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Joint statistics of filter outputs show magnitude dependence

tion) is zero, independent of L2, indicating that the two respons-
es are uncorrelated. But the width of the distribution of L1
increases with the amplitude of L2. That is, the variance of L2
depends on L1.

This form of dependency seems to be ubiquitous; it is evident
it in a wide variety of natural images and sounds. It occurs even
when the filters are chosen to be orthogonal, non-overlapping
or from a set that is optimized for statistical independence5. The
strength of the dependency varies depending on the specific pair
of filters chosen (Fig. 3). Nevertheless, this dependency is a prop-
erty of natural signals, and is not due purely to properties of this
particular set of linear filters. For example, no such dependency
is observed when the input consists of white noise.

We formalize the conditional relationship between a given
pair of linear filter responses {L1, L2} with a model in which the
variance of L2 is proportional to the squared value of L1 plus a
constant (Methods, Eq. 1). For a pair of filters with strongly
dependent responses, this proportion is larger; for a pair that
have independent responses, this proportion is zero. Because L2
also depends on the responses of a number of other filters with-
in a local neighborhood, we form a generalization of this condi-
tional variance model in which L2 is proportional to a weighted
sum of the squared responses over the neighborhood and an
additive constant. We compute a set of optimal weights and an
additive constant by maximizing the likelihood of the conditional
distribution over an ensemble of images or sounds (Methods,
Eq. 5). Intuitively, these weights are larger for pairs of filters that

Fig. 1. Linear filter responses to
example image and sound stimuli.
(a) A natural image convolved
with two filters selective for the
same spatial frequency, but differ-
ent orientation and spatial posi-
tion; the lower filter is oriented
45° away, and shifted up by 4 pix-
els. At a given location, when the
first filter responds weakly (gray
areas) the second filter will also
tend to respond weakly. But when
the first filter responds strongly
(black or white), the second filter
is more likely to respond strongly.
The red arrows indicate a location
corresponding to a high contrast
edge, in which both filters are
responding strongly (the first positive, and the second negative). (b) A natural sound convolved with two filters tuned for different temporal frequen-
cies (2000 and 2840 Hz center frequencies). Red arrows indicate a time at which both filters are responding strongly. When the first filter responds
weakly, the second also tends to respond weakly.   
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have stronger dependency. The constant represents the residual
variance that cannot be predicted from neighboring filters.

If this model fully describes the dependency between filter
responses, how can these responses be made independent? Given
that the dependency governs only the variance, the natural solu-
tion is to divide the squared response of each filter by its vari-
ance, as predicted from a linear combination of its neighbors (see
Methods; Fig. 4). A natural signal is passed through a bank of
linear filters (only two are depicted, for readability). In the gain
control stage, the squared response of each filter is divided by a
weighted combination of squared responses of other filters in the
population plus an additive constant (Methods, Eq. 4). The
resulting responses are significantly more independent. Related
work examines models for variance dependence, as well as the
conditions under which division is optimal19.

The model illustrated in Fig. 4 incorporates a form of auto-
matic gain control known as ‘divisive normalization’ that has been
used to account for many nonlinear steady-state behaviors of neu-
rons in primary visual cortex10,20,21. Normalization models have
been motivated by several basic properties. First, gain control
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Fig. 2. Joint statistics of a typical natural image as seen through two lin-
ear filters. Top, the linear response of a vertical filter (L2), conditioned
on two different values of the response of a diagonal spatially shifted fil-
ter (L1). Pairs of responses are gathered over all image positions, and a
joint histogram is constructed by counting the frequency of occurence
of each pair of responses. The two one-dimensional histograms are ver-
tical slices of this joint histogram. Differing widths of these histograms
clearly indicate that the filter responses are not statistically indepen-
dent. Bottom, grayscale image depicting the full two-dimensional condi-
tional histogram. Pixel intensity is proportional to the bin counts,
except that each column is independently rescaled to fill the range of
intensities. Responses of L1 and L2 are roughly decorrelated (expected
value of L2 is approximately 0, independent of L1) but not statistically
independent. Specifically, the variance of distribution of L2 increases
with increasing value (both positive and negative) of L1.
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Using sensory gain control to reduce redundancy

