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Spikes and the Neural Code

• Spikes and variability
• Information:  what is it, why is it difficult to calculate, 

why bother trying?
• Two case studies in V1

– The Direct Method, and variability of RF properties within 
a local cluster

– The Metric Space Method, and representation of spatial 
phase

• A new view of spatial processing in V1



Why do neurons fire spikes?

Neurons are trying to send continuous 
signals, but there is no other good way to 
send signals quickly, reliably, and for long 
distances

BUT PERHAPS ALSO
Spikes may play an intrinsic role in neural 

coding and computation, and hence 
behavior



Variability: A striking feature of 
cortical neural activity

What physiologists say:
• Neurons have definite 

selectivities ( “tuning”) 
• Tuning properties can account 

for behavior

What physiologists also know:
• Responses depend on multiple 

stimulus parameters
• Response variability (number of 

spikes, and firing pattern) is 
substantial

Hubel and Wiesel
1968



Kinds of Variability

• Poisson (“completely random”)
– probability of firing is independent of history
– no correlation among neurons

• Alternatives
– more clock-like
– more bursty
– correlations across neurons

default model

often 
considered 
a nuisance



Implications of Poisson Variability
• Instantaneous firing probability determines 

everything about firing patterns
• Other aspects of firing patterns (bursts, correlations) 

are coincidental and therefore not informative
• Spikes are a necessary evil

• In the laboratory: average across replicate trials
• In the brain

– average across time?
– average across (many) similar neurons?

How to determine instantaneous firing probability?



Implications of Non-Poisson Variability
• Firing rate is only one aspect of firing pattern: bursts, 

correlations, etc. are not determined by rate, and may 
be (independent or primary) carriers of information 

• Such firing patterns are
– difficult for neurons to create (not maximally random)
– difficult for neurons to read out (can’t just count spikes)

• If such firing features are used, then spikes (and 
variability) are not nuisances  -- they are critical to 
neural coding

• There is always a better way to determine firing rate 
than merely averaging



A Simple Consequence of Variability

Signaling a step 
change in a sensory 

input
time

rate coding via a 
Poisson neuron

rate coding via a 
clock-like neuron

One short interval 
indicates a change!



Flawed Arguments that Firing Patterns are a Nuisance
Neurons must fire irregularly.

No, sensory neurons have low variability, and may be clock-like.
Cortical neurons are intrinsically variable.

No, if their inputs are precisely controlled, they work like machines.

Controlling firing patterns is not worth the effort.

No, specific channels lead to particular firing patterns (e.g., 
thalamocortical neurons).

Reading firing patterns is not worth the effort or not biologically plausible.

No, postsynaptic mechanisms are highly specialized.
• coincidence detection
• “facilitating” and “depressing” synapses (sensitivity to intervals)
• dendritic processing (not just global summation of inputs)



Arguments for Role of Firing Patterns:
Not Convincing to All

EEG patterns reflect state of arousal.
But that’s clinical. (Or that’s an epiphenomenon).

Burst and tonic modes in the thalamus reflect state of arousal.
That’s clinical too.

Direct evidence: locust olfactory system (Laurent)

But that’s a locust.  What about Newsome’s cortical 
microstimulation experiments?

Microstimulation doesn’t only change rate, but also 
pattern. And who knows what the animal experiences?

Spike time dependent plasticity!

That’s just learning.



• Rate, pattern, timing are interdependent* and 
difficult to manipulate independently

• It is unclear what are the “words” of the neural 
code (firing rate, firing pattern, etc.)

• So, we need to use a theory

A purely experimental test of a neural  
coding hypothesis is difficult

*“Time is that great gift of nature which keeps everything 
from happening at once.” (C.J. Overbeck, 1978)



A Win-Win Situation

• If firing pattern and variability turns out to be 
important, then we’ll understand why the 
primate brain is so complicated.

• If variability turns out to be just a nuisance to 
be averaged out, we’ll understand why the 
primate brain is so big.



