Part 3: Coding with Noisy Populations

Problem I: Real neurons are "noisy"

Estimates of neural information capacity

system (area)	stimulus	bits / sec	bits / spike
fly visual (H1)	motion	64	~
monkey visual (MT)	motion	5.5 - 12	0.6 - 1.5
frog auditory (auditory nerve)	noise & call	46 & 133	1.4 & 7.8
Salamander visual (ganglinon cells)	rand. spots	3.2	1.6
cricket cercal (sensory afferent)	mech. motion	294	3.2
cricket cercal (sensory afferent)	wind noise	75 - 220	0.6 - 3.1
cricket cercal (10-2 and 10-3)	wind noise	8 - 80	avg. = 1
Electric fish (P-afferent)	amp. modulation	0 - 200	0 - 1.2

After Borst and Theunissen, 1999

Redundancy plays an important role in neural coding

Response of salamander retinal ganglion cells to natural movies

From Puchalla et al, 2005

Representation in spikes limits neural capacity

- Graded potentials can convey 5 times as much information as spikes (de Ruyter van Steveninck & Laughlin, 1996)
- The spike generator limits the information in a retinal ganglion cell (Dhingra & Smith, 2004)

Limited capacity \Rightarrow neural codes need to be *robust*.

(This is also a desirable property in real systems)

Defining the problem: A standard linear encoder/decoder

Model limited precision using additive channel noise:

Traditional codes are not robust

Original

wavelet coding

Add channel noise equivalent to I bit precision

Traditional codes are not robust

Original

ICA coding

Add channel noise equivalent to I bit precision

reconstruction error: 34.8%

Robustness is not dimensionality reduction

Reduce dimensionality by $\frac{1}{2}$ using PCA

No channel noise

Original

reconstruction error: 4.5%

Robustness is not dimensionality reduction

Reduce dimensionality by $\frac{1}{2}$ using PCA

channel noise equal to I bit precision

reconstruction error: 36.4%

Original

This is distinct from "reading" noisy populations

Here, we want to *learn* an optimal image code using noisy neurons.

How do we learn robust codes?

Objective:

Find W and A that minimize reconstruction error.

Residual error: $\boldsymbol{\epsilon} = \mathbf{x} - \hat{\mathbf{x}} = (\mathbf{I}_N - \mathbf{A}\mathbf{W})\mathbf{x} - \mathbf{A}\mathbf{n}$ Squared error: $\mathcal{E} = \langle \boldsymbol{\epsilon}^T \boldsymbol{\epsilon} \rangle = \operatorname{tr} (\langle \boldsymbol{\epsilon} \boldsymbol{\epsilon}^T \rangle)$

 $\mathcal{E}(\mathbf{A}, \mathbf{W}) = \operatorname{tr}\{(\mathbf{I}_N - \mathbf{A}\mathbf{W})\boldsymbol{\Sigma}_{\mathbf{x}}(\mathbf{I}_N - \mathbf{A}\mathbf{W})^T\} + \sigma_n^2 \operatorname{tr}\{\mathbf{A}\mathbf{A}^T\}$

We also need to constrain capacity.

Constraining neural capacity

• Channel capacity of the ith neuron:

$$C_i = \frac{1}{2}\ln(\mathrm{SNR}_i + 1)$$

• To limit capacity, we fix the coefficient variance:

$$\mathrm{SNR}_i = \frac{\langle u_i^2 \rangle}{\sigma_n^2}$$

• This implies W must satisfy:

$$\operatorname{diag}(\mathbf{W}\boldsymbol{\Sigma}_{\mathbf{x}}\mathbf{W}^{T}) = \sigma_{u}^{2} \mathbf{1}_{M}$$

Now robust coding is formulated as a *constrained optimization* problem.

