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The Neural Coding Problem

s(t) it}
Central goals for today:

* important properties of coding process
- to be complete must deal with spikes (not rate)

e [desiderata and comparison of different approaches
- how do we know when we are done?
- would like 'answer' to provide functional and mechanistic insights

¢ feliability and coding efficiency
(approaches fundamental limits ...)
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stimuli of interest change on time scale
comparable to interval between spikes




WHY DO WE NEED MORE THAN RATE CODING?

{G}

\

r(t)
5(t)

e Most of what we know about how sensory signals are represented comes from
measuring dependence of mean firing rate on some parameter of stimulus
(receptive fields, tuning curves, ...)

e While this has clearly been fruitful, for some quantitative issues need to be
sure we have complete understanding of code
- relation between neural activity and behavior
- comparison of fidelity at different stages of system

e In some systems clear that behavior influenced by small # of spikes, making
rate not a particularly useful quantity. In many systems time scale of
behavioral decision similar to interval between spikes -- hence cannot average
over time to get rate.



CODING IS PROBABILISTIC

s(t) {t;} N |

encoding P[{t;/ |s(t)]  decoding P[s(t)|{t;}]

Bayes' Rule
P[{t;}s(t)] P[s(t)] = P[s(t) | {t;}] P[{t;}]

Any approach to coding must deal with its probabilistic nature!




PRACTICAL CONSIDERATIONS

s(t) {t;] N |

e P[{ti}Is(t)] and P[s(t)|{t;{] are high dimensional
{tj} ~ 100 msec window, 1 msec bins
s(t) ~ time dimensions + others (space, color, ...)

* [dollect ~ 10,000 spikes in typical experiment
e impossible in practice to get entire distribution

e fry to capture structure of P[{t;} | s(t)] or P[s(t) | {t;}] with
finite data



TAYLOR SERIES APPROXIMATION

X0 X1 X
df 1 d2f
= - - _ - 2 - _
f(x1) = f(xo) + (X1-X0) Ix + 5 (X1-X0) ax2

X0 X0
KEY:
df
f(xo) >> (x1-X0) I

X0

l.e. expand about small parameter

+ ...



STRUCTURE OF CONDITIONAL DISTRIBUTIONS
{t;}

s(t)

W
N4

P[{til s(t)]
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{t;}

encoding ambiguous

P[s(t) | {tj/]

s(t)

decoding single-valued

Although encoding and decoding in principle
equivalent (Bayes’ Rule), in practice may not be




ENCODING: WIENER AND VOLTERRA APPROACHES

(1) /\\/\r/(t)\

e What are statistical properties of stimulus leading to spike?

L~ (1) Collect stimuli preceding spike
—-\—\/ (2) Measure mean, covariance, ...
S




firing rate (spikes/s)

FIRST-ORDER FIRING RATE ESTIMATE
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ENCODING: WIENER AND VOLTERRA APPROACHES

Ki(t)

Ko(t, T') r(t)
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s5(t)

PROS:
* [Systematic
* [0ften easily interpreted

CONS:

o [typically does not converge quickly
- no ‘small parameter’
- usually run out of data before
terms stop contributing
e lestimates rate, not spike train
- hard to say how well it works

- effectively assumes spikes are
independent



Is explosion due to assumption of
independent spikes?
- deal with spike interactions directly

EJC (2000): “We are all losing, the only
question is how badly”

2 USES USGS Photo by Austin Post,May 18, 1980



DECODING: THE LOOK-UP-TABLE APPROACH
(de Ruyter van Steveninck and Bialek, 1987)

© L1 1 |

/
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e Estimate stimulus V\/\ * Estimate stimulus
by replacing each by replacing each

spike with spike | [ interval with
|- triggered average appropriate interval

‘\/\ triggered average




ENCODING: DECODING: Look-up-table

approach
e determine what stimulus features * determine what each spike
trigger a spike sequence 'stands for’
*[use to estimate firing rate e [donsider only linear relation
* [expansion is in statistical aspect between stimulus and each
of stimulus (mean, covariance, ...) spike sequence
prior to spike e [expansion is in spike sequences

= _ N




ENTRIES IN THE LOOK-UP TABLE
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STIMULUS ESTIMATES USING LOOK-UP TABLE

velocity (°/s)

time (s)

e [domplex patterns (at least up
to 3 spikes) continue to help

e not enough data to go to 4
spike patterns (despite 1e6
spikes in this experiment!)

(de Ruyter van Steveninck and Bialek, 1987)



LOOK UP TABLE APPROACH

PROS:

* [Systematic

* easy to compare stimulus and
estimate

e [simple to evaluate accuracy

e [deals with non-independence of
spikes directly

W\ I
-

CONS:

o [typically does not converge quickly
- again no ‘small parameter’

- run out of data before clearly
done

* implementation?
* [fesolution of overlap difficult



Z USES USGS Photo by Austin Post,May 18, 19580

Possible reasons for continued

incineration:

e [each spike sequence stands for
something special

e [fefractoriness introduces another
time scale and we get this only
slowly by considering each spike
sequence



DECODING AS FILTERING

\/V/jt)
/ (ti)
Sest(t) e functional approach

Sest(t) =2 Fl(t-ti) + 2 Fz(t'ti, t't]) + ...

e choose F's to minimize 2

Y2 =< Is(t) - sqe(t) 12>



filter amplitude (°/s)

velocity (°/s)

DIRECT DECODING IN FLY MOTION-SENSITIVE NEURON
(Bialek et al., 1991)

Linear estimation filter
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DIRECT DECODING SUMMARY

Mt)
'\/\/s:sta)

PROS:

* [Systematic

* easily interpreted

® [Seems to converge

* easy to evaluate accuracy

N
~

CONS:

o still no ‘small parameter’
e mechanistic interpretation?



