
Part 3: Coding with Noisy Populations



Problem 1: Real neurons are “noisy”

system (area) stimulus bits / sec bits / spike

fly visual (H1) motion 64 ~1

monkey visual (MT) motion 5.5 - 12 0.6 - 1.5

frog auditory (auditory nerve) noise & call 46 & 133 1.4 & 7.8

Salamander visual (ganglinon cells) rand. spots 3.2 1.6

cricket cercal (sensory afferent) mech. motion 294 3.2

cricket cercal (sensory afferent) wind noise 75 - 220 0.6 - 3.1

cricket cercal (10-2 and 10-3) wind noise 8 - 80 avg. = 1

Electric fish (P-afferent) amp. modulation 0 - 200 0 - 1.2

Estimates of neural information capacity

After Borst and Theunissen, 1999



Redundancy plays an important role in neural coding

Response of salamander retinal ganglion cells to natural movies

From Puchalla et al, 2005 
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electrode array. To explore the manner in which visual
scenes are represented within the population of retinal
ganglion cells, we calculated the fractional redundancy
between all pairs of ganglion cells. This quantity mea-
sures the degree to which pairs of ganglion cell spike
trains encode the same visual information (Gat and
Tishby, 1999; Gawne and Richmond, 1993; Panzeri and
Schultz, 2001; Petersen et al., 2001; Schneidman et al.,
2003a); its value is sensitive not just to pairwise correla-
tions between spikes, but to all correlations that can
be directly sampled (see Experimental Procedures). By
directly sampling, the redundancy can be measured
without implicitly assuming any model of the light re-
sponse or of the noise. Redundancy was defined as
the difference between the mutual information that the
responses of each cell alone conveyed about the stim-
ulus, I(Ra;S) and I(Rb;S), and the information conveyed
by their joint responses, I(Ra,Rb;S). As information rates
varied widely within the population of ganglion cells, we
calculated the redundancy as a fraction of the minimum
information of the two individual cells (Reich et al.,
2001):

This normalization factor, min{I(Ra;S), I(Rb;S)}, is the
maximum possible redundancy between two cells, so
that the fractional redundancy can be no greater than
1. The fractional redundancy is 0 when the two cells
encode independent information about the stimulus; its
value is 1 when the two cells encode exactly the same
information or when one cell’s information is a subset
of the other’s. Negative values of the redundancy mean
that the cells are synergistic.

Redundancy between Pairs of Ganglion Cells
In order to assess retinal processing under realistic vi-
sual conditions, we stimulated retinas with a set of nat-
ural movie clips chosen to represent a variety of envi-
ronments. An especially important characteristic of
natural stimuli is the wide field motion caused by the
movement of an animal’s eyes or body, as this should

Figure 1. Redundancy under Natural Stimulationstrongly stimulate many ganglion cells. We included
(A) Single frames from four natural movie clips having differentmovies having five different categories of motion: ob-
categories of motion.ject motion, optic flow, smooth pursuit, saccades, and
(B) Examples of spike rasters from ten cells recorded simulta-combinations of these kinds of motion. Movies catego- neously during the forest walk movie clip. Each dot represents the

rized as having object motion were filmed while the time of a spike; vertical dimension shows 120 repeated stimulus
video camera remained stationary and one or more ob- trials. Cells A and B have a fractional redundancy of 0.17, while cell

C does not share significant redundancy with any of the other cells.jects within the field of view moved freely (see Experi-
(C) Fractional redundancy for 1838 cell pairs in 4 retinas stimulatedmental Procedures). For the other categories of movies,
by natural scenes plotted versus the distance between the cell’sthe camera was moved so as to stimulate eye or body
receptive-field centers. The type of motion present in each moviemovements. Most movies were taken of woodland clip is shown by the dot color: object motion (red), saccades (blue),

scenes, but some were aquatic or man-made. Four ex- optic flow (green), smooth pursuit (black), and combinations of mo-
amples of movie frames are shown in Figure 1A. tion (orange).

Figure 1B shows spike rasters from ten cells re-
corded simultaneously during the forest walk movie. As
seen, the spike trains were sparse and temporally pre- pairs stimulated by 12 different movies versus the dis-

tance between ganglion cells, as determined from thecise, primarily occurring in well-isolated firing events
(Berry et al., 1997). There was a complex pattern of receptive field of each cell (see Experimental Pro-

cedures). Although the redundancy depended system-event times across the population, with some cells
sharing many narrow events and others sharing none. atically on the distance between cells, there was wide

variation among the values for cell pairs of roughly theFigure 1C plots the fractional redundancy for 1838 cell
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Representation in spikes limits neural capacity

• Graded potentials can convey 5 times as much information as spikes (de Ruyter 
van Steveninck & Laughlin, 1996)

• The spike generator limits the information in a retinal ganglion cell (Dhingra & 
Smith, 2004)

Limited capacity ⇒ neural codes need to be robust.

(This is also a desirable property in real systems)



Defining the problem:  A standard linear encoder/decoder
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Model limited precision using additive channel noise:
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Abstract

We examine the problem of minimum error reconstruction subject to noise or imprecision in the code, which we shall call
robust coding. We present a theoretical analysis for one- and two-dimensional cases that characterizes the optional linear encoder
and decoder in the mean squared error sense. The analysis allows for an arbitrary number of coding units, thus including both
under- and over-complete representations, and provides insights into optimal coding strategies. In particular, we show how the
form of the code adapts to the number of coding units and to different data and noise conditions in order to achieve robustness.
We also report numerical solutions of robust coding for high-dimensional image data and show that these codes are substantially
more robust compared against other image codes such as PCA, ICA, and wavelets.

I. INTRODUCTION

Many approaches to optimal coding focus on representing information with minimum entropy by approximating the
underlying statistical density of the data, such as principal or independent component analysis (PCA or ICA), or by developing
encoding/decoding algorithms with desirable computational and representational properties, such as Fourier and wavelet-based
codes. Another important, but less commonly addressed, aspect of coding is robustness: how much information about the signal
is retained when the representation is subject to noise (equivalently, if the representation itself has limited precision)? Standard
approaches to coding often fail tests of robustness. Although a code may achieve maximum dimensionality reduction with
minimal error or may be statistically optimal with minimal entropy, the representation is often assumed to be real-valued and
noise-free, which implicitly assumes a representation whose coefficients have infinite precision. If the coefficients are subject to
noise or their precision is limited, optimality of the representation cannot be guaranteed. Optimality under limited precision is
a common in practical concern: it would be useful if the data can be represented with small error with low-bit precision. This
issue is also relevant to biological neural representations where the coding precision of individual neurons has been reported
to be as low as a few bits (for a review, see [1]).

Because such a noisy, low-precision code can be interpreted as a bottleneck at the representation, the problem might appear
similar to dimensionality reduction or compression. However, as we describe in detail below, it is a fundamentally different
problem. For instance, what if a great number of coding elements are available while their coding precision is significantly
limited? In that case, the apparent dimensionality could be increased (instead of reduced) while the total representational
capacity is still limited. Robust coding should make optimal use of such an arbitrary number of coding units in order to
improve the fidelity of the code. As we will see, robust coding introduces redundancy into the code in order to allow the
recovered signal to be separated from the assumed noise in the representation, unlike PCA or ICA that reduces redundancy in
the code.

In this paper we present the optimal linear encoder and decoder when the coefficients are noisy, and show that their forms
change adaptively to the number of units and to the different data and noise conditions. This paper is organized as follows.
First, in section II, we formulate the problem. Then, in section III, we analyze the solutions for the general case, and present
the optimal solutions for one- and two-dimensional case. Next, in section IV, we apply the proposed robust coding to image
coding and demonstrate its considerable robustness compared against conventional image codes. Finally, in section V, we
discuss related studies.

II. PROBLEM FORMULATION

To define our model (Fig. 1), we assume that the data is N -dimensional with zero mean and covariance matrix Σx, and
consider two matrices W ∈ RM×N and A ∈ RN×M . For each data point x, its representation r in the model is the linear
transform of x through matrix W, perturbed by the additive noise (i.e., channel noise) n ∼ N (0, σ2

n IM ):

r = Wx + n = u + n. (1)

We refer to W as the encoding matrix and its row vectors as encoding vectors. The reconstruction of a data point is the linear
transform of the noisy representation using matrix A:

x̂ = Ar = AWx + An. (2)

We refer to A as the decoding matrix and its column vectors as decoding vectors. The term AWx in eq. 2 determines how
the reconstruction depends on the data, and An expresses the influence of the channel noise in the reconstruction. If there is
no channel noise (n=0), then AW = I is equivalent to perfect reconstruction.

The goal of the system is to form an accurate representation of the data that is robust to the presence of channel noise.
More precisely, we seek an optimal pair of linear encoder and decoder. We quantify the accuracy of the reconstruction by the
mean squared error (MSE) over samples. The reconstruction error of each sample point is

ε = x− x̂ = (IN −AW)x−An, (3)

and the MSE E = 〈εT ε〉 = tr
(
〈εεT 〉

)
is given in matrix form as

E(A,W) = tr{(IN −AW)Σx(IN −AW)T }+ σ2
n tr{AAT }. (4)
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Caveat:
It’s linear, but we can 
evaluate it for different 
noise levels.



