Review of Linear System Theory

The following is a (very) brief review of linear system theory and Fourier analysis. I work
primarily with discrete signals. I assume the reader is familiar with linear algebra (as reviewed
in my handout Geometric Review of Linear Algebra), and least squares estimation (as reviewed
in my handout Least Squares Optimization).

1 Linear shift-invariant systems

A system is linear if it obeys the principle of superposition: the response to a weighted sum
of any two inputs is the (same) weighted sum of the responses to each individual input.

A system is shift-invariant (also called translation-invariant for spatial signals, or time-invariant
for temporal signals) if the response to any input shifted by any amount A is equal to the re-
sponse to the original input shifted by amount A.

These two properties are completely independent: a system can have one of them, both or
neither [think of an example of each of the 4 possibilities].

The rest of this review is focused on systems that are both linear and shift-invariant (known as
LSI systems). The diagram below decomposes the behavior of such an LSI system. Consider
an arbitrary discrete input signal. Rewrite it as a weighted sum of impulses (also called “delta
functions”). Since the system is linear, the response to this weighted sum is just the weighed
sum of responses to each individual delta function. Since the system is shift-invariant, the
response to each impulse is just a shifted copy of the response to the first. The response to
the impulse located at position zero is known as the system’s impulse response. Putting it
all together, the full system response is the weighted sum of shifted copies of the impulse
response. Note: the system is fully characterized by the impulse response, since this is all we
need to know in order to compute the response of the system to any input.

To make this explicit, we write an equation that describes this computation:*

yln] = > x[mlr{n —m]
m
This operation, by which input # and impulse response r are combined to generate output
signal y is called a convolution. It is often written using a more compact notation: y = x * 7.
Although we think of x and r playing very different roles, the operation of convolution is
commutative: substituting k£ = n — m gives:

y[n] = Zm[n —klrlkl=r=*x
k
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IFor the most part, we’ll assume discretized signals. But each result developed in this review has a parallel in
terms of continuous signals and systems.
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It is also easy to see that convolution is associative: ax(bxc) = (a*b)*c. And finally, convolution



is distributive over addition: a x (b+¢) = a*x b+ a * c.
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For finite-length discrete signals (i.e., vectors),
one must specify how convolution is handled
at the boundaries. The standard solution is
to consider each vector to be one period of | Convolution
an infinitely periodic signal. Thus, for exam- Matrix S
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The convolution operation is easily extended to multidimensional signals. For example, in
2D, both the signal and convolution kernal are two-dimensional arrays of numbers, and the
operation corresponds to taking sums over a 2D window of the signal, with weights specifyed
by the kernel.

2 Sinusoids and Convolution

The sine function, sin(¢), gives the y-coordinate of the points on a unit circle, as a function of
the angle 6. The cosine function cos(f), gives the z-coordinate. Thus, sin?(6) + cos?(8) = 1.
The angle, 6, is (by convention) assumed to be in units of radians - a full trip around the unit



circle corresponds to an angle of 27 radians.

For our purposes here, we will consider sinusoidal signals. A continuous sinusoidal signal
in time might be written Asin(Q2t — ¢), where A is the amplitude, € gives the frequency (in
radians per unit time) and ¢ corresponds to a “phase shift”, or a temporal delay by amount
¢/ A discretized sinusoid might be written as: A sin(27wn — ¢). Here, n is the index into the
vector, and the frequency (in cycles per vector element) is determined by w.

The usefulness of these “sinusoidal” functions comes from their unique behavior with respect
to LSI systems. First, consider what happens when the function cos(€t) is translated by an
amount A. This corresponds to a change in phase ¢ = QA, which may be written (using a
basic trigonometric identity from high school mathematics):

Acos(Qt — ¢) = Acos(¢) cos(2t) + Asin(¢) sin(§2)

That is, a shifted copy of a sinusoid may be computed as a linear combination of the (non-
shifted) sin and cos functions!

