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Outline

1. Information theory review, coding of 1D signals
2. Sparse coding, ICA, coding of natural images and motion
3. Representing images with noisy neural populations

4. Learning higher-order image structure




Visual Coding

Ganglion  Horizontal
cell cell

e What are the computational problems of visual coding?
e What signal should be sent out of the retina?
e How do we approach this theoretically?
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After the retina...

primate visual system

AOS
DTN
LGN
LTN
MTN
NOT
ON
NPP
SC
SCN

e at least 23 distinct neural pathways out of the retina

accessory optic system
dorsal terminal nucleus
lateral geniculate nucleus
lateral terminal nucleus
medial terminal nucleus
nucleus of the optic tract
olivary nucleus

posterior pretectal nucleus
superior colliculus
supraschiasmatic nuclei

e some receive from a single type of retinal cell, some from many, one eye, both...

e there is no simple function division
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Why is it like this?

Evolutionary viewpoint:

e success depends on whole organism and cooperation of areas and cell types

e there is no opportunity to “redesign”, functions simply pile up
— “layers and layers of goo”

— “not engineering, but tinkering”

e there are few ‘“clean” functional divisions, i.e. there are not distinct channels for
color or motion




Types of optical systems

Suprachiasmatic nucleus: generate the circadian rythm
Accessory optic system: helps stabilize retinal image during head movement

Superior colliculus: integrates visual and auditory information together with
head movements, directs eyes to regions of interest

Pretectum: plays role in adjusting size of pupil to changes in light intensity,
and in tracking large moving objects

Pregeniculate: function unknown, but cells are responsive to ambient light level

lateral geniculate: main “relay” to visual cortex; contains 6 distinct layers,
each with 2 sublayers. Organization is very complex and cells have a wide range
of sensitivities including contrast, color, and motion.




Where is this headed?
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A theoretical approach

e Look at the system from a function perspective:
What problems does it need to solve?

e abstract from the details, make predictions from theoretical principles
e You can only have data after you do your theory.
e Models are bottom-up, theories are top-down.

e What are the relevant principles?




Information theory: a short introduction
Entropy:

e measure of irreducible signal complexity
e lower bound on how much a signal can be compressed without loss

Information of symbol w:
I(w) = —logy P(w)

For a random variable X, with probability P(x), the entropy is the average amount
of information obtained by observing x:

=) P(x)I(z) ZP ) log, P ()

e H only depends on the probabilty, not value
e Gives lower bound on average bits per code word.

Average coding cost for a message of length L (assuming independence) is

LH(X)bits.




Example

H(p)

0 0.1 0.2 03 04 05 06 07 08 0.9 1
p

Figure 2.1. H(p) versus p.

A single random variable X with X = 1 with probability p and X = 0 with
probability 1 — p. Note that H(p) is 1 bit when p = 1/2.




Capacity

Capacity is the maximum amount of information per symbol:
C =logy N

Maximum is when all NV symbols have equal probability.

e English: C = log, 27 = 4.73 bits/letter
e Image: 8 x 256 x 256 for 8 bit 2562 image.

Actual entropy, i.e. the irreducible part, is much less.
Why?




Redundancy

Redundancy is a measure of (in)efficiency or actual entropy relative to capacity:
R=1—H(x)/C

Capacity is maximum when

e code words (symbols) have equal frequency
e no inter-symbol redundancy

Examples

e English: letter probs not equal, letters not indep.
e Images: pixel value probs not equal, pixels not indep.




Example of symbols in english: A-Z and space

1. Zero-order approximation. (The symbols are independent and
equiprobable.)

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

2. First-order approximation. (The symbols are independent. Fre-
quency of letters matches English text.)

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

3. Second-order approximation. (The frequency of pairs of letters
matches English text.) '

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

4. Third-order approximation. (The frequency of triplets of letters
matches English text.)

IN NO IST LAT WHEY CRATICT FROURE BERS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE




A fourth order approximation

5. Fourth-order approximation. (The frequency of quadruplets of let-
ters matches English text. Each letter depends on the previous
three letters. This sentence is from Lucky’s book, Silicon Dreams
[183].)