Traditional codes are not robust
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Fig. 1. Diagram of the model.

Note that the optimal solution of A and W depends solely on second-order statistics, i.e., the covariance matrix of the data
Σx and the chanel noise variance σ2

n.
We are interested in the system in which the precision of the code is limited, i.e., the representation r has a limited

signal-to-noise ratio (SNR). In order to limit the SNR, we fix the variance of each coding unit,

〈u2
i 〉 = σ2

u, (5)

which yields the same SNR for each unit,

γ2 =
σ2

u

σ2
n

. (6)

As the channel capacity of information is defined by C =
1
2

ln(γ2 + 1) [2], limiting the SNR is equivalent to limiting the
capacity for each unit. We shall call this constraint as channel capacity constraint.

III. OPTIMAL SOLUTIONS AND THEIR CHARACTERISTICS

The goal now is to minimize the MSE (eq. 4) subject to the channel capacity constraint (eq. 5). In this section, we first
analyze the problem in the general case as far as we can, and then we present the optimal solutions in some feasible cases,
namely, for one-dimensional (1-D) and two-dimensional (2-D) data.

First, let us consider how to reflect the channel capacity constraint in the solution. This constraint limits the search space
of W but not A, since W is the parameter that has an influence on σ2

u (cf. eqs. 1 and 2). Therefore, the channel capacity
constraint (eq. 5) is expressed in terms of W as

diag(WΣxWT ) = σ2
u 1M , (7)

where 1M = (1, · · · , 1)T ∈ RM . It takes a convenient form,

diag(VVT ) = 1M (8)

when we define V by a linear transform of W,

V ≡ WES/σu, (9)

where Σx = EDET is the eigenvalue decomposition of the data covariance matrix, S = D
1
2 = diag(

√
λ1, · · · ,

√
λM ), and

λi ≡ Dii are the eigenvalues of Σx. To summarize, the channel capacity constraint is now incorporated in W in such a way
that its linear transform V should have row vectors of unit length.

Next, let us consider a necessary condition for the minimum E , i.e., the first derivative of E should be zero with respect to
all free parameters. Regarding A, ∂E/∂A = O yields (see Appendix A)

A =
1
σu

γ2ES(IN + γ2VT V)−1VT . (10)

(Note that the necessary condition with respect to W (or equivalently, with respect to V) is not as straightforward as this since
W (or V) is constrained to a certain subspace by the channel capacity constraint. We leave this condition as it is for now.)

Using the channel capacity constraint (eq. 9) and the necessary condition with respect to A (eq. 10), the MSE (eq. 4) can
be simplified as (see Appendix B)

E = tr{D · (IN + γ2VT V)−1}. (11)

Finally, the problem is reformulated as finding V that minimizes eq. 11 where V should satisfy the variance constraint (eq.
8).

Add channel
noise equivalent
to 1 bit precision

wavelet codingOriginal reconstruction error: 34.8%



Traditional codes are not robust
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Note that the optimal solution of A and W depends solely on second-order statistics, i.e., the covariance matrix of the data
Σx and the chanel noise variance σ2

n.
We are interested in the system in which the precision of the code is limited, i.e., the representation r has a limited

signal-to-noise ratio (SNR). In order to limit the SNR, we fix the variance of each coding unit,

〈u2
i 〉 = σ2

u, (5)

which yields the same SNR for each unit,

γ2 =
σ2

u

σ2
n

. (6)

As the channel capacity of information is defined by C =
1
2

ln(γ2 + 1) [2], limiting the SNR is equivalent to limiting the
capacity for each unit. We shall call this constraint as channel capacity constraint.

III. OPTIMAL SOLUTIONS AND THEIR CHARACTERISTICS

The goal now is to minimize the MSE (eq. 4) subject to the channel capacity constraint (eq. 5). In this section, we first
analyze the problem in the general case as far as we can, and then we present the optimal solutions in some feasible cases,
namely, for one-dimensional (1-D) and two-dimensional (2-D) data.

First, let us consider how to reflect the channel capacity constraint in the solution. This constraint limits the search space
of W but not A, since W is the parameter that has an influence on σ2

u (cf. eqs. 1 and 2). Therefore, the channel capacity
constraint (eq. 5) is expressed in terms of W as

diag(WΣxWT ) = σ2
u 1M , (7)

where 1M = (1, · · · , 1)T ∈ RM . It takes a convenient form,

diag(VVT ) = 1M (8)

when we define V by a linear transform of W,

V ≡ WES/σu, (9)

where Σx = EDET is the eigenvalue decomposition of the data covariance matrix, S = D
1
2 = diag(

√
λ1, · · · ,

√
λM ), and

λi ≡ Dii are the eigenvalues of Σx. To summarize, the channel capacity constraint is now incorporated in W in such a way
that its linear transform V should have row vectors of unit length.

Next, let us consider a necessary condition for the minimum E , i.e., the first derivative of E should be zero with respect to
all free parameters. Regarding A, ∂E/∂A = O yields (see Appendix A)

A =
1
σu

γ2ES(IN + γ2VT V)−1VT . (10)

(Note that the necessary condition with respect to W (or equivalently, with respect to V) is not as straightforward as this since
W (or V) is constrained to a certain subspace by the channel capacity constraint. We leave this condition as it is for now.)

Using the channel capacity constraint (eq. 9) and the necessary condition with respect to A (eq. 10), the MSE (eq. 4) can
be simplified as (see Appendix B)

E = tr{D · (IN + γ2VT V)−1}. (11)

Finally, the problem is reformulated as finding V that minimizes eq. 11 where V should satisfy the variance constraint (eq.
8).

Add channel
noise equivalent
to 1 bit precision

ICA codingOriginal reconstruction error: 34.8%



Robustness is not dimensionality reduction
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〈u2
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u, (5)

which yields the same SNR for each unit,

γ2 =
σ2

u

σ2
n

. (6)

As the channel capacity of information is defined by C =
1
2

ln(γ2 + 1) [2], limiting the SNR is equivalent to limiting the
capacity for each unit. We shall call this constraint as channel capacity constraint.

III. OPTIMAL SOLUTIONS AND THEIR CHARACTERISTICS

The goal now is to minimize the MSE (eq. 4) subject to the channel capacity constraint (eq. 5). In this section, we first
analyze the problem in the general case as far as we can, and then we present the optimal solutions in some feasible cases,
namely, for one-dimensional (1-D) and two-dimensional (2-D) data.

First, let us consider how to reflect the channel capacity constraint in the solution. This constraint limits the search space
of W but not A, since W is the parameter that has an influence on σ2

u (cf. eqs. 1 and 2). Therefore, the channel capacity
constraint (eq. 5) is expressed in terms of W as

diag(WΣxWT ) = σ2
u 1M , (7)

where 1M = (1, · · · , 1)T ∈ RM . It takes a convenient form,

diag(VVT ) = 1M (8)

when we define V by a linear transform of W,

V ≡ WES/σu, (9)

where Σx = EDET is the eigenvalue decomposition of the data covariance matrix, S = D
1
2 = diag(

√
λ1, · · · ,

√
λM ), and

λi ≡ Dii are the eigenvalues of Σx. To summarize, the channel capacity constraint is now incorporated in W in such a way
that its linear transform V should have row vectors of unit length.

Next, let us consider a necessary condition for the minimum E , i.e., the first derivative of E should be zero with respect to
all free parameters. Regarding A, ∂E/∂A = O yields (see Appendix A)

A =
1
σu

γ2ES(IN + γ2VT V)−1VT . (10)

(Note that the necessary condition with respect to W (or equivalently, with respect to V) is not as straightforward as this since
W (or V) is constrained to a certain subspace by the channel capacity constraint. We leave this condition as it is for now.)

Using the channel capacity constraint (eq. 9) and the necessary condition with respect to A (eq. 10), the MSE (eq. 4) can
be simplified as (see Appendix B)

E = tr{D · (IN + γ2VT V)−1}. (11)

Finally, the problem is reformulated as finding V that minimizes eq. 11 where V should satisfy the variance constraint (eq.
8).

No channel noise

Reduce dimensionality by ½ using PCA

Original reconstruction error: 4.5%



Robustness is not dimensionality reduction
DRAFT FOR IEEE TRANS. ON IMAGE PROCESSING 3

x W u r A x̂

n
Encoder Decoder

Channel Noise

Data Noisy

Representation

Noiseless

Representation

Reconstruction

Fig. 1. Diagram of the model.

Note that the optimal solution of A and W depends solely on second-order statistics, i.e., the covariance matrix of the data
Σx and the chanel noise variance σ2

n.
We are interested in the system in which the precision of the code is limited, i.e., the representation r has a limited

signal-to-noise ratio (SNR). In order to limit the SNR, we fix the variance of each coding unit,

〈u2
i 〉 = σ2

u, (5)

which yields the same SNR for each unit,

γ2 =
σ2

u

σ2
n

. (6)

As the channel capacity of information is defined by C =
1
2

ln(γ2 + 1) [2], limiting the SNR is equivalent to limiting the
capacity for each unit. We shall call this constraint as channel capacity constraint.