Another way to say it is that a sinusoidal func-

tion of a given frequency may be character-
ized in two ways: (a) in terms of its amplitude
and phase, or (b) in terms of its decomposi- | ASIN@ | - - .- ...
tion into sinusoidal and cosinusoidal compo- A

nents. These two descriptions are just polar
or rectangular coordinate system representa-
tions of the same information (see figure). ®
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The converse of the trigonometric identity given above is that a linear combination of sinu-
soids of the same frequency is a single sinusoid of that frequency, with a particular phase shift
and amplitude. Now consider the response of an LSI system to a sinusoid:

O = IxR
= ZR JAsin(2rw(n —m) — ¢)

= ZR JAsin (2rwn — (27rwm + ¢))

The response is a sum of sinusoids, all of the same frequency (27w), but different phases.
This sum is just a single sinusoid of the same frequency but (possibly) different phase and
amplitude. That is, sinusoids preserve their frequency when they pass through LSI systems
even though their amplitude and phase may change.

Sinusoids as eigenfunctions of LSI systems. The relationship between LSI systems and si-
nusoidal functions may be expressed more compactly (and deeply) by bundling together a
sine and cosine function into a single complex exponential:

¥ = cos(h) + isin(0)
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where i = /( — 1) is the imaginary number.

This notation seems a bit unpleasant, but now the relationship between LSI systems and sinu-
soids may be expressed as:

L{eiQt} _ ALeiQt—I—qu

_ AL equL eth

where A7, and ¢, represent the amplitude and phase change caused by the LSI system L
in sinusoids with frequency 2. Summarizing, the action of an LSI system on the complex
exponential is to simply multiply it by the complex number Aei?-. That is, the complex
exponentials are eigenfunctions of LSI systems.

3 Fourier Transform(s)

A collection of sinusoids may be used as a linear basis for representing (realistic) signals. The
transformation from the standard representation of the signal (eg, as a function of time) to a set
of coefficients representing the amount of each sinusoid needed to create the signal is called
the Fourier Transform.

There are really four variants of Fourier transform, depending on whether the signal is contin-
uous or discrete, and on whether it is periodic or aperiodic.

SIGNAL continuous discrete
aperiodic Fourier Transform Discrete-Time(Space) Fourier Transform
(continuous, aperiodic) (continuous, periodic)
periodic Fourier Series Discrete Fourier Transform
(discrete, aperiodic) (discrete, periodic)

For our purposes here, we’ll focus on the Discrete Fourier Transform (DFT), defined for peri-
odic discretized signals. We can write one period of such a signal as a vector of length (say) V.
The following collection of N sinusoidal functions forms an orthonormal basis [check]:

1 2k N
ck[n]z—cos<Ln), k=0,1,... —

v N N 2
1 21k N
sk[n]ENsin<]7\r]n), k::1,2,...5—1

Thus, we can write any vector ¢’ as a weighted sum of these basis functions:

N/2 N/2—1

o[n] =Y agep[n] + > biskn]
k=0 k=1

Since the basis is orthogonal, the Fourier coefficients {ay, by} may be computed by projecting
the input vector ¥ onto each basis function:



N-1

by = Zv[n]sk[n]

n=0

Now, using the properties of sinusoids developed earlier, we can combine cosine and sine
terms into a single phase-shifted sinusoid:

N/2

2rk
v[n] =) Agsin| —n—¢
2 (o)

with amplitudes A, = \/a% + b2, and phases ¢}, = tan~'(by/ax). These are are referred to as
the Fourier amplitudes and Fourier phases of the signal v,,.

Alternatively, we can use a complex-valued number to represent the amplitude and phase of
each frequency component, Ae!?*. Now the Fourier amplitudes and phases correspond to
the amplitude and phase of this complex number. This is the standard representation of the
Fourier coefficients.
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pulse, a Gaussian, and a sinusoid.