THE GENERATED JOB PROVIDUAL BETTER TRAND THE
DISPLAYED CODE, ABOVERY UPONDULTS WELL THE
CODERST IN THESTICAL IT DO HOCK BOTHE MERG.
(INSTATES CONS ERATION. NEVER ANY OF PUBLE AND TO
THEORY. EVENTIAL CALLEGAND TO ELAST BENERATED IN
WITH PIES AS IS WITH THE)

Instead of continuing with the letter models, we jump to word
models.

Note that as the order is increased:

e entropy decreases: Hy = 4.76 bits, H; = 4.03 bits, and H4 = 2.8 bits/char
e variables, i.e. P(cilci_1,¢i—2,...,¢i_k), specify more specific structure
e generated samples look more like real English

This is an example of the relationship between efficient coding and representation
of signal structure.




The same model can also be applied to words

6. First-order word model. (The words are chosen independently but
with frequencies as in English.)

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME
CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO
OF TO EXPERT GRAY COME TO FURNISHES THE LINE
MESSAGE HAD BE THESE.

7. Second-order word model. (The word transition probabilities
match English text.)

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH
WRITER THAT THE CHARACTER OF THIS POINT IS
THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE
TIME OF WHO EVER TOLD THE PROBLEM FOR AN
UNEXPECTED
Specifying higher-order word models is problemlatic because the number of

variables increases as N*, where N is the number of words (e.g. 50,000 in English)
and k is the order of the model.




A general approach to coding: redundancy reduction

Correlation of adjacent pixels

Why reduce redundancy?
This is equivalent to efficient coding.
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Why code efficiently?

Information bottleneck:
e restriction on information flow rate

— channel capacity
— computational bottleneck
— 5 x 10%° — 40 — 50 bits/sec

e need even probabilities for associative learning

— easy to calc joint probs for independent vars

e facilitate pattern recognition

— independent features are more informative
— better sensory codes could simply further processing




The bottleneck in vision

= Eye

Owptic chiasm

Optic tract

Lateral geniculate
nucleus

Primary
visual cortex

Eyes must move = small, thin “cord”

100 million photoreceptors — 1 million optic nerve fibers

Fovea already provides a great reduction in amount of information
How do we reliably transmit the important visual information?
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A little more information theory

e H(X) is a measure of how much information it takes on average to describe
random variable X.

e If we know p(X), we can calculate entropy or optimize the model for the data,
but what if we don’t know p(X) and can only approximate it, e.g. with ¢(X)?

e How many bits does this inaccuracy cost us?




Relative Entropy

e The relative entropy D(pl||q) is a measure of the inefficiency of assuming
distribution ¢ when the true distribution is p.

e If we knew p we could construct code with average code word length H(p).

e If we assume ¢, the best average code length we can achieve is H(p) + D(pl|q)

D(pllg) = E:p bg23

e D(pllg) =0 <= p=¢
e This is also called the Kullback Leibler divergence

e |t is not called a distance, becase it is not symmetric and does not satisfy the
triangle inequality.




Information theoretic viewpoint

Use Shannon's source coding theorm.

£=ENX) > ngpm)logﬁ
] e O
= 2 p(@)log oyt ) pl)log s >

x

= Dgkr(pllq) + H(p)

Dy is the Kullback-Leibler divergence.
If model density q(x) equals true density p(x) then Dy = 0.
= q(x) gives lower bound on average code length.

greater coding efficiency < more learned structure
Principle
Good codes capture the statistical distribution of sensory patterns.

How do we descibe the distribution?




Contrast response function in the fly eye (Laughlin, 1981)

e fly LMC (large monopolar cells) — interneuron in compound eye
e output is graded potential

How to set sensitivity?

e too high = response saturated

e too low = range under utilized

|dea: predict contrast reponse function using information theory.