III. OPTIMAL SOLUTIONS AND THEIR CHARACTERISTICS

The goal now is to minimize the MSE (eq. 4) subject to the channel capacity constraint (eq. 5). In this section, we first
analyze the problem in the general case as far as we can, and then we present the optimal solutions in some feasible cases,
namely, for one-dimensional (1-D) and two-dimensional (2-D) data.

First, let us consider how to reflect the channel capacity constraint in the solution. This constraint limits the search space
of W but not A, since W is the parameter that has an influence on σ2

u (cf. eqs. 1 and 2). Therefore, the channel capacity
constraint (eq. 5) is expressed in terms of W as

diag(WΣxWT ) = σ2
u 1M , (7)

where 1M = (1, · · · , 1)T ∈ RM . It takes a convenient form,

diag(VVT ) = 1M (8)

when we define V by a linear transform of W,

V ≡ WES/σu, (9)

where Σx = EDET is the eigenvalue decomposition of the data covariance matrix, S = D
1
2 = diag(

√
λ1, · · · ,

√
λM ), and

λi ≡ Dii are the eigenvalues of Σx. To summarize, the channel capacity constraint is now incorporated in W in such a way
that its linear transform V should have row vectors of unit length.

Next, let us consider a necessary condition for the minimum E , i.e., the first derivative of E should be zero with respect to
all free parameters. Regarding A, ∂E/∂A = O yields (see Appendix A)

A =
1
σu

γ2ES(IN + γ2VT V)−1VT . (10)

(Note that the necessary condition with respect to W (or equivalently, with respect to V) is not as straightforward as this since
W (or V) is constrained to a certain subspace by the channel capacity constraint. We leave this condition as it is for now.)

Using the channel capacity constraint (eq. 9) and the necessary condition with respect to A (eq. 10), the MSE (eq. 4) can
be simplified as (see Appendix B)

E = tr{D · (IN + γ2VT V)−1}. (11)

Finally, the problem is reformulated as finding V that minimizes eq. 11 where V should satisfy the variance constraint (eq.
8).

channel noise equal
 to 1 bit precision

Reduce dimensionality by ½ using PCA

Original reconstruction error: 36.4%



This is distinct from “reading” noisy populations
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In EQN 2, si is the direction (the preferred direction) that
triggers the strongest response from the cell, ! is the
width of the tuning curve, s – si is the angular difference
(so if s = 359° and si = 2°, then s – si = 3°), and k is a scal-
ing factor. In this case, all the cells in the population
share a common tuning curve shape,but have different
preferred directions, si (FIG. 1a).Many population codes
involve bell-shaped tuning curves like these.

The inclusion of the noise in EQN 1 is important
because neurons are known to be noisy. For example, a
neuron that has an average firing rate of 20 Hz for a
stimulus moving at 90°might fire at only 18 Hz on one
occasion for a particular 90° stimulus, and at 22 Hz on
another occasion for exactly the same stimulus5. Several
factors contribute to this variability, including uncon-
trolled or uncontrollable aspects of the total stimulus
presented to the monkey, and inherent variability in
neuronal responses. In the standard model, these are
collectively considered as random noise. The presence of
this noise causes important problems for information
transmission and processing in cortical circuits, some of
which are solved by population codes. It also means that
we should be concerned not only with how the brain
computes with population codes,but also how it does so
reliably in the presence of such stochasticity.

Decoding population codes
In this section, we shall address the following question:
what information about the direction of a moving
object is available from the response of a population of
neurons? Let us take a hypothetical experiment. Imagine
that we record the activity of 64 neurons from area MT,
and that these neurons have spatially overlapping recep-
tive fields. We assume that all 64 neurons have the same
tuning curve shape with preferred directions that are
uniformly distributed between 0° and 360° (FIG. 1a). We
then present an object moving in an unknown direc-
tion, s, and we assume that the responses are generated
according to EQN 1. If we plot the responses, r, of the 64
neurons as a function of the preferred direction of each
cell, the resulting pattern looks like a noisy hill centred in
the vicinity of s (FIG. 1b). The question can now be
rephrased as follows: what information about the direc-
tion s of the moving object is available from the
observed responses, r?

The presence of noise makes this problem challeng-
ing. To recover the direction of motion from the
observed responses, we would like to assess for each cell,
i, the exact contribution of its tuning curve, fi(s), to its
observed response. However, on a single trial, it is
impossible to apportion signal and noise in the
response. For instance, if a neuron fires at 54 Hz on one
trial, the contribution of the tuning curve could be 30
Hz, with 24 Hz due to noise.However, the contributions
could just as easily be 50 Hz and 4 Hz, respectively.
Nevertheless, given some knowledge of the noise, it is
possible to assess probabilities for these unknowns. If
the noise follows a normal distribution with a mean of
zero and a neuron fires at 54 Hz on a particular trial, it is
more likely that the contribution of the tuning curve in
our example is 50 Hz rather than 30 Hz.

rate.Other aspects of the response, such as the precise
timing of individual spikes, might also have a function
in coding information,but here we shall focus on prop-
erties of response rates,because they are simpler and are
better understood. (For reviews of coding through spike
timing, see REFS 1–3.)

More formally, we can describe the response of a cell
using an encoding model4. In one simple such model,

In EQN 1, fi(s), the average response, is the TUNING CURVE

for the encoded variable s (the direction) and ni is the
noise. The letter i is used as an index for the individual
neuron; it varies from 1 to n, where n is the total number
of neurons under consideration. We use the notation r
to refer to all the activities and f(s) for their means.Here,
r and f(s) are vectors with n components, each of which
corresponds to one neuron. Experimental measure-
ments have shown that the noise term (ni) can typically
be characterized as following a normal distribution
whose variance is proportional to the mean value, fi(s)
(REF. 5). When fi(s) is a gaussian, it can be written as:

fi(s) = ke (2)– (s–si)2/2!2

ri = fi(s) + ni (1)

100

80

60

40

20

0

–100 1000

Direction (deg)

a b

c d

A
c
tiv

ity
 (
sp

ik
e
s 

s–
1
)

100

80

60

40

20

0

–100 1000

Preferred direction (deg)

A
c
tiv

ity
 (
sp

ik
e
s 

s–
1
)

100

80

60

40

20

0
–100 1000

Preferred direction (deg)

A
c
tiv

ity
 (
sp

ik
e
s 

s–
1
)

100

80

60

40

20

0
–100 1000

Preferred direction (deg)

A
c
tiv

ity
 (
sp

ik
e
s 

s–
1
)

Figure 1 | The standard population coding model. a | Bell-shaped tuning curves to direction for

16 neurons. b | A population pattern of activity across 64 neurons with bell-shaped tuning curves in

response to an object moving at –40°. The activity of each cell was generated using EQN 1, and

plotted at the location of the preferred direction of the cell. The overall activity looks like a ‘noisy’ hill

centred around the stimulus direction. c | Population vector decoding fits a cosine function to the

observed activity, and uses the peak of the cosine function, ŝ, as an estimate of the encoded

direction. d | Maximum likelihood fits a template derived from the tuning curves of the cells. More

precisely, the template is obtained from the noiseless (or average) population activity in response to

a stimulus moving in direction s. The peak position of the template with the best fit, ŝ, corresponds

to the maximum likelihood estimate, that is, the value that maximizes P(r |s).

NONLINEAR FUNCTION

A linear function of a one-
dimensional variable (such as
direction of motion) is any
function that looks like a straight
line, that is, any function that
can be written as y = ax + b,
where a and b are constant. Any
other functions are nonlinear. In
two dimensions and above,
linear functions correspond to
planes and hyperplanes. All
other functions are nonlinear.

GAUSSIAN FUNCTION

A bell-shaped curve. Gaussian
tuning curves are extensively
used because their analytical
expression can be easily
manipulated in mathematical
derivations.

TUNING CURVE

A tuning curve to a feature is the
curve describing the average
response of a neuron as a
function of the feature values.

From Pouget et al, 2001

Here, we want to learn an optimal image code using noisy neurons.



How do we learn robust codes?

x W u r A x̂

n
Encoder Decoder

Channel Noise

Data Noisy

Representation

Noiseless

Representation

Reconstruction

Objective: 

 	 Find W and A that minimize reconstruction error.

Residual error:

Squared error:
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Abstract

We examine the problem of minimum error reconstruction subject to noise or imprecision in the code, which we shall call
robust coding. We present a theoretical analysis for one- and two-dimensional cases that characterizes the optional linear encoder
and decoder in the mean squared error sense. The analysis allows for an arbitrary number of coding units, thus including both
under- and over-complete representations, and provides insights into optimal coding strategies. In particular, we show how the
form of the code adapts to the number of coding units and to different data and noise conditions in order to achieve robustness.
We also report numerical solutions of robust coding for high-dimensional image data and show that these codes are substantially
more robust compared against other image codes such as PCA, ICA, and wavelets.