Information = 
Reduction in Uncertainty

(Shannon)

• Reduction in uncertainty from 4 possibilities to 2
• Information = log(4/2)

Observe a 
response

?    ?  
?    ?  ?    ?



Entropy: Simple definition
Suppose a system may be in any one of some set of 
states.  The entropy of the system is the minimum 
number of yes-no questions, on average, that must 
be asked to determine the state of the system.

∑−=
j

jj ppH log (use log2 to get “bits”)

Say the probability that the system is in state j is pj. 
Then the entropy H is given by

Higher entropy means more uncertainty.



Entropy: Properties
Mixing property }{}{)1(})1{( JJJJ qHpHqpH λλλλ +−≥+−

Chain rule, general form
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Information: Difference of Entropies
output symbol (k)
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Information ={Entropy of the a priori distribution of input symbols} -

{Entropy of a posteriori distribution of input symbols, given the 
observation k, averaged over all k}
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Information: Symmetric Difference of Entropies
output symbol (k)
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{entropy of output}+{entropy of input} -{entropy of table} 
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Information: Properties

I independent of labeling within input and output

I symmetric in input and output

),(),( ZXIYXI ≥Data Processing Inequality:  if Y determines Z, then
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Information: Why Calculate It?

• An interesting, natural quantity
• A constraint on models 
• Biological insight

– Compare across systems (e.g., “one spike per bit”)
– Determine the constraints on a system (e.g., 

metabolic cost of information)
– See where it is lost (e.g., within a neuron)
– Determine what the system is “designed” to do

• Nonparametric measure of association
– Test statistical models (e.g., triplets)
– Determine candidates for neural codes
– Rule out candidates for neural codes



Investigating neural coding:  not 
Shannon’s paradigm

• Shannon
– symbols and codes are known
– joint (input/output) probabilities are known
– what are the limits of performance?

• Neural coding
– symbols and codes are not known
– joint probabilities must be measured
– ultimate performance often known (behavior)
– what are the codes?



Information estimates depend on partitioning 
of stimulus domain

finely 
partitioned

response 
domain

stimulus 
domain

unambiguous; 
H=log(4) bitss r

coarsely 
partitioned

unambiguous but detail 
is lost; H=log(2) bitss r



Information estimates depend on partitioning 
of response domain

finely partitioned:
unambiguous; 
H=log(4) bits

response 
domain

stimulus 
domain

s r

coarsely partitioned:
ambiguous,
H=log(2) bits

r



Partition as finely as possible?

• H=-Σpi logpi

• The probabilities pi must be estimated empirically (say, 
as pi

est)
• Hest=-Σpi 

estlogpi
est is a biased estimator of H

• Bias can be estimated
• Bias roughly proportional to number of partitions
• Once the number of partitions exceeds the number of 

observations, estimates of bias are useless

(entropy, but also information)



The Basic Difficulty

We want to determine p log p, but we only have an 
estimate of p, not its exact value.

p log p is a nonlinear function of p, and the nonlinearity 
is greatest near p=0.  Therefore, the error in replacing  
<p log p> by <p>log<p> is greatest near p=0.

Refining the “bins” (stimuli or responses) pushes p
to near 0.



Multineuronal analysis: motivation

• Is the information transmitted by neighboring neurons 
independent or redundant?

• Is information fully captured by simply summing local 
activity?

• Cortical neurons are organized in columns in which 
nearby neurons have similar stimulus selectivities:  
orientation, spatial frequency, etc.