822 nature neuroscience  •  volume 4  no 8  •  august 2001

masking tone. As in the visual data, the rate–level curves of the
auditory nerve fiber shift to the right (on a log scale) in the pres-
ence of the masking tone (Fig. 6c and d). This shift is larger when
the mask frequency is closer to the optimal frequency for the cell.
Again, the model behavior is due to variations in suppressive
weighting across neurons tuned for adjacent frequencies, which
in turn arises from the statistical properties illustrated in Fig. 3b.

As mentioned above, a motivating characteristic of normal-
ization models has been the preservation of the shape of the tun-
ing curve under changes in input level. However, the shapes of
physiologically measured tuning curves for some parameters
exhibit substantial dependence on input level in both audition16

and vision17,18. Figure 7a shows an example of this behavior in a
neuron from primary visual cortex of a macaque monkey24. The
graph shows the response of the cell as a function of the radius of
a circular patch of sinusoidal grating, at two different contrast lev-
els. The high-contrast responses are generally larger than the low-
contrast responses, but in addition, the shape of the curve changes.
Specifically, for higher contrast, the peak response occurs at a
smaller radius. The same behavior is seen in our model neuron.

Analogous results were obtained for a typical cell in the audi-
tory nerve fiber of a squirrel monkey16 (Fig. 7b). Responses are
plotted as a function of frequency, for a number of different sound
pressure levels. As the sound pressure level increases, the frequency
tuning becomes broader, developing a ‘shoulder’ and a secondary
mode (Fig. 7b). Both cell and model show similar behavior,
despite the fact that we have not adjusted the parameters to fit
these data; all weights in the model are chosen by optimizing the
independence of the responses to the ensemble of natural sounds.
The model behavior arises because the weighted normalization
signal is dependent on frequency. At low input levels, this fre-
quency dependence is inconsequential because the additive con-
stant dominates the signal. But at high input levels, this frequency
dependence modulates the shape of the frequency tuning curve

that is primarily established by the numerator kernel of the model.
In Fig. 7b, the high contrast secondary mode corresponds to fre-
quency bands with minimal normalization weighting.

DISCUSSION
We have described a generic nonlinear model for early sensory
processing, in which linear responses were squared and then
divided by a gain control signal computed as a weighted sum of
the squared linear responses of neighboring neurons and a con-
stant. The form of this model was chosen to eliminate the type
of dependencies that we have observed between responses of pairs
of linear receptive fields to natural signals (Fig. 2). The parame-
ters of the model (in particular, the weights used to compute the
gain control signal) were chosen to maximize the independence
of responses to a particular set of signals. We demonstrated that
the resulting model accounts for a range of sensory nonlinearities
in ‘typical’ cells. Although there are quantitative differences
among individual cells, the qualitative behaviors we modeled
have been observed previously. Our model can account for phys-
iologically observed nonlinearities in two different modalities.
This suggests a canonical neural mechanism for eliminating the
statistical dependencies prevalent in typical natural signals.

The concept of gain control has been used previously to explain
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Model accounts for several non-linear response properties

ber of mechanisms. For example, feedforward synaptic depres-
sion mechanisms have been documented and have been shown to
exhibit gain control properties30. Although such mechanisms
may account for suppressive behaviors within the classical recep-
tive field, they seem unlikely to account for such behaviors like
those shown in Fig. 6. It has also been proposed that normaliza-
tion could result from shunting inhibition driven by other neu-
rons31–33. This type of implementation necessarily involves
recursive lateral or feedback connections and thus introduces
temporal dynamics. Some researchers have described recurrent
models that can produce steady-state responses consistent with
divisive normalization in primary visual cortex10,20.