I. INTRODUCTION

Many approaches to optimal coding focus on representing information with minimum entropy by approximating the
underlying statistical density of the data, such as principal or independent component analysis (PCA or ICA), or by developing
encoding/decoding algorithms with desirable computational and representational properties, such as Fourier and wavelet-based
codes. Another important, but less commonly addressed, aspect of coding is robustness: how much information about the signal
is retained when the representation is subject to noise (equivalently, if the representation itself has limited precision)? Standard
approaches to coding often fail tests of robustness. Although a code may achieve maximum dimensionality reduction with
minimal error or may be statistically optimal with minimal entropy, the representation is often assumed to be real-valued and
noise-free, which implicitly assumes a representation whose coefficients have infinite precision. If the coefficients are subject to
noise or their precision is limited, optimality of the representation cannot be guaranteed. Optimality under limited precision is
a common in practical concern: it would be useful if the data can be represented with small error with low-bit precision. This
issue is also relevant to biological neural representations where the coding precision of individual neurons has been reported
to be as low as a few bits (for a review, see [1]).

Because such a noisy, low-precision code can be interpreted as a bottleneck at the representation, the problem might appear
similar to dimensionality reduction or compression. However, as we describe in detail below, it is a fundamentally different
problem. For instance, what if a great number of coding elements are available while their coding precision is significantly
limited? In that case, the apparent dimensionality could be increased (instead of reduced) while the total representational
capacity is still limited. Robust coding should make optimal use of such an arbitrary number of coding units in order to
improve the fidelity of the code. As we will see, robust coding introduces redundancy into the code in order to allow the
recovered signal to be separated from the assumed noise in the representation, unlike PCA or ICA that reduces redundancy in
the code.

In this paper we present the optimal linear encoder and decoder when the coefficients are noisy, and show that their forms
change adaptively to the number of units and to the different data and noise conditions. This paper is organized as follows.
First, in section II, we formulate the problem. Then, in section III, we analyze the solutions for the general case, and present
the optimal solutions for one- and two-dimensional case. Next, in section IV, we apply the proposed robust coding to image
coding and demonstrate its considerable robustness compared against conventional image codes. Finally, in section V, we
discuss related studies.

II. PROBLEM FORMULATION

To define our model (Fig. 1), we assume that the data is N -dimensional with zero mean and covariance matrix Σx, and
consider two matrices W ∈ RM×N and A ∈ RN×M . For each data point x, its representation r in the model is the linear
transform of x through matrix W, perturbed by the additive noise (i.e., channel noise) n ∼ N (0, σ2

n IM ):

r = Wx + n = u + n. (1)

We refer to W as the encoding matrix and its row vectors as encoding vectors. The reconstruction of a data point is the linear
transform of the noisy representation using matrix A:

x̂ = Ar = AWx + An. (2)

We refer to A as the decoding matrix and its column vectors as decoding vectors. The term AWx in eq. 2 determines how
the reconstruction depends on the data, and An expresses the influence of the channel noise in the reconstruction. If there is
no channel noise (n=0), then AW = I is equivalent to perfect reconstruction.

The goal of the system is to form an accurate representation of the data that is robust to the presence of channel noise.
More precisely, we seek an optimal pair of linear encoder and decoder. We quantify the accuracy of the reconstruction by the
mean squared error (MSE) over samples. The reconstruction error of each sample point is

ε = x− x̂ = (IN −AW)x−An, (3)

and the MSE E = 〈εT ε〉 = tr
(
〈εεT 〉

)
is given in matrix form as

E(A,W) = tr{(IN −AW)Σx(IN −AW)T }+ σ2
n tr{AAT }. (4)

DRAFT FOR IEEE TRANS. ON IMAGE PROCESSING 2

Abstract

We examine the problem of minimum error reconstruction subject to noise or imprecision in the code, which we shall call
robust coding. We present a theoretical analysis for one- and two-dimensional cases that characterizes the optional linear encoder
and decoder in the mean squared error sense. The analysis allows for an arbitrary number of coding units, thus including both
under- and over-complete representations, and provides insights into optimal coding strategies. In particular, we show how the
form of the code adapts to the number of coding units and to different data and noise conditions in order to achieve robustness.
We also report numerical solutions of robust coding for high-dimensional image data and show that these codes are substantially
more robust compared against other image codes such as PCA, ICA, and wavelets.

I. INTRODUCTION

Many approaches to optimal coding focus on representing information with minimum entropy by approximating the
underlying statistical density of the data, such as principal or independent component analysis (PCA or ICA), or by developing
encoding/decoding algorithms with desirable computational and representational properties, such as Fourier and wavelet-based
codes. Another important, but less commonly addressed, aspect of coding is robustness: how much information about the signal
is retained when the representation is subject to noise (equivalently, if the representation itself has limited precision)? Standard
approaches to coding often fail tests of robustness. Although a code may achieve maximum dimensionality reduction with
minimal error or may be statistically optimal with minimal entropy, the representation is often assumed to be real-valued and
noise-free, which implicitly assumes a representation whose coefficients have infinite precision. If the coefficients are subject to
noise or their precision is limited, optimality of the representation cannot be guaranteed. Optimality under limited precision is
a common in practical concern: it would be useful if the data can be represented with small error with low-bit precision. This
issue is also relevant to biological neural representations where the coding precision of individual neurons has been reported
to be as low as a few bits (for a review, see [1]).

Because such a noisy, low-precision code can be interpreted as a bottleneck at the representation, the problem might appear
similar to dimensionality reduction or compression. However, as we describe in detail below, it is a fundamentally different
problem. For instance, what if a great number of coding elements are available while their coding precision is significantly
limited? In that case, the apparent dimensionality could be increased (instead of reduced) while the total representational
capacity is still limited. Robust coding should make optimal use of such an arbitrary number of coding units in order to
improve the fidelity of the code. As we will see, robust coding introduces redundancy into the code in order to allow the
recovered signal to be separated from the assumed noise in the representation, unlike PCA or ICA that reduces redundancy in
the code.

In this paper we present the optimal linear encoder and decoder when the coefficients are noisy, and show that their forms
change adaptively to the number of units and to the different data and noise conditions. This paper is organized as follows.
First, in section II, we formulate the problem. Then, in section III, we analyze the solutions for the general case, and present
the optimal solutions for one- and two-dimensional case. Next, in section IV, we apply the proposed robust coding to image
coding and demonstrate its considerable robustness compared against conventional image codes. Finally, in section V, we
discuss related studies.

II. PROBLEM FORMULATION

To define our model (Fig. 1), we assume that the data is N -dimensional with zero mean and covariance matrix Σx, and
consider two matrices W ∈ RM×N and A ∈ RN×M . For each data point x, its representation r in the model is the linear
transform of x through matrix W, perturbed by the additive noise (i.e., channel noise) n ∼ N (0, σ2

n IM ):

r = Wx + n = u + n. (1)

We refer to W as the encoding matrix and its row vectors as encoding vectors. The reconstruction of a data point is the linear
transform of the noisy representation using matrix A:

x̂ = Ar = AWx + An. (2)

We refer to A as the decoding matrix and its column vectors as decoding vectors. The term AWx in eq. 2 determines how
the reconstruction depends on the data, and An expresses the influence of the channel noise in the reconstruction. If there is
no channel noise (n=0), then AW = I is equivalent to perfect reconstruction.

The goal of the system is to form an accurate representation of the data that is robust to the presence of channel noise.
More precisely, we seek an optimal pair of linear encoder and decoder. We quantify the accuracy of the reconstruction by the
mean squared error (MSE) over samples. The reconstruction error of each sample point is

ε = x− x̂ = (IN −AW)x−An, (3)

and the MSE E = 〈εT ε〉 = tr
(
〈εεT 〉

)
is given in matrix form as

E(A,W) = tr{(IN −AW)Σx(IN −AW)T }+ σ2
n tr{AAT }. (4)

DRAFT FOR IEEE TRANS. ON IMAGE PROCESSING 2

Abstract

We examine the problem of minimum error reconstruction subject to noise or imprecision in the code, which we shall call
robust coding. We present a theoretical analysis for one- and two-dimensional cases that characterizes the optional linear encoder
and decoder in the mean squared error sense. The analysis allows for an arbitrary number of coding units, thus including both
under- and over-complete representations, and provides insights into optimal coding strategies. In particular, we show how the
form of the code adapts to the number of coding units and to different data and noise conditions in order to achieve robustness.
We also report numerical solutions of robust coding for high-dimensional image data and show that these codes are substantially
more robust compared against other image codes such as PCA, ICA, and wavelets.