ENCODING:

¢ [determine what
stimulus features
trigger a spike

DECODING:

Look-up-table Direct approach
approach

‘ e [determine what
o @etermme what each spike 'stands
each Splke'? for' - correct for
sequence stands bias of spiking
for dynamics




The Neural Coding Problem

s(t) (i)
Central goals for today:

* important properties of coding process
- to be complete must deal with spikes (not rate)

e [desiderata and comparison of different approaches
- how do we know when we are done?
- would like 'answer' to provide functional and mechanistic insights

¢ feliability and coding efficiency
(approaches fundamental limits ...)




CODING EFFICIENCY: HOW DO YOU KNOW WHEN YOU ARE DONE?

information provided
by spikes about stimulus

| coding  _
efficiency spike train entropy
spike train
stimulus
High Efficiency Low Efficiency
stimuli spike trains stimuli spike trains
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information provided
by spikes about stimulus

coding  _
efficiency spike train entropy
stimuli spike trains
<% > . .
How much does observation of the spike
/ train reduce uncertainty about the stimulus?

Prior: P[stimulus]

Conditional distribution: P[stimulus | spike train]

Measure reduction in uncertainty on

logarithmic scale (entropy)
e additivity

- information from two independent
measurements should add
* relative measure
- compare information about different
aspect of stimulus (e.g. color and orientation)



Information theory (Shannon)

P[s]
observe
\ splkes /

Info = -st P[s] log, P[s] +

Pls [{t}]

J'Ds Dt Pls | {t)1 1og, Pls | ;)]
For Gaussian signal and noise

R, . = | dflog,[1 + SNR(f)]



velocity (°/s)

reconstruction amplitude (°/s)

10

NOISE IN THE ESTIMATED STIMULUS

time {ms)

2Hz

50Hz

stimulus amplitude (°/s)

10

-10 -5 0 5

stimulus amplitude (°/s)

10

¢ [ difference between stimulus
and estimate contains both random
and systematic errors

* [Separate by measuring correlation
at each temporal frequency

s, (D =g(0* [s() +n()]

slope g(f): systematic bias

scatter n(f): effective input noise



vibration amplitude (arb. units)

NOISE IS APPROXIMATELY GAUSSIAN

reconstruction of vibration
amplitude using afferent
from frog sacculus

distribution of random
errors in estimate
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Information theory (Shannon)

P[s]
observe
\ splkes /

R, = - Ds P[s] log, P[s] +

Pls [{t}]

JDs Dt; Pls | {t}] 1og, Pls | {t]
For Gaussian signal and noise

R, . = | dflog,[1 + SNR(f)]



8.0 8.5

log(vibration spectral density)
7.5
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SIGNAL-TO-NOISE IN SACCULUS AFFERENT

R. .= fdf 10g2[1 + SNR(f)]

info

= 150 bits/ sec

20 40 60 80 100
frequency (Hz)



information provided

coding by spikes about stimulus

efficiency

spike train entropy

spike trains

How many distinguishable spike
trains can the cell generate?

P[spikes]




Spike train entropy (MacKay and McCulloch)

||

[o]1]oo] 1] o[1]o[1]o]
—> - 1
At . > S(At)= —A_I[p log,p +
. (1-p)log,(1-p)]
Coding efficiency

(1) measure R, ¢ (At) L e(a)

(2) measure S(Ar)
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information provided
by spikes about stimulus

coding  _
efficiency spike train entropy
g -
entropy
>N oo |
U (=]
o
Q
o v
O
.:-.:
W k2 S r
information
n | ! | 2k | | | ! 1 1 !
1 2 3 4 0.0 0.5 1.0 1.5 2.0 25 3.0 3.5

timing precision (msec)

timing precision (msec)



CODING EFFICIENCY HIGHER FOR

NATURAL" 5IGNALS (Rieke, Bodnar and Bialek, 1995)

naturalistic sounds

1.0 - Y
e(At) | ° o
0.5 - broad band
noise
0 e
0 | OI 5 | 1 IO | 1 I 5 non}inearities ip
peripheral auditory system
timing precisjon (ms) matched to statistical
properties of signals




Summary of Coding Efficiency Measurements

system efficiency

cricket mechanoreceptors >50%

frog mechanoreceptors >50%

10-30% for broad band noise

frog auditory afferents 50-90% for naturalistic sounds

retinal ganglion cells ~20% for white noise inputs
(Warland Reinagel and Meister, 1997)

EJC (2000): “We are all losing, the only
question is how badly”



SOME OPEN QUESTIONS

¢ [Coding in cell populations
- distributed coding (e.g. correlations)

e [Adaptive codes
- how maintain efficient coding when properties of input signals

change?

* Statistics of natural images
- efficiency of coding in ganglion cells

* [(Optimal coding?
- coding is efficient -> predict dynamics?