Some of the gain control behaviors we describe may be attrib-
uted to earlier stages of neural processing. Gain control occurs
at the level of the retina9,34, although selectivity for orientation
does not arise before cortical area V1. In fact, division by local

Fig. 7. Nonlinear changes in tuning curves at different input levels. 
(a) Mean response rate of a V1 neuron as a function of stimulus radius
for two different contrasts. The peak response radius for both cell and
model is smaller for the higher contrast24. (b) Mean response rate of an
auditory nerve fiber as a function of stimulus frequency for a range of
sound pressure levels16. Tuning curve broadens and saturates at high
levels. For all plots, maximum model response has been rescaled to
match that of the cell.

nonlinear behaviors of neurons. For example, a number of audi-
tory models have incorporated explicit gain control mecha-
nisms8,28,29. Visual models based on divisive normalization have
been developed to explain nonlinear effects in cortical area V1
within the classical receptive field10,20. The standard model
assumes that the response of each neuron is divided by an equal-
ly weighted sum of all other neurons and an additive constant.
Our model uses a weighted sum for the normalization signal, and
is thus able to account for a wider range of nonlinear behaviors. In
addition, our model provides an ecological justification, through
the efficient coding hypothesis2, for such gain control models.

Our model accounts for nonlinear changes in tuning curve
shape at different levels of input. Such behaviors have been gen-
erally interpreted to mean that the fundamental tuning proper-
ties of cells depend on the strength of the input signal. But in our
model, the fundamental tuning properties are determined by a
fixed linear receptive field, and are modulated by a gain control
signal with its own tuning properties. Although such behaviors
may seem to be artifacts, our model suggests that they occur nat-
urally in a system that is optimized for statistical independence
over natural signals.

Our current model provides a functional description, and
does not specify the circuitry or biophysics by which these func-
tions are implemented. Our normalization computation is done
instantaneously and we have only modeled mean firing rates.
Normalization behavior could potentially arise through a num-

Fig. 6. Suppression of responses to optimal stimuli by masking stimuli.
(a) Vision experiment24. Mean response rate of a V1 neuron of an audi-
tory nerve fiber as a function of contrast of an optimally oriented grat-
ing presented in the classical receptive field, in the presence of a
surrounding parallel masking stimulus. Curves on cell data plots are fits
of a Naka–Rushton equation with two free parameters24. (b) Mean
response rate versus center contrast, in the presence of an orthogonal
surround mask. (c) Auditory experiment11. Mean response rate of an
auditory nerve fiber versus sound pressure level, in the presence of a
non-optimal mask at 1.25 times the optimal frequency. (d) Mean
response rate versus sound pressure level, in the presence of a non-
optimal mask at 2.08 times the optimal frequency. For all plots, maxi-
mum model response has been rescaled to match that of the cell.
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ber of mechanisms. For example, feedforward synaptic depres-
sion mechanisms have been documented and have been shown to
exhibit gain control properties30. Although such mechanisms
may account for suppressive behaviors within the classical recep-
tive field, they seem unlikely to account for such behaviors like
those shown in Fig. 6. It has also been proposed that normaliza-
tion could result from shunting inhibition driven by other neu-
rons31–33. This type of implementation necessarily involves
recursive lateral or feedback connections and thus introduces
temporal dynamics. Some researchers have described recurrent
models that can produce steady-state responses consistent with
divisive normalization in primary visual cortex10,20.

Some of the gain control behaviors we describe may be attrib-
uted to earlier stages of neural processing. Gain control occurs
at the level of the retina9,34, although selectivity for orientation
does not arise before cortical area V1. In fact, division by local

Fig. 7. Nonlinear changes in tuning curves at different input levels. 
(a) Mean response rate of a V1 neuron as a function of stimulus radius
for two different contrasts. The peak response radius for both cell and
model is smaller for the higher contrast24. (b) Mean response rate of an
auditory nerve fiber as a function of stimulus frequency for a range of
sound pressure levels16. Tuning curve broadens and saturates at high
levels. For all plots, maximum model response has been rescaled to
match that of the cell.

nonlinear behaviors of neurons. For example, a number of audi-
tory models have incorporated explicit gain control mecha-
nisms8,28,29. Visual models based on divisive normalization have
been developed to explain nonlinear effects in cortical area V1
within the classical receptive field10,20. The standard model
assumes that the response of each neuron is divided by an equal-
ly weighted sum of all other neurons and an additive constant.
Our model uses a weighted sum for the normalization signal, and
is thus able to account for a wider range of nonlinear behaviors. In
addition, our model provides an ecological justification, through
the efficient coding hypothesis2, for such gain control models.