I. INTRODUCTION

Many approaches to optimal coding focus on representing information with minimum entropy by approximating the
underlying statistical density of the data, such as principal or independent component analysis (PCA or ICA), or by developing
encoding/decoding algorithms with desirable computational and representational properties, such as Fourier and wavelet-based
codes. Another important, but less commonly addressed, aspect of coding is robustness: how much information about the signal
is retained when the representation is subject to noise (equivalently, if the representation itself has limited precision)? Standard
approaches to coding often fail tests of robustness. Although a code may achieve maximum dimensionality reduction with
minimal error or may be statistically optimal with minimal entropy, the representation is often assumed to be real-valued and
noise-free, which implicitly assumes a representation whose coefficients have infinite precision. If the coefficients are subject to
noise or their precision is limited, optimality of the representation cannot be guaranteed. Optimality under limited precision is
a common in practical concern: it would be useful if the data can be represented with small error with low-bit precision. This
issue is also relevant to biological neural representations where the coding precision of individual neurons has been reported
to be as low as a few bits (for a review, see [1]).

Because such a noisy, low-precision code can be interpreted as a bottleneck at the representation, the problem might appear
similar to dimensionality reduction or compression. However, as we describe in detail below, it is a fundamentally different
problem. For instance, what if a great number of coding elements are available while their coding precision is significantly
limited? In that case, the apparent dimensionality could be increased (instead of reduced) while the total representational
capacity is still limited. Robust coding should make optimal use of such an arbitrary number of coding units in order to
improve the fidelity of the code. As we will see, robust coding introduces redundancy into the code in order to allow the
recovered signal to be separated from the assumed noise in the representation, unlike PCA or ICA that reduces redundancy in
the code.

In this paper we present the optimal linear encoder and decoder when the coefficients are noisy, and show that their forms
change adaptively to the number of units and to the different data and noise conditions. This paper is organized as follows.
First, in section II, we formulate the problem. Then, in section III, we analyze the solutions for the general case, and present
the optimal solutions for one- and two-dimensional case. Next, in section IV, we apply the proposed robust coding to image
coding and demonstrate its considerable robustness compared against conventional image codes. Finally, in section V, we
discuss related studies.

II. PROBLEM FORMULATION

To define our model (Fig. 1), we assume that the data is N -dimensional with zero mean and covariance matrix Σx, and
consider two matrices W ∈ RM×N and A ∈ RN×M . For each data point x, its representation r in the model is the linear
transform of x through matrix W, perturbed by the additive noise (i.e., channel noise) n ∼ N (0, σ2

n IM ):

r = Wx + n = u + n. (1)

We refer to W as the encoding matrix and its row vectors as encoding vectors. The reconstruction of a data point is the linear
transform of the noisy representation using matrix A:

x̂ = Ar = AWx + An. (2)

We refer to A as the decoding matrix and its column vectors as decoding vectors. The term AWx in eq. 2 determines how
the reconstruction depends on the data, and An expresses the influence of the channel noise in the reconstruction. If there is
no channel noise (n=0), then AW = I is equivalent to perfect reconstruction.

The goal of the system is to form an accurate representation of the data that is robust to the presence of channel noise.
More precisely, we seek an optimal pair of linear encoder and decoder. We quantify the accuracy of the reconstruction by the
mean squared error (MSE) over samples. The reconstruction error of each sample point is

ε = x− x̂ = (IN −AW)x−An, (3)
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We also need to constrain capacity.



Constraining neural capacity

• Channel capacity of the ith neuron: 

• To limit capacity, we fix the coefficient variance:

• This implies W must satisfy: 
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where det(P) = det(PT ) = 1 and diag(Ω) = (ω1, · · · ,ωN ). Therefore,

ln det(γ2VVT + IN ) =
N∑

k=1

ln(γ2ω2
k + 1). (81)

Using Jensen’s inequality,
N∑

k=1

ln(γ2ω2
k + 1) ≤ N · ln

[
γ2

N

N∑

k=1

ω2
k + 1

]
= N · ln

[
γ2 + 1

]
, (82)

where we used tr(VVT ) = tr(PΩ2PT ) = tr(Ω2) =
∑N

k=1 ω2
k and tr(VVT ) = N (from eq. 8), and the equality holds iff

ω2
k = 1, ∀ k. !

F. etc

(Cost) = (Error) + λ (Var. Const.) (83)

(Var. Const.) =
M∑

i=1

[
ln

(
〈u2

i 〉
σ2

u

)]2

(84)

σ2
u

∆W ∝ − ∂

∂W
(Cost) = 2 AT (IN −AW)Σx − λ

4
M

diag
[
ln{diag(WΣxWT )/c}

diag(WΣxWT )

]
WΣx (85)

A = ΣxWT (σ2
nIM + WΣxWT )−1 (86)

⇔ ∂

∂A
(Cost) = O (87)

SNRi =
〈u2

i 〉
σ2

n

(88)

〈u2
i 〉 = σ2

u (89)

Ci =
1
2

ln(SNRi + 1)

√
λ1 +

√
λ2

2(1 + M
2 SNR)

( √
λ1√
λ2

)
(90)

E =
1

M
N · SNR + 1

1
N

[
N∑

i=1

√
λi

]2

(91)

&E =
∑N

i=1

√
λi

M
N · SNR + 1

1
N





√
λ1
...√
λN



 (92)

λi: i-th eigenvalue of the data.
σ2

x: data variance of 1-D data, or the eigenvalues of isotoropic data.
M : # of coding units (neurons)

diag(〈uuT 〉) = diag(WΣxWT ) = σ2
u1M (93)

DRAFT FOR IEEE TRANS. ON IMAGE PROCESSING 15

where det(P) = det(PT ) = 1 and diag(Ω) = (ω1, · · · ,ωN ). Therefore,

ln det(γ2VVT + IN ) =
N∑

k=1

ln(γ2ω2
k + 1). (81)

Using Jensen’s inequality,
N∑

k=1

ln(γ2ω2
k + 1) ≤ N · ln

[
γ2

N

N∑

k=1

ω2
k + 1

]
= N · ln

[
γ2 + 1

]
, (82)

where we used tr(VVT ) = tr(PΩ2PT ) = tr(Ω2) =
∑N

k=1 ω2
k and tr(VVT ) = N (from eq. 8), and the equality holds iff

ω2
k = 1, ∀ k. !

F. etc

(Cost) = (Error) + λ (Var. Const.) (83)

(Var. Const.) =
M∑

i=1

[
ln

(
〈u2

i 〉
σ2

u

)]2

(84)

σ2
u

∆W ∝ − ∂

∂W
(Cost) = 2 AT (IN −AW)Σx − λ

4
M

diag
[
ln{diag(WΣxWT )/c}

diag(WΣxWT )

]
WΣx (85)

A = ΣxWT (σ2
nIM + WΣxWT )−1 (86)

⇔ ∂

∂A
(Cost) = O (87)

SNRi =
〈u2

i 〉
σ2

n

(88)

〈u2
i 〉 = σ2

u (89)

Ci =
1
2

ln(SNRi + 1)

√
λ1 +

√
λ2

2(1 + M
2 SNR)

( √
λ1√
λ2

)
(90)

E =
1

M
N · SNR + 1

1
N

[
N∑

i=1

√
λi

]2

(91)

&E =
∑N

i=1

√
λi

M
N · SNR + 1

1
N





√
λ1
...√
λN



 (92)

λi: i-th eigenvalue of the data.
σ2

x: data variance of 1-D data, or the eigenvalues of isotoropic data.
M : # of coding units (neurons)

diag(〈uuT 〉) = diag(WΣxWT ) = σ2
u1M (93)

DRAFT FOR IEEE TRANS. ON IMAGE PROCESSING 3

x W u r A x̂

n
Encoder Decoder

Channel Noise

Data Noisy

Representation

Noiseless

Representation

Reconstruction

Fig. 1. Diagram of the model.

Note that the optimal solution of A and W depends solely on second-order statistics, i.e., the covariance matrix of the data
Σx and the chanel noise variance σ2

n.
We are interested in the system in which the precision of the code is limited, i.e., the representation r has a limited

signal-to-noise ratio (SNR). In order to limit the SNR, we fix the variance of each coding unit,

〈u2
i 〉 = σ2

u, (5)

which yields the same SNR for each unit,

γ2 =
σ2

u

σ2
n

. (6)

As the channel capacity of information is defined by C =
1
2

ln(γ2 + 1) [2], limiting the SNR is equivalent to limiting the
capacity for each unit. We shall call this constraint as channel capacity constraint.

III. OPTIMAL SOLUTIONS AND THEIR CHARACTERISTICS

The goal now is to minimize the MSE (eq. 4) subject to the channel capacity constraint (eq. 5). In this section, we first
analyze the problem in the general case as far as we can, and then we present the optimal solutions in some feasible cases,
namely, for one-dimensional (1-D) and two-dimensional (2-D) data.

