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Efficiency Hypothesis

Information-theoretic formulation: maximize mutual information between
stimuli and responses of a population of neurons.

Ingredients:

• ensemble (or model) of stimuli

• choice of neural population

• definition of “response”

• limitations on responses

Conceptual problem: Purely bottom-up (ignores task).

Practical problem: information is hard to estimate.
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Simplistic Efficiency Hypothesis

Ignoring noise allows us reduce the hypothesis to two simple compo-
nents:

• individual responses to stimulus ensemble should have maximum
entropy (subject to response limitations)

• responses to stimulus ensemble should be statistically independent
[Attneave, ’54; Barlow, ’61]

Intuition (on board...)
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Maximum Entropy

The distribution over response r with maximum entropy subject to a
constraint of the form:

E(f (r)) = c

is
P(r) ∝ exp(−λ(c)f (r))

Examples:

• f (r) = r2 gives a (half-)Gaussian

• f (r) = |r| gives an exponential

• f (r) =
√

|r| gives something even sparser
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The Cost of Cortical Computation

rat neocortex. Neurons in human neocortex are largerPeter Lennie*

Center for Neural Science than those in rat and receive and make more synapses,

but they are not otherwise known to differ in their basicNew York University

4 Washington Place structure or organization [5]. Thus, with appropriate

scaling of parameters for the larger neurons, Attwell andNew York, New York 10003

Laughlin’s analysis can be used to estimate the energy

consumed by a pyramidal neuron in human neocortex.

In different mammals, the number of neurons underSummary
a unit area of cortical surface is relatively constant

(�100,000/mm2 ), except in primate striate cortex, whereElectrophysiological recordings show that individual
it may be twice as high [6]. Increasing brain size bringsneurons in cortex are strongly activated when en-
an increase in cortical thickness and a proportionatelygaged in appropriate tasks, but they tell us little about
lower density of neurons [5, 6] without an increase inhow many neurons might be engaged by a task, which
cell body size, which remains approximately constant atis important to know if we are to understand how
15 �m diameter [7]. The volume of axons and dendritescortex encodes information. For human cortex, I esti-
increases with cortical thickness. This reflects an in-mate the cost of individual spikes, then, from the
crease in the lengths of dendrites and axons without anknown energy consumption of cortex, I establish how
increase in diameter [5]. Table 1 summarizes relevantmany neurons can be active concurrently. The cost of
statistics for human cortex.a single spike is high, and this severely limits, possibly

to fewer than 1%, the number of neurons that can

be substantially active concurrently. The high cost of Postsynaptic Potentials
spikes requires the brain not only to use representa- Individual synapses are assumed to be the same in rat
tional codes that rely on very few active neurons, but and human neurons, so the energy costs associated
also to allocate its energy resources flexibly among with transmitter uptake and release will be the same,
cortical regions according to task demand. The latter as will the current flow through receptor channels. Given
constraint explains the investment in local control of (from Table 1) 7 � 108 synapses per mm3 of cortex,
hemodynamics, exploited by functional magnetic res- and 40,000 neurons/mm3, the average neuron will make
onance imaging, and the need for mechanisms of se- 17,500 synaptic contacts. If we use this number, and
lective attention. assume a 50% failure rate [8, 9], the cost of EPSPs

arising from a single spike will be 1.2 � 109 ATP mole-

cules [4].Introduction
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Maximum Entropy [Baddeley etal, 97]
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Distributions appear exponential, optimally efficient under a constraint
on the mean firing rate.

Caveats/concerns:

• Firing rate constraint not always the right one. [Laughlin ’81]

• Why are responses to white noise also somewhat exponential?

• Noise probably matters here
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Testing the Independence Hypothesis

• Experimental: Examine dependency between neuronal responses un-
der natural stimulation conditions [eg: Vinje/Gallant ’00; Nirenberg/Latham ’01]
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Testing the Independence Hypothesis

• Experimental: Examine dependency between neuronal responses un-
der natural stimulation conditions [eg: Vinje/Gallant ’00; Nirenberg/Latham ’01]

• Theoretical: Derive a model that can produce independent responses;
Compare with physiology
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Toward Independent Image Components...

Observe Joint Statistics "Optimal" Representation

A bottom-up methodology for constructing image models, or image
processing systems.

Extensive history in engineering and theoretical neuroscience.

CSH-02



Principal Component Analysis (PCA)

Find linear transform (specifically, rotation and axis re-scaling) that trans-
forms the covariance matrix to the identity.

Geometrically, convert the ellipse that describes the variance in all di-
rections into a circle!
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PCA on images: Spectral image model

Reminder of previous lecture:

1. Characterize image statistics by covariance matrix

2. Translation-invariance =⇒ Fourier diagonalizes

3. Variances in Fourier domain (power spectrum) falls like 1/f p:

• verified empirically for “typical” photographic images

• guaranteed if we assume scale-invariance

4. To complete model, assume Gaussianity (which is maximum entropy
under variance constraint)
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PCA is Insufficient

a. b.

left: 1/f Gaussian noise. right: whitened natural image.
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Bandpass Filters Reveal non-Gaussian Behaviors
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Marginal densities of bandpass filtered images are non-Gaussian.
[Field ’87; Mallat ’89; Zetzsche ’90]
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Multi-dimensional Gaussians

• Characterized by mean (vector) and covariance (matrix)

• Remain Gaussian under linear transformation

• Specifically, conditionals (slices) and marginals (projections) are Gaus-
sian

• Separable product of i.i.d. Gaussians is spherically symmetric

• Central limit theorem: sums of i.i.d. random variables become Gaus-
sian

• Maximizes entropy for a given mean and covariance

• Heisenberg: Fourier transform of a Gaussian is Gaussian, and mini-
mizes variance product
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PCA on Linear Combination of non-Gaussian Sources
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2nd-order whitening does not necessarily recover independent sources!