Solving the robust coding problem

- Analytically: can compute exact solutions for I-D and 2-D cases.
- Numerically:

$$\Delta \mathbf{W} \propto -\frac{\partial}{\partial \mathbf{W}} (\text{Cost})$$

$$= 2 \mathbf{A}^T (\mathbf{I}_N - \mathbf{A}\mathbf{W}) \mathbf{\Sigma}_{\mathbf{x}} - \lambda \frac{4}{M} \operatorname{diag} \left[\frac{\ln \{\operatorname{diag}(\mathbf{W} \mathbf{\Sigma}_{\mathbf{x}} \mathbf{W}^T) / c\}}{\operatorname{diag}(\mathbf{W} \mathbf{\Sigma}_{\mathbf{x}} \mathbf{W}^T)} \right] \mathbf{W} \mathbf{\Sigma}_{\mathbf{x}}$$

$$\mathbf{A} = \mathbf{\Sigma}_{\mathbf{x}} \mathbf{W}^T (\sigma_n^2 \mathbf{I}_M + \mathbf{W} \mathbf{\Sigma}_{\mathbf{x}} \mathbf{W}^T)^{-1} \Leftrightarrow \frac{\partial}{\partial \mathbf{A}} (\operatorname{Cost}) = \mathbf{O}$$

Robust coding of natural images: methods

- 8x8 pixel blocks from 62 natural images (Kyoto natural image dataset)
- No preprocessing except for DC subtraction for each sample.
- Precision is set as 1 bit for each neuron, comparable to neural data.

Comparing robust coding to traditional codes

Robust coding of natural images greatly improves reconstruction

Reconstruction error can be reduced arbitrarily by adding neurons

Generalizing minimum squared error bound for N-D

$$\begin{array}{ll} \text{2-D} \\ \text{Anisotropic} \end{array} \quad \mathcal{E} = \frac{1}{\frac{M}{2} \cdot \text{SNR} + 1} \frac{(\sqrt{\lambda_1} + \sqrt{\lambda_2})^2}{2} & \text{if SNR} \geq \text{SNR}_c \\ \\ \lambda_i \text{- ith eigenvalue of the data.} \\ M \text{- } \# \text{ of coding units (neurons)} \end{array}$$

conjecture:
N-D
Anisotropic
$$\mathcal{E} = \frac{1}{\frac{M}{N} \cdot \text{SNR} + 1} \frac{1}{N} \left[\sum_{i=1}^{N} \sqrt{\lambda_i} \right]^2 \quad \text{if SNR} \ge \text{SNR}_c$$

Predicted vs actual error

	Results	Conjecture
0.5x	19.9 %	20.3 %
lx	12.4 %	12.5 %
8x	2.0 %	2.0 %

Adding precision to 1x robust coding

Robust Coding: encoding vectors (W)

0.5x

lх

303,866	R. 68 (197	120032	9008 500
200 F. 10	1040 054	10-01-02	1965 369
0.200 (200)	ALC: 12	1000 100	1000 AUG 1
803 D 90	28.367	900 M & B	1993 File
1000	1.00	4 H C C C C C	100210-00
1000	600 BBC	1201028	143 6.5
1022-034	C2-5-52-6	800 D C	a station of the
500 A.P.S	100000-0	100A 100	10001003
10000-008	C 1997 - LON	100 B (100	10.101
10 10 10 10 P			
STR 160	247.56	1964 KB	S. S. S. S. S. S.
10.00	1000	1000	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10.000	003240	10 C 24	101-102
1222-042	150150	936999	9083465
100 C	Contract Street	100 C	1000
102 454	100 A.C		10.00
10 C 10 C	2404 AV	1995 B.A.	1.000
100.000	600 BO	A12344	2 C 2 C 2 C 2
662 B-24	1000 765	10.00	5. A 1976

8x

Making robust codes efficient

• Current robust coding objective minimizes error subject to capacity constraint:

(Cost) = (Error) + λ (Var. Const.)