First, let us consider how to reflect the channel capacity constraint in the solution. This constraint limits the search space
of W but not A, since W is the parameter that has an influence on σ2

u (cf. eqs. 1 and 2). Therefore, the channel capacity
constraint (eq. 5) is expressed in terms of W as

diag(WΣxWT ) = σ2
u 1M , (7)

where 1M = (1, · · · , 1)T ∈ RM . It takes a convenient form,

diag(VVT ) = 1M (8)

when we define V by a linear transform of W,

V ≡ WES/σu, (9)

where Σx = EDET is the eigenvalue decomposition of the data covariance matrix, S = D
1
2 = diag(

√
λ1, · · · ,

√
λM ), and

λi ≡ Dii are the eigenvalues of Σx. To summarize, the channel capacity constraint is now incorporated in W in such a way
that its linear transform V should have row vectors of unit length.

Next, let us consider a necessary condition for the minimum E , i.e., the first derivative of E should be zero with respect to
all free parameters. Regarding A, ∂E/∂A = O yields (see Appendix A)

A =
1
σu

γ2ES(IN + γ2VT V)−1VT . (10)

(Note that the necessary condition with respect to W (or equivalently, with respect to V) is not as straightforward as this since
W (or V) is constrained to a certain subspace by the channel capacity constraint. We leave this condition as it is for now.)

Using the channel capacity constraint (eq. 9) and the necessary condition with respect to A (eq. 10), the MSE (eq. 4) can
be simplified as (see Appendix B)

E = tr{D · (IN + γ2VT V)−1}. (11)

Finally, the problem is reformulated as finding V that minimizes eq. 11 where V should satisfy the variance constraint (eq.
8).

Now robust coding is formulated as a constrained optimization problem.



Solving the robust coding problem

• Analytically: can compute exact solutions for 1-D and 2-D cases.

• Numerically:
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k and tr(VVT ) = N (from eq. 8), and the equality holds iff
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k = 1, ∀ k. !

F. etc

(Cost) = (Error) + λ (Var. Const.) (83)

(Var. Const.) =
M∑

i=1

[
ln

(
〈u2

i 〉
σ2

u

)]2

(84)

σ2
u

∆W ∝ − ∂

∂W
(Cost) = 2 AT (IN −AW)Σx − λ

4
M

diag
[
ln{diag(WΣxWT )/c}

diag(WΣxWT )
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n
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√
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...√
λN



 (92)

λi: i-th eigenvalue of the data.
σ2

x: data variance of 1-D data, or the eigenvalues of isotoropic data.
M : # of coding units (neurons)

diag(〈uuT 〉) = diag(WΣxWT ) = σ2
u1M (93)
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Robust coding of natural images: methods

• 8x8 pixel blocks from 62 natural images 
(Kyoto natural image dataset)

• No preprocessing except for DC 
subtraction for each sample.

• Precision is set as 1 bit for each neuron, 
comparable to neural data.



Comparing robust coding to traditional codes
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Fig. 1. Diagram of the model.

Note that the optimal solution of A and W depends solely on second-order statistics, i.e., the covariance matrix of the data
Σx and the chanel noise variance σ2

n.
We are interested in the system in which the precision of the code is limited, i.e., the representation r has a limited

signal-to-noise ratio (SNR). In order to limit the SNR, we fix the variance of each coding unit,

〈u2
i 〉 = σ2

u, (5)

which yields the same SNR for each unit,

γ2 =
σ2

u

σ2
n

. (6)

As the channel capacity of information is defined by C =
1
2

ln(γ2 + 1) [2], limiting the SNR is equivalent to limiting the
capacity for each unit. We shall call this constraint as channel capacity constraint.

III. OPTIMAL SOLUTIONS AND THEIR CHARACTERISTICS

The goal now is to minimize the MSE (eq. 4) subject to the channel capacity constraint (eq. 5). In this section, we first
analyze the problem in the general case as far as we can, and then we present the optimal solutions in some feasible cases,
namely, for one-dimensional (1-D) and two-dimensional (2-D) data.

First, let us consider how to reflect the channel capacity constraint in the solution. This constraint limits the search space
of W but not A, since W is the parameter that has an influence on σ2

u (cf. eqs. 1 and 2). Therefore, the channel capacity
constraint (eq. 5) is expressed in terms of W as

diag(WΣxWT ) = σ2
u 1M , (7)

where 1M = (1, · · · , 1)T ∈ RM . It takes a convenient form,

diag(VVT ) = 1M (8)

when we define V by a linear transform of W,

V ≡ WES/σu, (9)

where Σx = EDET is the eigenvalue decomposition of the data covariance matrix, S = D
1
2 = diag(

√
λ1, · · · ,

√
λM ), and

λi ≡ Dii are the eigenvalues of Σx. To summarize, the channel capacity constraint is now incorporated in W in such a way
that its linear transform V should have row vectors of unit length.

Next, let us consider a necessary condition for the minimum E , i.e., the first derivative of E should be zero with respect to
all free parameters. Regarding A, ∂E/∂A = O yields (see Appendix A)

A =
1
σu

γ2ES(IN + γ2VT V)−1VT . (10)

(Note that the necessary condition with respect to W (or equivalently, with respect to V) is not as straightforward as this since
W (or V) is constrained to a certain subspace by the channel capacity constraint. We leave this condition as it is for now.)

Using the channel capacity constraint (eq. 9) and the necessary condition with respect to A (eq. 10), the MSE (eq. 4) can
be simplified as (see Appendix B)

E = tr{D · (IN + γ2VT V)−1}. (11)

Finally, the problem is reformulated as finding V that minimizes eq. 11 where V should satisfy the variance constraint (eq.
8).

ICA codingOriginal reconstruction error: 34.8%

1 bit precision

Now use 1x robust coding:
same number of neurons

same precision



Robust coding of natural images greatly improves reconstruction
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capacity for each unit. We shall call this constraint as channel capacity constraint.
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The goal now is to minimize the MSE (eq. 4) subject to the channel capacity constraint (eq. 5). In this section, we first
analyze the problem in the general case as far as we can, and then we present the optimal solutions in some feasible cases,
namely, for one-dimensional (1-D) and two-dimensional (2-D) data.

First, let us consider how to reflect the channel capacity constraint in the solution. This constraint limits the search space
of W but not A, since W is the parameter that has an influence on σ2

u (cf. eqs. 1 and 2). Therefore, the channel capacity
constraint (eq. 5) is expressed in terms of W as

diag(WΣxWT ) = σ2
u 1M , (7)

where 1M = (1, · · · , 1)T ∈ RM . It takes a convenient form,

diag(VVT ) = 1M (8)

when we define V by a linear transform of W,

V ≡ WES/σu, (9)

where Σx = EDET is the eigenvalue decomposition of the data covariance matrix, S = D
1
2 = diag(

√
λ1, · · · ,

√
λM ), and

λi ≡ Dii are the eigenvalues of Σx. To summarize, the channel capacity constraint is now incorporated in W in such a way
that its linear transform V should have row vectors of unit length.

Next, let us consider a necessary condition for the minimum E , i.e., the first derivative of E should be zero with respect to
all free parameters. Regarding A, ∂E/∂A = O yields (see Appendix A)

A =
1
σu

γ2ES(IN + γ2VT V)−1VT . (10)

(Note that the necessary condition with respect to W (or equivalently, with respect to V) is not as straightforward as this since
W (or V) is constrained to a certain subspace by the channel capacity constraint. We leave this condition as it is for now.)

Using the channel capacity constraint (eq. 9) and the necessary condition with respect to A (eq. 10), the MSE (eq. 4) can
be simplified as (see Appendix B)

E = tr{D · (IN + γ2VT V)−1}. (11)

Finally, the problem is reformulated as finding V that minimizes eq. 11 where V should satisfy the variance constraint (eq.
8).

1x robust codingOriginal reconstruction error: 4.5%

1 bit precision



Reconstruction error can be reduced arbitrarily by adding neurons
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Note that the optimal solution of A and W depends solely on second-order statistics, i.e., the covariance matrix of the data
Σx and the chanel noise variance σ2

n.
We are interested in the system in which the precision of the code is limited, i.e., the representation r has a limited

signal-to-noise ratio (SNR). In order to limit the SNR, we fix the variance of each coding unit,

〈u2
i 〉 = σ2

u, (5)

which yields the same SNR for each unit,

γ2 =
σ2

u

σ2
n

. (6)

As the channel capacity of information is defined by C =
1
2

ln(γ2 + 1) [2], limiting the SNR is equivalent to limiting the
capacity for each unit. We shall call this constraint as channel capacity constraint.

III. OPTIMAL SOLUTIONS AND THEIR CHARACTERISTICS

The goal now is to minimize the MSE (eq. 4) subject to the channel capacity constraint (eq. 5). In this section, we first
analyze the problem in the general case as far as we can, and then we present the optimal solutions in some feasible cases,
namely, for one-dimensional (1-D) and two-dimensional (2-D) data.