Need an additional rotation matrix...
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Independent Component Analysis (ICA)

Seek linear transform that maximizes statistical independence of trans-
form coefficients.

A variety of algorithms exist.
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ICA on Images

Linear operators with maximally independent (or maximally non-Gaussian)
responses are oriented bandpass filters (loosely, wavelets)
[Bell/Sejnowski ’97; Olshausen/Field ’96]
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Sample Kurtosis vs. Filter Bandwidth
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For most images, maximum is near one octave [after Field, 1987]
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Model II: Wavelet+generalizedGaussian Marginals

Project onto:Image:
Coefficient

density:

P(I)

Coefficient densities are (approximately) uncorrelated generalized Gaus-
sians (Mallat89, Simoncelli/Adelson96):

f (c) ∝ e−|c/s|p, p ∈ [0.5, 0.8].
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Coefficient Dependency

Large-magnitude subband coefficients are found at neighboring posi-
tions, orientations, and scales.
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Linear responses are not independent, even for optimized filters!
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Baboon Flowers White noise

Different Images:

x
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x

Different Filter Pairs:
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Modeling the Dependency

One filter:

var(L1|L2) = w L2

2
+ σ2

−100 −50 0 50 100
−100

−50

0

50

100

Generalized neighborhood:

var(L1|{Ln}) = ∑

nwn Ln
2 + σ2
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Reducing Dependency

Rn =
Ln

2

∑

k wnk Lk
2 + σ2

Original Responses After Division
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Functional Physiological Model

Other Neurons


Other Neurons


σ
2

σ
2

• Divisive suppression by weighted sum of neighbors increases inde-
pendence

• Optimal weights determined from image statistics
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Divisive Normalization: Physiological Evidence

Steady-state neural responses = linear projection, rectification, and divi-
sion by the summed responses of other neurons [Heeger ’92; Carandini/Heeger/Movshon

’97]

Such models can account for some nonlinear striate cortical behaviors.
Examples [Carandini et al. 1997]:

• Tuning curves independent of contrast

• Contrast saturation level depends on stimulus parameters

• Cross-orientation suppression

• Increasing phase lag at lower contrast
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Methods

• Statistically-determined model:

1. Linear basis: multi-scale, oriented 3rd derivative operators

2. “Neuron”: vertical, optimal spatial frequency 0.125 cycle/pixel

3. Neighborhood: 2 scales, 4 orientations, 3 × 3 array

4. Weights: optimized (ML) for statistics of 10 images (faces, land-
scapes, and animals).

• Physiological simulations:

1. Compute linear responses of full neighborhood

2. Square

3. Divide chosen neuron response by weighted combination of squared
neighbor responses.

[Schwartz & Simoncelli ’01]
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Parameter Optimization

Assume a Gaussian form for the conditional distribution:

P (Ln | {Lk}) ∼ N




0;
∑

k
wnk |Lk|

2 + σ2







Maximize the likelihood over the image data:

ŵnk, σ̂ = arg max
wnk,σ

∏

i

1
√

2π ∑

k wnk |Lk|2 + σ2
exp


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Cross-orientation Suppression

ModelCell

Mask 
contrast:

(Bonds, 1989)
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Tuning Curves Independent of Contrast

ModelCell
(Skottun et al., 1987)
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Surround Suppression
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Surround Spatial Frequency

0.5 1 1.5 2
0

5

10

15

20

25

30

M
e
a
n
 R

e
s
p
o
n
s
e
 R

a
te

Relative Surround Spatial Frequency

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Relative Surround Spatial Frequency

Cell Model

[Data: Müller, Krauskopf, & Lennie.]
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Stimulus Diameter
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Natural Sounds

Cat White noiseSpeech
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Different Sounds:

Different Filter Pairs:
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Auditory Nerve Fiber (cat)

Cell
(Javel et al., 1978)
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Auditory Nerve Fiber (cat)

Cell
(Rose et al., 1971)
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Summary

Divisive gain control can get us closer to a statistically independent de-
composition for images (or sounds)

• Ecological justification for physiological models

• Quantitative predictions of sensory nonlinearities:

– suppression by non-optimal stimuli

– intensity-independence of some tuning curves (eg orientation)

– intensity-independence of other tuning curves (eg diameter)

• Canonical computation?

• Numerous applications in signal/image processing
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General Summary

Efficiency hypothesis provides a principle linking environmental prop-
erties to response properties of sensory neurons.

There are many ways to study/test this.

How far can we go, given that it’s a bottom-up hypothesis?
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Some interesting possibilities

Adaptation [Laughlin ’81; Barlow & Foldiak; Wainwright ’99; Fairhall etal ’01; Wainwright etal,

’02]

New classes of “naturalistic” stochastic stimuli (e.g., textures)
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Synthetic texture images (aperiodic)

[Portilla & Simoncelli, 2000]
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