

D1/4

D1/8
Can create 

infinitesimals for any 
non-negative window!



Amazing Analytic Result
• Optimal functions are asymptotically 

independent of
– Shape of windows
– Order of application of windows

• This asymptotic limit has a simple 
closed form: the two-dimensional 
Hermite functions

Asymptotic: in limit of large (space)(bandwidth) product

*

*Large: two cycles per spatial aperture suffice (4π>>1)

*
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Two-Dimensional Hermite Functions
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Polar Symmetry from 
Cartesian Components

(μ,ν)=(3,1)

(0,5)(1,4)(2,3)(3,2)(4,1)(5,0)(j,k)=
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Two-Dimensional Hermite Functions
polar separation

rank

0

1

2

3

4

5

6

7

j=

2

1

0

3

= k

2

1

0

3

Cartesian separation

ν = 00 11 22

Within each rank, either set of functions can be 
synthesized from a linear combination of the other set.



Properties of the Two-Dimensional 
Hermite Functions

• Complete orthonormal sets
• Cartesian and polar separations have 

identical spans
• Small shifts add some of next rank
• Rotations mix within rank
• Each function is equal to its own Fourier 

transform
• Allow for efficient local synthesis
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layer 3
Cartesian

polar

c3003s

200 imp/s

250 ms

Non-directional simple cell, 
broad orientation tuning



layer 3
Cartesian

polar

c3003t

100 imp/s

250 ms

Non-directional simple cell, 
narrow orientation tuning



layer 3
Cartesian

polar

c3003u

100 imp/s

250 ms

Non-directional complex cell, 
narrow orientation tuning



layer 3
Cartesian

polar

c3003x

50 imp/s

250 ms

Directionally biased 
complex cell, narrow 

orientation tuning



Quantitative (“Model”) Framework

spatial 
pattern
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Σmaintained
firing 
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coef of in Linear =
-resp[ ] resp[ ]
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+
coef of in Even =

resp[ ] resp[ ]
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Half-wave rectification: Linear = Even



layer 3

c3003s

Non-directional simple cell, broad orientation tuning
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layer 3

c3003t

Non-directional simple cell, narrow orientation tuning
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layer 3

c3003u

Non-directional complex cell, narrow orientation tuning
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layer 3

c3003x

Directionally biased complex cell, narrow orientation tuning
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More examples from cat V1
upper layer 6

Cartesian

polar

1 deg

L E

c3303u

Non-directional 
F1/F0=1.2
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Directionally-selective 
F1/F0=0.5

L E



Examples from macaque V1
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Sparseness of V1 responses
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Comparison to “Maximally Informative 
Dimension” Approach (Sharpee et al.)

Choose L, E to recreate R from S

S R

L

E
Σmaintained

S M
Poisson

spike
generator

static
nonlinearity R

Choose M to maximize the mutual information between R and S

1. Shape of nonlinearity is not constrained

2. Restriction to a single filter, rather than separate filters for the 
“linear” and “nonlinear” branches



Test of Energy Models
Since the Cartesian and polar stimuli are equated for total energy 
at each spatial frequency, an energy model predicts that the total 
response amplitude to each set will be identical. 

p≥0.05
0.01 ≤p<0.05
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total Cartesian response – total polar response

total Cartesian response + total polar response

This also rules out models based on local squaring.



• 63 neurons (17 sites in 3 cats, 2 macaques):  
51/63 responded to TDH stimuli, 12/63 did not

• 21/51 differed in sensitivity to Cartesian and 
polar stimuli (13: C > P, 8: C< P)

Summary

• 28/51 differed in RF shape; grating responses 
match C better than by P

• 14/51 had neither difference

cat: 45
neurons

macaque: 18
neurons

combined: 63
neurons plot_ind_meta



• For most V1 neurons, responses to simple two- dimensional 
patterns reveal qualitative inconsistencies with oriented-filter 
and energy models.

• Only models with spatially-selective nonlinearities, confined 
both in space and spatial frequency, can account for the 
computations carried out by V1 neurons.

Conclusions

Speculations
• These bottom-up influences are relevant to understanding 

V1 responses to natural scenes.
• The uniform coverage of orientation tuning in V1 is but a 

special case of a more general uniform coverage of 
elementary form elements.