First, let us consider how to reflect the channel capacity constraint in the solution. This constraint limits the search space
of W but not A, since W is the parameter that has an influence on σ2

u (cf. eqs. 1 and 2). Therefore, the channel capacity
constraint (eq. 5) is expressed in terms of W as

diag(WΣxWT ) = σ2
u 1M , (7)

where 1M = (1, · · · , 1)T ∈ RM . It takes a convenient form,

diag(VVT ) = 1M (8)

when we define V by a linear transform of W,

V ≡ WES/σu, (9)

where Σx = EDET is the eigenvalue decomposition of the data covariance matrix, S = D
1
2 = diag(

√
λ1, · · · ,

√
λM ), and

λi ≡ Dii are the eigenvalues of Σx. To summarize, the channel capacity constraint is now incorporated in W in such a way
that its linear transform V should have row vectors of unit length.

Next, let us consider a necessary condition for the minimum E , i.e., the first derivative of E should be zero with respect to
all free parameters. Regarding A, ∂E/∂A = O yields (see Appendix A)

A =
1
σu

γ2ES(IN + γ2VT V)−1VT . (10)

(Note that the necessary condition with respect to W (or equivalently, with respect to V) is not as straightforward as this since
W (or V) is constrained to a certain subspace by the channel capacity constraint. We leave this condition as it is for now.)

Using the channel capacity constraint (eq. 9) and the necessary condition with respect to A (eq. 10), the MSE (eq. 4) can
be simplified as (see Appendix B)

E = tr{D · (IN + γ2VT V)−1}. (11)

Finally, the problem is reformulated as finding V that minimizes eq. 11 where V should satisfy the variance constraint (eq.
8).

8x robust codingOriginal reconstruction error: 1.5%

1 bit precision



Generalizing minimum squared error bound for N-D
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encoding/decoding vectors are symmetric about the first principal axis; For M≥3, there are infinitely many configurations of
unit-length connected bars starting from the origin and ending at the optimal Z, and nothing can be added about their regularity.
Interestingly, as γ2/γ2

C is the larger, there is the more flexibility for the Z configuration since the optimal y becomes greater
than M (note that all bars must align to the real axis if y = M ). This is depicted in Fig. 3 from M =3 to M =5 with γ2

2 = 1,
where γ2/γ2

C is increased as M . If γ2 ≤ γ2
c , the optimal Z is M , and the optimal configuration is when all the bars align

straight along the real axis. In this case, encoding/decoding vectors are all parallel to the principal axis (e1), as described by
eqs. 40-41. Such a degenerate code does not exist in the isotropic case.

The optimal solutions for the overcomplete representation are not trivial in the sense that they are in general not given by
the simple replication of the optimal for the lower number of units. For example, under γ2 =1 in Fig. 3, the optimal solution
for M =4 is not identical to the replication of the optimal solution for M =2. More precisely, when we double the number
of codig units (Md = 2×M ), its optimal condition is (from eq. 36)

yd =
√

λ1 −
√

λ2√
λ1 +

√
λ2

(
2
γ2

+ 2×M

)
(43)

&= 2× y (44)

where y is the optimal value for M coding units, implying that the optimal solution for Md = 2×M is not a replication of
the optimal solution for M .

The robust reconstruction for anisotropic 2-D data exploits the correlation of the data, which is implemented via biased
representations towards the first principal axis. For M =1 and for the degenerate case, where only one axis in two dimensional
space is represented, the optimal strategy is to preserve information along the first principal axis at the cost of losing all
information along the minor axis. For the other case (i.e., M ≥ 2 and non-degenerate), it turned out that the data component
along the first principal axis is reconstructed more precisely than that along the minor axis; the error ratio along e1 and e2 is
given by

√
λ2 :

√
λ1 (note the switch of the subscripts; Appendix D). Since

√
λ2 <

√
λ1, the percentage of reconstruction is

greater for the first principal axis. It is illustrated in Fig. 3: the reconstruction ellipse is more flattened than the data ellipse;
if there was no bias, the ellipse for the reconstruction should have been similar to that of the data.

C. Summary of the analysis
We summarize the minimum MSE in Table I. First, it is common in all cases that the minimum MSE is monotonically

decreasing with respect to both the number of coding units M and the SNR in the representation γ2, and they can compensate
for each other (e.g., when the SNR is lowered by half, we can keep the same error level by doubling the number of coding
units). Second, the 1-D solution shares the same form as in the 2-D isotropic case (by noting that the numerator is the data
variance and that the coefficient of γ2 is the overcomplete ratio M/N ). Third, the 2-D anisotropic solution reduces to the 2-D
isotropic solution with λ1 = λ2 (there is no degenerate code in this case). Finally, the degenerate solution in 2-D anisotropic
case has the 1-D solution in its first term, as it boils down to the 1-D problem along the first principal data axis.

TABLE I
SUMMARY OF THE MINIMUM MEAN SQUARED ERROR.

1-D E =
σ2

x

M · SNR + 1

2-D
Isotropic E =

2σ2
x

M
2 · SNR + 1

2-D
Anisotropic E =

1
M
2 · SNR + 1

(
√

λ1 +
√

λ2)2

2
if SNR ≥ SNRc

E =
λ1

M · SNR + 1
+ λ2 if SNR ≤ SNRc

IV. APPLICATION TO IMAGE CODING

In the previous section we characterized the optimal solutions for 1-D and 2-D data. For the higher dimensional data, such
an explicit analysis remains to be investigated. Here, we present numerical solutions for high-dimensional image data and
demonstrate its robustness to channel noise. To derive an optimal solution we can employ a gradient descent method with
respect to the cost function (its details are given in [3], [4]).

Fig. 4 show the performance of our proposed code when applied to a test image. The data consists of 8×8 pixel blocks (i.e.,
N = 64), which are randomly sampled from the 512×512 pixel image. We set the number of coding units as M =64 (where

     - ith eigenvalue of the data.

 M - # of coding units (neurons) 
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Fig. 1. Diagram of the model.

Note that the optimal solution of A and W depends solely on second-order statistics, i.e., the covariance matrix of the data
Σx and the chanel noise variance σ2

n.
We are interested in the system in which the precision of the code is limited, i.e., the representation r has a limited

signal-to-noise ratio (SNR). In order to limit the SNR, we fix the variance of each coding unit,

〈u2
i 〉 = σ2

u, (5)

which yields the same SNR for each unit,

γ2 =
σ2

u

σ2
n

. (6)

As the channel capacity of information is defined by C =
1
2

ln(γ2 + 1) [2], limiting the SNR is equivalent to limiting the
capacity for each unit. We shall call this constraint as channel capacity constraint.

III. OPTIMAL SOLUTIONS AND THEIR CHARACTERISTICS

The goal now is to minimize the MSE (eq. 4) subject to the channel capacity constraint (eq. 5). In this section, we first
analyze the problem in the general case as far as we can, and then we present the optimal solutions in some feasible cases,
namely, for one-dimensional (1-D) and two-dimensional (2-D) data.

First, let us consider how to reflect the channel capacity constraint in the solution. This constraint limits the search space
of W but not A, since W is the parameter that has an influence on σ2

u (cf. eqs. 1 and 2). Therefore, the channel capacity
constraint (eq. 5) is expressed in terms of W as

diag(WΣxWT ) = σ2
u 1M , (7)

where 1M = (1, · · · , 1)T ∈ RM . It takes a convenient form,

diag(VVT ) = 1M (8)

when we define V by a linear transform of W,

V ≡ WES/σu, (9)

where Σx = EDET is the eigenvalue decomposition of the data covariance matrix, S = D
1
2 = diag(

√
λ1, · · · ,

√
λM ), and

λi ≡ Dii are the eigenvalues of Σx. To summarize, the channel capacity constraint is now incorporated in W in such a way
that its linear transform V should have row vectors of unit length.

Next, let us consider a necessary condition for the minimum E , i.e., the first derivative of E should be zero with respect to
all free parameters. Regarding A, ∂E/∂A = O yields (see Appendix A)

A =
1
σu

γ2ES(IN + γ2VT V)−1VT . (10)

(Note that the necessary condition with respect to W (or equivalently, with respect to V) is not as straightforward as this since
W (or V) is constrained to a certain subspace by the channel capacity constraint. We leave this condition as it is for now.)

Using the channel capacity constraint (eq. 9) and the necessary condition with respect to A (eq. 10), the MSE (eq. 4) can
be simplified as (see Appendix B)

E = tr{D · (IN + γ2VT V)−1}. (11)

Finally, the problem is reformulated as finding V that minimizes eq. 11 where V should satisfy the variance constraint (eq.
8).
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where det(P) = det(PT ) = 1 and diag(Ω) = (ω1, · · · ,ωN ). Therefore,

ln det(γ2VVT + IN ) =
N∑

k=1

ln(γ2ω2
k + 1). (81)

Using Jensen’s inequality,
N∑

k=1

ln(γ2ω2
k + 1) ≤ N · ln

[
γ2

N

N∑

k=1

ω2
k + 1

]
= N · ln

[
γ2 + 1

]
, (82)

where we used tr(VVT ) = tr(PΩ2PT ) = tr(Ω2) =
∑N

k=1 ω2
k and tr(VVT ) = N (from eq. 8), and the equality holds iff

ω2
k = 1, ∀ k. !