Shifting property. When we shift an input signal, each sinusoid in the Fourier representation
must be shifted. Specifically, shifting by m samples means that the phase of each sinusoid
changes by 2t¥m. Note that the phase change is different for each frequency k, and also that

the amplitude of the sinusoids is unchanged.

Stretching property. If we stretch the input signal (i.e., rescale the x-axis by a factor «), the
Fourier transform will be compressed by the same factor (i.e., rescale the frequency axis by
1/alpha). Consider a Gaussian signal. The Fourier amplitude is also a Gaussian, with standard
deviation inversely proportional to that of the original signal.
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4 Convolution Theorem

The most important property of the Fourier representation is its relationship to LSI systems
and convolution. To see this, we need to combine the eigenvector property of complex expo-
nentials with the Fourier transform. The diagram below illustrates this. Consider applying an
LSI system to an arbitrary signal. Use the Fourier transform to rewrite it as a weighted sum
of sinusoids. The weights in the sum may be expressed as complex numbers, Aye'?*, repre-
senting the amplitude and phase of each sinusoidal component. Since the system is linear, the
response to this weighted sum is just the weighted sum of responses to each of the individual
sinusoids. But the action of an LSI on a sinusoid with frequency number k will be to multi-
ply the amplitude by a factor Ay (k) and shift the phase by a factor ¢, (k). Finally, the system
response is a sum of sinusoids with amplitudes/phases corresponding to

(AL(k)Ak)BZ(QSL(k)—Fd)k) — (AL(k)ezqﬁL(k))(Akezqﬁk)

Earlier, using a similar sort of diagram, we explained that LSI systems can be characterized
by their impulse response, 7[n]. Now we have seen that the complex numbers Ap(k)e*?z(*)
provide an alternative characterization. These two characterizations are related (although the
proof is a bit messy): The complex numbers Ay (k)e’?2(¥) are the Fourier coefficients of the



function r[n].

Summarizing, the response of the LSI system
may be computed by a) Fourier-transforming
the input signal, b) multiplying each Fourier
coefficient by the associated Fourier coeffi-
cient of the impulse response, and c) In-
verse Fourier-transforming. A more collo-
quial statement of this Convolution theorem
is: “convolution in the signal domain corre-
sponds to multiplication in the Fourier do-
main”. Reversing the roles of the two do-
mains means that “multiplication in the sig-
nal domain corresponds to convolution in the
Fourier domain”.

Input

<) — <

LSI

F.T.

Output
(F.T.)1
VxT

Why would we want to bother going through three sequential operations in order to compute
a convolution? Conceptually, multiplication is easier to understand than convolution, and
thus we can often gain a better understanding of an LSI by thinking about it in terms of its ef-
fect in the Fourier domain. More practically, there are very efficient algorithms for the Fourier
Transform, such that this three-step computation can be more computationally efficient than




direct convolution.

As an example of conceptual simplification,
consider two impulse responses, along with
their Fourier amplitude spectra. It is often dif-
ficult to anticipate the behavior of these sys-
tems solely from their impulse responses. But
their Fourier transforms are quite revealing.
The first is a lowpass filter meaning that it dis-
cards high frequency sinusoidal components
(by multiplying them by zero). The second is
a bandpass filter - it allows a central band of
frequencies to pass, discarding the lower and
higher frequency components.

As another example of conceptual simplifica-
tion, consider an impulse response formed by
the product of a Gaussian function, and a si-
nusoid (known as a Gabor function). How
can we visualize the Fourier transform of this
product? We need only compute the convolu-
tion of the Fourier transforms of the Gaussian
and the sinusoid. The Fourier transform of
a Gaussian is a Gaussian. The Fourier trans-
form of a sinusoid is an impulse at the corre-
sponding frequency. Thus, the Fourier trans-
form of the Gabor function is a Gaussian cen-
tered at the frequency of the sinusoid.
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