Part 2: Coding Natural Images




A general approach to coding: redundancy reduction

Correlation of adjacent pixels

image from Field (1994)

Redundancy reduction is equivalent to efficient coding.

o
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Reducing pixel redundancy

Lena: a standard 8 bit 256x256 gray scale image histogram of pixel values
Entropy = 7.57 bits
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2D Gabor wavelet captures spatial structure

2D Gabor functions

Wavelet basis generated by
dilations, translations, and
rotations of a single basis function

Can also control phase and
aspect ratio

(drifting) Gabor functions are what
the eye “sees best”
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Recoding with Gabor functions

Pixel entropy = 7.57 bits Recoding with 2D Gabor functions
Coefficient entropy = 2.55 bits




Describing signals with a simple statistical model
Principle
Good codes capture the statistical distribution of sensory patterns.

How do we describe the distribution?

* Goal is to encode the data to desired precision

X = ais1+assa+---+arsp+e€
As + €

e (Can solve for the coefficients in the no noise case
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An algorithm for deriving efficient linear codes: ICA

Learning objective:
maximize coding efficiency

= maximize P(x|A) over A.

Probability of the pattern ensemble is:

P(x1, %2, .., xn|A) = [] P(xi|A)
k

To obtain P(x|A) marginalize over s:

P(x|A) = /dsP(X\A,s)P(S)

P(s)
| det A

Using independent component analysis
(ICA) to optimize A:

0

T

AA < AA 5 log P(x|A)
= —A(zs’ -1

where z = (log P(s))’.

This learning rule:

* |learns the features that capture the
most structure

* optimizes the efficiency of the code

What should we use for P(s)?




Modeling Non-Gaussian distributions

® Typical coeff. distributions of natural
signals are non-Gaussian.
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The generalized Gaussian distribution

P(alq) o exp(— x|

® Or equivalently, and exponential power distribution (Box and Tiao, 1973):

I 2/(14+8)"
w(p) T —
P(:U‘:UH o, 6) — eXp _C(ﬁ) o
® [ varies monotonically with the kurtosis, Y2:
p=-0.75 v,=-1.08 p=-0.25 v,=-0.45 p=+0.00 (Normal) y,=+0.00

I RANVAN

f=+0.50 (ICA tanh) —+1 21 p=+1.00 (Laplacian) vy =+3.00 p=+2.00 y2=+9.26
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Modeling Gaussian distributions with PCA

® Principal component
analysis (PCA) describes
the principal axes of
variation in the data
distribution.

® This is equivalent to fitting
the data with a multivariate
Gaussian.

p=0

p=0

*
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Modeling non-Gaussian distributions

B=2 B=4
® VWhat about non-Gaussian — —

marginals?

® How would this distribution
be modeled by PCA?
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Modeling non-Gaussian distributions

p=2 p=4

® VWhat about non-Gaussian
marginals?

® How would this distribution
be modeled by PCA?

® How should the distribution
be described!?

The non-orthogonal ICA
solution captures the non-
Gaussian structure
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Efficient coding of natural images

natural scene visual input image basis functions
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Network weights are adapted to maximize coding efficiency:
minimizes redundancy and maximizes the independence of the outputs
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Model predicts local and global receptive field properties
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Learned basis for natural images
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from Lewicki and Olshausen

Overlaid basis function properties

, 1999
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Learned
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Theoretical perspective: Not edge “detectors.”
An efficient code for natural images.

Algorithm selects best of many possible sensory codes
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from Lewicki and Olshausen, 1999

"CSH Vision Course:Visual Coding Part 2

15

Michael S. Lewicki ¢ Carnegie Mellon



2D Receptive fields in primary visual cortex

2D Receptive Field

2D Gabor Function
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Fit of 2D Gabor wavelet is indistinguishable from noise.

figure from Daugman, 1990

data from Jones and Palmer, 1987
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Comparing coding efficiency on natural images
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Comparing efficiency estimates using entropy and probability