F. etc

(Cost) = (Error) + λ (Var. Const.) (83)

(Var. Const.) =
M∑

i=1

[
ln

(
〈u2

i 〉
σ2

u

)]2

(84)

σ2
u

∆W ∝ − ∂

∂W
(Cost) = 2 AT (IN −AW)Σx − λ

4
M

diag
[
ln{diag(WΣxWT )/c}

diag(WΣxWT )

]
WΣx (85)

A = ΣxWT (σ2
nIM + WΣxWT )−1 (86)

⇔ ∂

∂A
(Cost) = O (87)

SNRi =
〈u2

i 〉
σ2

n

(88)

〈u2
i 〉 = σ2

u (89)

Ci =
1
2

ln(SNRi + 1)

√
λ1 +

√
λ2

2(1 + M
2 SNR)

( √
λ1√
λ2

)
(90)

E =
1

M
N · SNR + 1

1
N

[
N∑

i=1

√
λi

]2

(91)

&E =
∑N

i=1

√
λi

M
N · SNR + 1

1
N





√
λ1
...√
λN



 (92)

λi: i-th eigenvalue of the data.
σ2

x: data variance of 1-D data, or the eigenvalues of isotoropic data.
M : # of coding units (neurons)

diag(〈uuT 〉) = diag(WΣxWT ) = σ2
u1M (93)

N-D
Anisotropic
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encoding/decoding vectors are symmetric about the first principal axis; For M≥3, there are infinitely many configurations of
unit-length connected bars starting from the origin and ending at the optimal Z, and nothing can be added about their regularity.
Interestingly, as γ2/γ2

C is the larger, there is the more flexibility for the Z configuration since the optimal y becomes greater
than M (note that all bars must align to the real axis if y = M ). This is depicted in Fig. 3 from M =3 to M =5 with γ2

2 = 1,
where γ2/γ2

C is increased as M . If γ2 ≤ γ2
c , the optimal Z is M , and the optimal configuration is when all the bars align

straight along the real axis. In this case, encoding/decoding vectors are all parallel to the principal axis (e1), as described by
eqs. 40-41. Such a degenerate code does not exist in the isotropic case.

The optimal solutions for the overcomplete representation are not trivial in the sense that they are in general not given by
the simple replication of the optimal for the lower number of units. For example, under γ2 =1 in Fig. 3, the optimal solution
for M =4 is not identical to the replication of the optimal solution for M =2. More precisely, when we double the number
of codig units (Md = 2×M ), its optimal condition is (from eq. 36)

yd =
√

λ1 −
√

λ2√
λ1 +

√
λ2

(
2
γ2

+ 2×M

)
(43)

&= 2× y (44)

where y is the optimal value for M coding units, implying that the optimal solution for Md = 2×M is not a replication of
the optimal solution for M .

The robust reconstruction for anisotropic 2-D data exploits the correlation of the data, which is implemented via biased
representations towards the first principal axis. For M =1 and for the degenerate case, where only one axis in two dimensional
space is represented, the optimal strategy is to preserve information along the first principal axis at the cost of losing all
information along the minor axis. For the other case (i.e., M ≥ 2 and non-degenerate), it turned out that the data component
along the first principal axis is reconstructed more precisely than that along the minor axis; the error ratio along e1 and e2 is
given by

√
λ2 :

√
λ1 (note the switch of the subscripts; Appendix D). Since

√
λ2 <

√
λ1, the percentage of reconstruction is

greater for the first principal axis. It is illustrated in Fig. 3: the reconstruction ellipse is more flattened than the data ellipse;
if there was no bias, the ellipse for the reconstruction should have been similar to that of the data.

C. Summary of the analysis
We summarize the minimum MSE in Table I. First, it is common in all cases that the minimum MSE is monotonically

decreasing with respect to both the number of coding units M and the SNR in the representation γ2, and they can compensate
for each other (e.g., when the SNR is lowered by half, we can keep the same error level by doubling the number of coding
units). Second, the 1-D solution shares the same form as in the 2-D isotropic case (by noting that the numerator is the data
variance and that the coefficient of γ2 is the overcomplete ratio M/N ). Third, the 2-D anisotropic solution reduces to the 2-D
isotropic solution with λ1 = λ2 (there is no degenerate code in this case). Finally, the degenerate solution in 2-D anisotropic
case has the 1-D solution in its first term, as it boils down to the 1-D problem along the first principal data axis.

TABLE I
SUMMARY OF THE MINIMUM MEAN SQUARED ERROR.

1-D E =
σ2

x

M · SNR + 1

2-D
Isotropic E =

2σ2
x

M
2 · SNR + 1

2-D
Anisotropic E =

1
M
2 · SNR + 1

(
√

λ1 +
√

λ2)2

2
if SNR ≥ SNRc

E =
λ1

M · SNR + 1
+ λ2 if SNR ≤ SNRc

IV. APPLICATION TO IMAGE CODING

In the previous section we characterized the optimal solutions for 1-D and 2-D data. For the higher dimensional data, such
an explicit analysis remains to be investigated. Here, we present numerical solutions for high-dimensional image data and
demonstrate its robustness to channel noise. To derive an optimal solution we can employ a gradient descent method with
respect to the cost function (its details are given in [3], [4]).

Fig. 4 show the performance of our proposed code when applied to a test image. The data consists of 8×8 pixel blocks (i.e.,
N = 64), which are randomly sampled from the 512×512 pixel image. We set the number of coding units as M =64 (where

conjecture:

Results Conjecture

0.5x 19.9 % 20.3 %

1x 12.4 % 12.5 %

8x  2.0 %  2.0 %

Predicted vs actual error



Adding precision to 1x robust coding

original images 1 bit: 12.5% error 2 bit: 3.1% error



Robust Coding: encoding vectors (W)

0.5x

1x

8x



• Current robust coding objective minimizes error subject to capacity constraint:

• We can add an additional constraint to improve coding efficiency:

• Using a Cauchy sparseness term, the new update rule is:

Making robust codes efficient
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SNRc =
√

λ1/λ2 − 1
M

(94)

The green point is given by (0, y) where

y =
√

λ1 −
√

λ2√
λ1 +

√
λ2

(
2

SNR
+ M

)
(95)

(Cost) = (Error) + λ (Var. Const.) − λ′ (Sparseness) (96)

2β

Mσ2
· Wx
1 + diag(W〈xxT 〉WT )/σ2

· xT (97)

where beta and σ are parameters for Cauchy distribution.

+λ′ 2β

Mσ2

Wx
1 + diag(W〈xxT 〉WT )/σ2

xT (98)

where beta and σ are parameters for Cauchy distribution.
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where det(P) = det(PT ) = 1 and diag(Ω) = (ω1, · · · ,ωN ). Therefore,

ln det(γ2VVT + IN ) =
N∑

k=1

ln(γ2ω2
k + 1). (81)

Using Jensen’s inequality,
N∑

k=1

ln(γ2ω2
k + 1) ≤ N · ln

[
γ2

N

N∑

k=1

ω2
k + 1

]
= N · ln

[
γ2 + 1

]
, (82)

where we used tr(VVT ) = tr(PΩ2PT ) = tr(Ω2) =
∑N

k=1 ω2
k and tr(VVT ) = N (from eq. 8), and the equality holds iff

ω2
k = 1, ∀ k. !

F. etc

(Cost) = (Error) + λ (Var. Const.) (83)

(Var. Const.) =
M∑

i=1

[
ln

(
〈u2

i 〉
σ2

u

)]2

(84)

σ2
u

∆W ∝ − ∂

∂W
(Cost) = 2 AT (IN −AW)Σx − λ

4
M

diag
[
ln{diag(WΣxWT )/c}

diag(WΣxWT )

]
WΣx (85)

A = ΣxWT (σ2
nIM + WΣxWT )−1 (86)

⇔ ∂

∂A
(Cost) = O (87)

SNRi =
〈u2

i 〉
σ2

n

(88)

〈u2
i 〉 = σ2

u (89)

Ci =
1
2

ln(SNRi + 1)

√
λ1 +

√
λ2

2(1 + M
2 SNR)

( √
λ1√
λ2

)
(90)

E =
1

M
N · SNR + 1

1
N

[
N∑

i=1

√
λi

]2

(91)

&E =
∑N

i=1

√
λi

M
N · SNR + 1

1
N





√
λ1
...√
λN



 (92)

λi: i-th eigenvalue of the data.
σ2

x: data variance of 1-D data, or the eigenvalues of isotoropic data.
M : # of coding units (neurons)

diag(〈uuT 〉) = diag(WΣxWT ) = σ2
u1M (93)
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λi: i-th eigenvalue of the data.
σ2

x: data variance of 1-D data, or the eigenvalues of isotoropic data.
M : # of coding units (neurons)

diag(〈uuT 〉) = diag(WΣxWT ) = σ2
u1M (93)
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· xT (97)

where beta and σ are parameters for Cauchy distribution.
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where beta and σ are parameters for Cauchy distribution.
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Robust Sparse Coding: encoding vectors (W)
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Incorporating sensory noise
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Optimal receptive fields for different noise levels and eccentricities
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