• Individual cortical neurons appear to be “noisy”
• Perhaps, local population activity should be read out by 

summing the activity of neighboring neurons

Questions



Information in spike trains: “Direct Method”

• Compare number of different firing patterns that the 
neuron can produce to reliability of firing pattern in 
response to the same stimulus

Strong et al. 1998; Ruyter van Steveninck et al. 1997

(entropy ~ log of number of different kinds of responses)

• Information = entropy of all responses to all stimuli -
average entropy of repeated responses to the 
same stimulus



Extension to multiple neurons

summed population
average responses  

neuron of origin irrelevant    

labeled line
keep responses separate
specific neuron relevant

Neuron 1 Neuron 2



• Recordings from primary 
visual cortex (V1) of 
macaque monkey

Preparation

• Multineuronal recording 
via tetrodes
– ensures neurons are 

neighbors (ca. 100 microns)
– requires spike sorting



Tetrode recording

5 msec

1

2

3

4
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Online spike sorting with tetrodes



Offline spike 
sorting via 
tetrodes



Cross-correlate the spike trains with 
the stimulus, pixel by pixel, to 

determine the average stimulus at 
each instant prior to a spike
(here, 72 ms before a spike)

M-sequence analysis: cross-correlation

trial 1

trial 2



Receptive field map in space and time

This receptive field is oriented and directional.



• Tabulate the occurrence of each interspike interval
• Numerical experiment: compare with the expectation based on 
firing rate by randomizing spikes across trials

M-sequence analysis: firing pattern

trial 1

trial 2



Interspike interval distribution
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Interspike interval distributions: often multimodal
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Direct Method: Multiple Neurons

summed population
average responses  

neuron of origin irrelevant    

labeled line
keep responses separate
specific neuron relevant

Neuron 1 Neuron 2



M-sequence responses
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Responses and information rates
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Another pair
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Quantifying redundancy

1
2

information in 
responses 
considered 
separately

redundancy
index

1 (redundant)

0 (not redundant)

<0 (synergistic)

information in responses 
considered together

or

or even

1 2



Redundancy indices
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Population summary

labeled line
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Pitfalls of the “Direct Method”

• Stimulus must elicit full repertoire of neural responses
– m-sequences

• Estimates of response probabilities must be accurate
– consider only information rates over brief periods (8 ms)

• Biases in entropy estimates (<log p> ≠log<p>)
– asymptotics
– simulations
– split-set analyses



The “Direct Method”: A sampling problem 

• All calculations based on discretized responses

• Tletter must be small to capture temporal detail
– timing precision of spikes: <1 ms

• Tword must be large to include slow events
– inhibitory potentials, macroscopic rhythms: >100 ms

• Tword / Tletter >100.  Up to 2^(Tword/Tletter) probabilities 
must be estimated.

0 0 1 0 0 0 1 1 0 0 1 0

Tword
Tletter

(Strong, Bialek, et al.)



Multiple neurons:  a severe sampling problem

• One dimension for each bin and each neuron

• 2^[L(Tword / Tletter)] probabilities must be estimated.

Tword
Tletter

1 0 0 0 0 0 0 0 0 0 1 1

0 1 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 1 0 0 1 0

L



“Time does not chop itself up for our 
convenience.”

Itamar Moses in “Bach at Leipzig”
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What are we missing?
• The response space is a continuous domain
• There are natural notions of “similar” responses

• Exploiting this topology is important

bin 1 bin 2 bin 3 bin 4

change the count 
in a bin

shift a spike in 
time



• Formulate a variety of plausible candidate 
notions of distance

• Determine which do a good job of classifying 
responses to stimuli  via the mutual 
information of the “confusion matrix”

• Ask if the distances between responses 
correspond to a perceptual space

Metric-Space Analysis: Overview



In what ways can spike trains be similar?

Similar spike counts

Similar spike times

Similar interspike intervals



• Defined by a list of allowed transformations of spike 
trains and an assignment of costs to each of these 
transformations

• Distance between two spike trains A and B is the 
least total cost of any sequence of transformations 
from A to B

• With very minor fine print, this assignment of 
numbers to pairs of spike trains has all the required 
properties of a distance (metric)

Cost-based distances



• Allowed transformations:
– insert a spike: unit cost
– delete a spike: unit cost
– shift a spike in time by ΔT: cost is q ΔT

• Spike trains are similar only if spikes occur at similar 
times (i.e., within 1/q sec).