6 Entropy estimate
~1 | ignores fidelity

N
I
|

estimated bits per pixel
N w

learned GaborFit ICA PCA Fourier Haar pixel

estimate based on P(xz/A) | entropy estimate




Optimality depends on data

Which code will be best for random, sparse pixels?
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Now the coding efficiencies are reversed
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T The pixel basis |
is now optimal.
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estimated bits per pixel
)

learned GaborFit [ICA PCA Fourier Haar pixel

estimate based on P(xz/A) | entropy estimate




Responses in primary visual cortex to visual motion
/‘fﬁ — —
X - “
X - a
B \T——
X # '
% / /
.7/~ / /

+ | |




Sparse coding of time-varying images (Olshausen, 2002)
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Sparse decomposition of image sequences

convolution posterior maximum
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Learned spatio-temporal basis functions

basis
function

from Olshausen, 2002
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Animated spatial-temporal basis functions

from Olshausen, 2002
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Kernel CF (Hz)

Coding audio signals with spikes
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optimized for coding speech

Kernel functions
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Auditory nerve filters Optimized kernels
from Carney, McDuffy, and Shekhter, 1999 scale bar = | msec



Learned kernels closely match individual auditory nerve filters
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for each kernel find closet matching auditory nerve filter
in Laurel Carney’s database of ~100 filters.



Learned kernels overlaid on

selected auditory nerve filters
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For almost all learned kernels there is a closely matching auditory nerve filter.

from Smith and Lewicki (2006)



Redundancy reduction for noisy channels (Atick, [992)

¢ input ¥ recoding | Ay output
- channel A channel
y=X+V y = Ax +0

Mutual information

I(z,s) = Z P(x,s)log, [Pi)s()mfi’!z)x)]

I(x,s)=0iff P(x,s) = P(x)P(s), i.e. x and s are independent.




A second order statistical model: Gaussian

® To calculate I(x,s), we need P(s), P(x), and P(x,s)

® Assume it is sufficient to measure 2nd order correlations

(this is equivalent to measuring the avg. spatial frequency):

P(u) =

(s[n]sim]) = Roln,m
(z[n]zm]) = Ro[n,m]+ N6, » = R[n, m]
(&n]sm]) = (s[n]s|m])
for u = s,x,y and Ry |n, m| = (u[n]ulm|)
(2m)% det(Run)] 2 exp [~ = S (uln] — @)Ryn,




Mutual information between stages of the model

¢ input ¥ recoding | Ay output
—*®| channel A channel
y=X+V y = Ax +0
1 _det(Ro -+ Nz)
Iz, ) 2|  det N2 ]
Iys) — 1 [det(A(Ry + N?)A" + Ng)]
’ 2 |  det(ANZ2AT + N?)

® Mutual information depends on noise and correlations

® |ncreasing noise = decreasing mutual information

® Can derive the optimal A for different signal to noise ratios.




| D profile of optimal filters

(a) e ® high SNR
= reduce redundancy
= center-surround structure

(b) S/N=2

(C) S/N=0.1

® |[ow SNR
1 I 2 - average

- low-pass filter

® matches behavior of retinal ganglion
10 cells
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An observation: Contrast sensitivity of ganglion cells
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Spatial frequency (cycles/deq) Spatial frequency (cycles/deq)

Luminance level decreases one log unit each time we go to lower curve.

What is happening at low luminance levels?
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Natural images have a |/f> power spectrum

® Field 1987
sop F

- amplitude spectra for 6 images
(shifted for clarity)

oL C - power spectra fall off as |/f2

= Fourier coefficients fall off as |/f

® How does this reflect the correlated
structure of natural images?

Log,,amplitude |
p= - o

® \What would an uncorrelated structure
10 + look like?

® What transformation would yield a more
efficient code?

0.0 |k, : 1 ]
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Log,,spatial frequency (cycles/picture)




Components of predicted filters
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Spatial frequency (cycles/deq) from Atick, 1992

The predicted form of the optimal filter (A), is a combination of a
low-pass filter (B) plus a whitening filter (C).
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Predicted contrast sensitivity functions match neural data
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