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Statistical Image Models

Image Processing / Graphics:

• How compactly can we represent images?

• How easily can we detect (and remove) artifacts or distortions?

• Can we enhance images by increasing resolution or spatial extent?

• Can we synthesize realistic-looking images?

Theoretical Neurobiology:

• Do sensory neurons perform optimal decomposition of images?

• If so, how does the system learn this decomposition?
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Image Statistics

space of all images

typical images

Loosely:

• Neural architecture optimized for ensemble of images

• Instantaneous pattern of responses represents relevant informa-
tion about current image
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Statistical Optimality

Two basic frameworks (with overlap):

• Bayes (prior)

• Efficient coding [Pam’s next lecture]

How do we test these??

• Experimental

• Theoretical

• Hybrid (!)
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Building a statistical model

We want to look for statistical properties that provide constraints that
are both strong and reliable.

• make measurements...

– but measurements of what?

– beware the curse of dimensionality

• make structural assumptions (e.g., translation-invariance, locality)
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Pixel Correlations
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Relationship between Covariance matrix and Fourier

on board...
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Principal Component Analysis (PCA)

Find linear transform (specifically, rotation and axis re-scaling) that trans-
forms the covariance matrix to the identity.
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Well-known eigenvalue/eigenvector solution

Assuming translation-invariance, Fourier transform suffices
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Power spectra of natural images fall as 1/fα, α ∼ 2.
[Ritterman ’52; DeRiugin ’56; Field ’87; Tolhurst ’92; Ruderman & Bialek ’94; etc]
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Scale-invariance

If g̃(ω) = Aωp , then g̃(sω) = Aspωp .

i.e., for power-law spectrum, shape is preserved under scaling.

Conversely, if shape is preserved under scaling, spectrum must follow
a power law!

CSH-02



Maximum Entropy

The distribution over response r with maximum entropy subject to a
constraint of the form:

E(f (r)) = c

is
P(r) ∝ exp(−λ(c)f (r))

Examples:

• f (r) = r2

• f (r) = |r|
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Multi-dimensional Gaussians

• Characterized by mean (vector) and covariance (matrix)

• Remains Gaussian under linear transformation of space

• Conditionals (slices) and marginals (projections) are Gaussian

• Unique property: separable products are spherically symmetric

• Central limit theorem: sums of i.i.d. random variables become Gaus-
sian

• Heisenberg: Fourier transform is Gaussian, and minimizes variance
product
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Model I: Fourier+Gaussian

Project onto:Image:
Coefficient

density:

P(I)

Most image processing engineering is based on this “classic” model
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Synthesis

F -11/f2

P(c)
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Whitening
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Windowed PCA

[Hancock etal, ’91]
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