• Formalizes the hypothesis that processing of 
coincidences between spike trains (by mechanisms 
such as thresholds) is key to neural integration.

Distance based on spike times



Transforming a spike train in elementary steps: 
Spike time metric

A

B



Transforming a spike train in elementary steps: 
Spike interval metric

A

B



Distances between all pairs of responses 
determine a response space

etc.

responses to stimulus 1

responses to stimulus 2

responses to stimulus 3

(typically not Euclidean)



Weak clustering: 
responses to the four stimuli 

are interspersed

Configuration of the response space depends on the 
choice of distance

Strong clustering:
responses to the four stimuli 

are grouped



Information quantifies strength of clustering

Information = row entropy + column entropy - table entropy
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• Allowed transformations:
– insert or delete an interval: unit cost
–change an interspike interval by ΔT: cost is q ΔT

• Spike trains are similar only if corresponding interspike 
intervals match (within 1/q sec)

• Formalizes the hypothesis that processing of patterns 
of intervals (by mechanisms such as facilitating and 
depressing synapses) is a key element of neural 
integration

Distance based on interspike intervals
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Multiple visual sub-modalities

contrast

orientation

size

spatial frequency

texture type
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Attributes are coded in distinct ways
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Two attributes: contrast and spatial phase
co
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ra

st

spatial phase



Joint representation of contrast and spatial phase

Distances calculated by spike time metric, with q=64 
(informative precision ~15 ms)

Colors indicate spatial phase (22.5 deg intervals)

Sphere sizes indicate contrast (0.25 and 1.0)



Multineuronal codes
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origin, and importance of timing



• Allowed transformations:
– insert a spike: unit cost
– delete a spike: unit cost
– shift a spike in time by ΔT: cost is q ΔT
– change the neuron of origin of a spike: cost is k

Multineuronal spike time distance

k=0 k=2

neuron of origin 
ignored 

(“population code”)

each neuron’s response 
considered individually 

(“labeled line”)



Transforming a multineuronal  spike train in elementary 
steps



The key to the multineuronal algorithm

Aronov, 2003
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S+T, 
summed 

(k=0)

Multineuronal representation of spatial phase

Distances calculated by spike time metric, with q=32 
(informative resolution, ~ 30 ms)

Colors indicate spatial phase (22.5 deg intervals)

unit S unit T

S+T, 
labeled 
(k=1)



Conclusions from Single-Neuron 
Recordings

• Cortical neuronal variability differs qualitatively 
from that of a Poisson process

• Spike times and spike intervals, and not just the 
firing rate, convey information about spatial 
attributes of visual stimuli.

• The coding strategy depends on the visual 
attribute (contrast, pattern), especially beyond V1.

• Multiple visual attributes are simultaneously 
represented in a single neuron’s responses.



Conclusions from Multi-Neuron 
Recordings

• The neuron of origin is important for signaling, 
even within local neuronal clusters.

• Reducing the activity within a local cluster of 
neurons to a population firing rate discards 
substantial information. 
– Neurons within a population appear more redundant.

– The representation of a stimulus space (e.g., spatial phase) 
is less faithful, both quantitatively and qualitatively.



Many information-theoretic approaches to neural data
• Spike train considered as a symbol sequence

– Direct method (Strong)
• Birthday paradox (Nemenman)
• Optimized polynomial estimators (Paninski)
• “Coverage” (Chao and Shen)

– Information bottleneck (Tishby), Codebook (Miller and 
Dimitrov)

– LZW (Wyner; Farach; Levy) 
– Suffix tree method (Shlens)

• Spike train considered in continuous time
– Stimulus reconstruction method (Bialek)
– Metric space method
– Binless embedding method
– Power series expansion (Schultz and Panzeri)

spike train model

stimulus-response 
model

code model
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