Our model accounts for nonlinear changes in tuning curve
shape at different levels of input. Such behaviors have been gen-
erally interpreted to mean that the fundamental tuning proper-
ties of cells depend on the strength of the input signal. But in our
model, the fundamental tuning properties are determined by a
fixed linear receptive field, and are modulated by a gain control
signal with its own tuning properties. Although such behaviors
may seem to be artifacts, our model suggests that they occur nat-
urally in a system that is optimized for statistical independence
over natural signals.

Our current model provides a functional description, and
does not specify the circuitry or biophysics by which these func-
tions are implemented. Our normalization computation is done
instantaneously and we have only modeled mean firing rates.
Normalization behavior could potentially arise through a num-

Fig. 6. Suppression of responses to optimal stimuli by masking stimuli.
(a) Vision experiment24. Mean response rate of a V1 neuron of an audi-
tory nerve fiber as a function of contrast of an optimally oriented grat-
ing presented in the classical receptive field, in the presence of a
surrounding parallel masking stimulus. Curves on cell data plots are fits
of a Naka–Rushton equation with two free parameters24. (b) Mean
response rate versus center contrast, in the presence of an orthogonal
surround mask. (c) Auditory experiment11. Mean response rate of an
auditory nerve fiber versus sound pressure level, in the presence of a
non-optimal mask at 1.25 times the optimal frequency. (d) Mean
response rate versus sound pressure level, in the presence of a non-
optimal mask at 2.08 times the optimal frequency. For all plots, maxi-
mum model response has been rescaled to match that of the cell.
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What about image structure?

• Bottom-up approaches focus on the non-linearity.

• Our aim here is to focus on the computational problem:

    How do we learn the intrinsic dimensions of natural image structure?

• Idea: characterize how the local image distribution changes.
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ICA mixtures for similar images

Limitations:

• can only have a small number of classes

• representations are not shared

• cannot learn intrinsic dimensions

from Lee, Lewicki, and Sejnowski 2000
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Characterizing different natural image densities
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Characterizing different natural image densities
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Characterizing different natural image densities
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Characterizing different natural image distributions
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Generalizing the standard ICA model

P (s) =
∏

i

P (si)

P (si) ∝ exp

[

−

∣

∣

∣

∣

si

λi

∣

∣

∣

∣

qi
]

P (si)



Michael S. Lewicki ◇ Carnegie MellonCSH Vision Course: Visual Coding Part 4

Generalizing the standard ICA model

P (s) =
∏

i

P (si)

P (si) ∝ exp

[

−

∣

∣

∣

∣

si

λi

∣

∣

∣

∣

qi
]

P (si)P (ui|λi)

P (ui|λi) ∝ exp

[

−

∣

∣

∣

∣

ui

λi

∣

∣

∣

∣

qi
]

log λi = [Bv]
i

P (ui|λi)

log λi

− log p(u|B,v) ∝
∑

i

∣

∣

∣

∣

ui

exp([Bv]i)

∣

∣

∣

∣

qi



Michael S. Lewicki ◇ Carnegie MellonCSH Vision Course: Visual Coding Part 4

Independent density components
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Illustration of inference in the model using synthesized data
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Learning higher-order structure of natural images

• A is learned with ICA

• B is learned by maximizing
   the posterior distribution

Train on natural images
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Interpreting higher-order density components

Gabor function fits

vi

position orientation/scaleraw weights Bi



Michael S. Lewicki ◇ Carnegie MellonCSH Vision Course: Visual Coding Part 4

Interpreting higher-order density components
vi
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Interpreting higher-order density components
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Interpreting higher-order density components
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Interpreting higher-order density components
vi



Michael S. Lewicki ◇ Carnegie MellonCSH Vision Course: Visual Coding Part 4

Interpreting higher-order density components
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Interpreting higher-order density components
vi
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Learned density components of natural images

(30 out of 100 shown)
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Full set of natural image density components



Michael S. Lewicki ◇ Carnegie MellonCSH Vision Course: Visual Coding Part 4

What about a feed-forward non-linearity?