Maximizing information transfer with limited channel capacity

f"'"\

e inputs follow given distribution

probability
density

e transform so that output levels are
intensity used with equal frequency

e each response state has equal area
(= equal probability)

e continuum limit is cumulative pdf
of input distribution

response state

intensity




Another example with different statistics

p(c)

Mathematical form is as cumulative
probability. For y = g(c)

(b) Y :/C P()d

ymaa; C

min

Response

A 1 |

-1 0 +1 +2

Contrast Al /1




Testing the theory
Laughlin 1981:

e collect natural scenes to get

10mV
stimulus pdf o l

50ms

e 15,000 readings

fI

©
. g
e use linear scans: 10, 25, or 50° 3
3 0.5
= lati
. . =~ cumulative
e calc contrast within each scan: 2 = orobability
(o]
Q
AT /{T) 5
e measure actual response of LMC
. T T T |
to varying contrasts 1o ; i

contrast AI/T

= fly LMC transmits information
efficiently




Coding a natural intensity time series

van Hateren and Snippe (2001)

IIin

Questions:

e How should the signal be transformed?
e What gain control model should be used?
e How should the optimality the system (the fly in this case) be evaluated?

100

Time (s)

recorded with a photometer, walking around outdoors

dynamic range of intensity is much larger than that of photoreceptors
large changes can occur on short time-scale
Most, if not all, species can quickly adjust their gain to changing light levels.

200

300




An evaluation method for non-linear encoding models

C , | . r——————————
| SEmulS 8 'nonlinear vary nnnhpear
Nonlinear model model until
¥ ¥ chhzﬂexp
nonlinear transformed
system stimulus s__,
ad L coherence rate R
‘transformed Wiener sl
‘stlmulus Ssys filter | fl
coherence(s,,...")
= | constructed R
response r , | = gain(r,r)
| response r




Measuring the capacity of the system

Response = (i) Noise = ft) MNoise powaer = f(1)

Avg. response

ol

] Frequency

1000 4 SMNR | Info rate I <100

Power [{(mV}2/Hz]

Time

.01

100

1 10 100 1 10
Frequency [Hz] Frequency [Hz]

The noise is given by: N =5 — Sest.
The signal to noise ratio is

SNR =

(SestSest™ )

(NN7)
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A linear model

sl

Response (mV)
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100 200 300 400 500 0

Time (ms)

Time (ms)

e prediction of neural response of linear model is poor
e For linear model, coherence is sub-optimal at all frequencies.

100 200 300 400 500

0'0(] 100 200
Frequency (Hz)
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Gain model with a static non-linearity: log

Response (mV)
M
o

10

0 100

[
o
o

Time (s
log _ so——F—— 30— { ?40 ———T—T—T— 1.0
= : . : | 4 J
£ 30 A ﬂ/ f 30 8
e = "\.I o 20 B 'U’ L ] B
s "Lt W g, o ]
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S 2 1 ok \JWM \ 2nﬂ}¥\ﬂﬂ £ 04
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o gl e T (S G ME &« 5 5 0 4 4 5 90 5 0.0
0 100 200 300 400 500 0@ 100 200 300 400 500 0 100 200 300 400 500 0 100 200
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Coherence at low frequencies is improved, but coding is not perfect.
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model with a static non Imearlty sqrt
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Gain model with a Dynamic non-linearity

40ﬂh
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odel with a Dynamic non-linearity
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Gain model with a Dynamic non-linearity
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Best model requires several stages
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Coherence rates of the different models

1.0p~ "
i &, —— Photoreceptor 7 -
— wa - ® models
8 08 L :!'ZI DWN model 4 _ 600 O photoreceptor . ¢
o - 1 € 400r- .« ° °
8 0.4:- n | i —§ ~ *
0ok | “ 1 o 200l °
0.0— e ol
0 100 200 - lin W sqrt D log DW DWN
Frequency (Hz) Model

Upper bound on capacity of fly
photoreceptor is measured by estimating
the variability in the response to the
same stimulus.