• We can add an additional constraint to improve coding efficiency:

(Cost) = (Error) +
$$\lambda$$
 (Var. Const.) - λ' (Sparseness)

• Using a Cauchy sparseness term, the new update rule is:

$$\Delta \mathbf{W} = 2 \mathbf{A}^{T} (\mathbf{I}_{N} - \mathbf{A}\mathbf{W}) \boldsymbol{\Sigma}_{\mathbf{x}} - \lambda \frac{4}{M} \operatorname{diag} \left[\frac{\ln \{\operatorname{diag}(\mathbf{W}\boldsymbol{\Sigma}_{\mathbf{x}}\mathbf{W}^{T})/c\}}{\operatorname{diag}(\mathbf{W}\boldsymbol{\Sigma}_{\mathbf{x}}\mathbf{W}^{T})} \right] \mathbf{W} \boldsymbol{\Sigma}_{\mathbf{x}}$$
$$+ \lambda' \frac{2\beta}{M\sigma^{2}} \frac{\mathbf{W}\mathbf{x}}{1 + \operatorname{diag}(\mathbf{W}\langle \mathbf{x}\mathbf{x}^{T}\rangle\mathbf{W}^{T})/\sigma^{2}} \mathbf{x}^{T}$$

$$\mathbf{A} = \boldsymbol{\Sigma}_{\mathbf{x}} \mathbf{W}^T (\sigma_n^2 \mathbf{I}_M + \mathbf{W} \boldsymbol{\Sigma}_{\mathbf{x}} \mathbf{W}^T)^{-1} \Leftrightarrow \frac{\partial}{\partial \mathbf{A}} (\text{Cost}) = \mathbf{O}$$

Sparseness localizes the vectors and increases coding efficiency

Robust Sparse Coding: encoding vectors (W)

0.5x

Iх							
	10	1	11			1	. 0
3				1	ų.	1	1
1	100		1	3			6
ľ.	1	8		1		3	11
3		1	15		1	8	1
Υ.			ġ	C	í.		1
			3	2	Ľ,	1	
1	4						22

8x

	1					an a	3	1			4		i.	1	3							
1				Ŵ	1		$r_{\rm s}$	1		.*	2	11	2	Ň	¥			s."			200	
		۰.	1	H.	4	1		÷.	3	4	8	1			ų		۰.	1			8	
	ų.		1	1		<i>7</i>	8.			2	1		10	20	P.				×.	4	in.	- 34
14	11	3					2	1	S.			A.	e i	£		×	8	8		۰.	6	4
8				1		y.			6	2	a)	1		10	1	1		1				
	£.	1				10	a.			2		6	à,	33	2	2		6		1	10	
1	a.		$p_{\rm c}$			4		4	ł.	a	a.	\mathbf{y}	ЭĒ	4	11	n.	•	10	ł			1
ÿ.	4	<u>.</u>	8			8	2	1	6	1	1	<u> (</u>			1	18	0.	Е.,	30	S_{ij}	- 75	
	\mathbf{k}	4	2	10	1		3	1	1	2	а.	1	ŝ	С .с.	2		4		1	1		30
16	2	3		4	1	10	4	11	1	30		٩.			10		•		1	a.	Ľ	4
\mathcal{B}	10	1			8	112	si.				1				(fr		8.	R.	0	1	20	
10	d.	3	13	36	1	10	10	4	X.			×.	1	1.	3	1	4	3	8		1	-
-				\mathbb{R}^{n}			4	ĥ.		1			6	2	4	4	<u>_</u> 8		e -	1	1	
8	40	×.		£.	1		2	e.	1	8	÷	X	1		$\mathbb{S}^{\mathbb{N}}$	1	9		30		-	
	10	8		1			10		8	∂_{i_1}	17	10	1			κ.		25	۰.	1	14	
4	.0	8	9	1		8.	10	10			4			1	-	1	1		0	0	1	Sec.
3	1					20			40		4	3.5		33			2	¢.	ġ.	X	4	3
			1	4	4		1	and the	1	4		e.	4		\mathcal{X}_{i}	b	e.		6	1	1	
1	33		3	12	-	1		\hat{x}	£	2		8	14	1		1	6				1	2.0
		2	ŝ				10			1		- 6	1		w.							ä.
1			in	10	iii	12			1	-							in.		1	100	20	
8																						

Robust Sparse Coding: decoding vectors (A)

0.5x

8x

Incorporating sensory noise

Optimal receptive fields for different noise levels and eccentricities

40 degrees

20dB

-10dB