1.	 Take standard ICA model:

2. 	Add non-linearity: λi = log |si|

3. 	Do ICA again on output:

Isn’t this the same?
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ICA on non-linearity reveals no structure

subset of  ICA basis functions on log |s|
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Inferred v forms a sparse distributed code
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Most typical images for selected density components
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Distributed representation of natural image densities
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Comparing the degree of abstraction



Michael S. Lewicki ◇ Carnegie MellonCSH Vision Course: Visual Coding Part 4

Maximum |ui| for each pixel
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Maximum |vi| for each pixel
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A distributed code for visual surfaces
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Activation maps for three different v units
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Learning higher-order codes for scanned newpaper
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Most typical images for selected density components
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Most typical images for selected density components
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Higher-order codes for scanned newspaper text

a b

c

f

a b

c

d e

u
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Evaluating a pixel model by synthesis

Representation

Sampling from the model we get...

Image data that maximally activates this unit...

Activity over a contiguous region
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PCA model

Representation

Sampling from the model we get...

Image data that maximally activates this unit...

Activity over a contiguous region
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ICA model

Representation

Sampling from the model we get...

Image data that maximally activates this unit...

Activity over a contiguous region
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Hierarchical, non-linear model

Representation

Sampling from the model we get...

Image data that maximally activates this unit...

Activity over a contiguous region
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Conventional physiology: orientation vs contrast by freq
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 •

  •
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Higher-order representation is contrast independent

orientation (x-axis) by contrast (lines) at freq=3

u act by orientation and contrast; frequency = 5.0

u activation shows strong dependence on contrast

nu act by orientation and contrast; frequency = 3.0

normalized u activation shows minimal dependence on contrast

v act by orientation and contrast; frequency = 3.0

v activation is much more sparse and only a few units show contrast dependence 

v act by orientation and contrast; frequency = 3.0
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The full set of contrast dependent v’s
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orientation dependence / contrast invariance

v act by orientation and contrast; frequency = 3.0
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Learning higher-order structures in natural images 491

a b c d

Figure 5. Images from natural scenes that produced greatest variance basis function coefficients.
Each row shows the spatial (a) and orientation/scale (b) pattern plots for a particular variance basis
function, as well as five images that produce the most positive (c) and five that produce the most
negative (d) variance basis function coefficients, v. A representative sample of 15 variance basis
functions is shown.

structure. Also note that the grey weight values are neutral with respect to the image density
and indicate the default image coefficient variance of one.

Multiple variance basis functions are combined to represent a wide range of higher-order
visual structures. Figure 6 shows images that yielded a range of values for two variance

a similar function from Karklin and Lewicki (2003) showing the images that most (left) and least (right) activated v
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v act by orientation and contrast; frequency = 3.0

Learning higher-order structures in natural images 491

a b c d

Figure 5. Images from natural scenes that produced greatest variance basis function coefficients.
Each row shows the spatial (a) and orientation/scale (b) pattern plots for a particular variance basis
function, as well as five images that produce the most positive (c) and five that produce the most
negative (d) variance basis function coefficients, v. A representative sample of 15 variance basis
functions is shown.

structure. Also note that the grey weight values are neutral with respect to the image density
and indicate the default image coefficient variance of one.

Multiple variance basis functions are combined to represent a wide range of higher-order
visual structures. Figure 6 shows images that yielded a range of values for two variance

another example of the same type

a similar function from Karklin and Lewicki (2003) showing the images that most (left) and least (right) activated v
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Learning more image structure and higher-order dependencies

How do we extend the model to learn these types of regularities?

Joint activation patterns of u’s over different image patches
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Edge transform demo
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Summary



A wing would be a most mystifying structure
if one did not know that birds flew.

Horace Barlow, 1961


