
Light

Retina

Optic
Nerve

photoreceptors

interneurons

ganglion
cells

light

•!encoding and estimation
•!bottleneck and limits to 
   visual fidelity



s(t) {ti}
Central goals for today:

•!important properties of coding process
- to be complete must deal with spikes (not rate)

•!desiderata and comparison of different approaches
- how do we know when we are done?
- would like 'answer' to provide functional and mechanistic insights

•!reliability and coding efficiency
    (approaches fundamental limits ...)

The Neural Coding Problem



time (msec)

ve
lo

ci
ty

 (d
eg

re
es

/s
ec

)
2000 2100 2200 2300 2400 2500

-80

-60

-40

-20

0

20

80

40

60

stimuli of interest change on time scale
comparable to interval between spikes



WHY  DO  WE  NEED  MORE  THAN  RATE  CODING?

r(t)

• Most of what we know about how sensory signals are represented comes from
   measuring dependence of mean firing rate on some parameter of stimulus
   (receptive fields, tuning curves, …)

•!While this has clearly been fruitful, for some quantitative issues need to be
    sure we have complete understanding of code

- relation between neural activity and behavior
- comparison of fidelity at different stages of system

•!In some systems clear that behavior influenced by small # of spikes, making
   rate not a particularly useful quantity.  In many systems time scale of
   behavioral decision similar to interval between spikes -- hence cannot average
   over time to get rate.



encoding P[{ti}|s(t)]

{ti}

s(t)

decoding P[s(t)|{ti}]

CODING  IS  PROBABILISTIC

{ti}

P[{ti}|s(t)] P[s(t)] = P[s(t)|{ti}] P[{ti}]

Bayes' Rule

s(t)

Any approach to coding must deal with its probabilistic nature!



PRACTICAL CONSIDERATIONS 

• P[{ti}|s(t)] and P[s(t)|{ti}] are high dimensional
     {ti} ~ 100 msec window, 1 msec bins 

s(t) ~ time dimensions + others (space, color, ...)

•!collect ~ 10,000 spikes in typical experiment

•!impossible in practice to get entire distribution

•!try to capture structure of P[{ti}|s(t)] or P[s(t)|{ti}] with
   finite data

{ti}s(t)



f(x)

xx0

f(x0)
f(x1)

x1

TAYLOR  SERIES  APPROXIMATION

f(x1) = f(x0) + (x1-x0)            +     (x1-x0)2                   + ... dx
df

x0
dx2
d2f

x0

KEY:
f(x0) >> (x1-x0) 

i.e. expand about small parameter

dx
df

x0

1
2



encoding ambiguous

 P[{ti}|s(t)]

{ti}

{ti}s(t)

decoding single-valued

P[s(t)|{ti}]

s(t)

STRUCTURE  OF  CONDITIONAL  DISTRIBUTIONS

Although encoding and decoding in principle 
equivalent (Bayes’ Rule), in practice may not be



ENCODING:  WIENER  AND  VOLTERRA  APPROACHES

s(t) r(t)

•!What are statistical properties of stimulus leading to spike?

(1) Collect stimuli preceding spike
(2) Measure mean, covariance, ...



s(t)

{t }i

Dashed: r(t)
Solid: rest(t) = ∫ dt K1(t) s(t-t)

FIRST-ORDER FIRING  RATE  ESTIMATE



r(t)

ENCODING:  WIENER  AND  VOLTERRA  APPROACHES

PROS:
•!systematic
•!often easily interpreted

CONS:
•!typically does not converge quickly

- no ‘small parameter’
- usually run out of data before
  terms stop contributing

•!estimates rate, not spike train
- hard to say how well it works
- effectively assumes spikes are

         independent

K1(t)
K2(t, t’)
...



Is explosion due to assumption of 
independent spikes?
- deal with spike interactions directly

EJC (2000): “We are all losing, the only
question is how badly”



DECODING:  THE  LOOK-UP-TABLE  APPROACH

s(t)

{ti}

sest(t)

•!Estimate stimulus 
    by replacing each 
    spike with spike 
    triggered average

•!Estimate stimulus 
    by replacing each 
    interval with 
    appropriate interval 
    triggered average

(de Ruyter van Steveninck and Bialek, 1987) 



ENCODING:
 
 
•!determine what stimulus features 
    trigger a spike
•!use to estimate firing rate
•!expansion is in statistical aspect
    of stimulus (mean, covariance, ...)
    prior to spike
    

DECODING: Look-up-table 
   approach

 
•!determine what each spike 
sequence 'stands for'
•!consider only linear relation
    between stimulus and each 
    spike sequence
•!expansion is in spike sequences



(de Ruyter van Steveninck and Bialek, 1987) 

spike-triggered
average

ENTRIES  IN  THE  LOOK-UP  TABLE

structure of interval-
triggered averages
not simply predicted
from STA



(de Ruyter van Steveninck and Bialek, 1987) 

STIMULUS  ESTIMATES  USING  LOOK-UP  TABLE

•!complex patterns (at least up
to 3 spikes) continue to help
•!not enough data to go to 4
spike patterns (despite 1e6
spikes in this experiment!)



LOOK  UP  TABLE  APPROACH

PROS:
•!systematic
•!easy to compare stimulus and 
   estimate
•!simple to evaluate accuracy
•!deals with non-independence of
   spikes directly

CONS:
•!typically does not converge quickly

- again no ‘small parameter’
- run out of data before clearly  

         done
•!implementation?
•!resolution of overlap difficult

s(t)

sest(t)

{ti}



Possible reasons for continued 
incineration:
•!each spike sequence stands for 
    something special
•!refractoriness introduces another
    time scale and we get this only
    slowly by considering each spike
    sequence



s(t)

sest(t)

{ti}

•  functional approach
sest(t) = S F1(t-ti) + S F2(t-ti, t-tj) + ...

•  choose F's to minimize c2

c2 = < |s(t) - sest(t)|2 >

DECODING  AS  FILTERING



DIRECT  DECODING  IN  FLY  MOTION-SENSITIVE  NEURON
(Bialek et al., 1991) 

Spike-triggered average

Linear estimation filter

quality of estimate with linear term similar
to that of 3-spike patterns in look-up table
approach - i.e. seems to be converging



DIRECT   DECODING  SUMMARY

PROS:
•!systematic
•!easily interpreted
•!seems to converge
•!easy to evaluate accuracy

CONS:
•!still no ‘small parameter’
•!mechanistic interpretation?

s(t)

sest(t)

{ti}



ENCODING:
 
 
 
•!determine what 
stimulus features 
trigger a spike

DECODING:
 

Look-up-table 
approach
 
•!determine what 
each spike 
sequence 'stands
for'

Direct approach
 
•!determine what 
each spike 'stands
for' - correct for
bias of spiking
dynamics



s(t) {ti}
Central goals for today:

•!important properties of coding process
- to be complete must deal with spikes (not rate)

•!desiderata and comparison of different approaches
- how do we know when we are done?
- would like 'answer' to provide functional and mechanistic insights

•!reliability and coding efficiency
    (approaches fundamental limits ...)

The Neural Coding Problem



CODING  EFFICIENCY:  HOW  DO  YOU  KNOW  WHEN  YOU  ARE  DONE?

coding
efficiency =

information provided
by spikes about stimulus

spike train entropy

stimulus
spike train

stimuli spike trains stimuli spike trains

High Efficiency Low Efficiency



coding
efficiency =

information provided
by spikes about stimulus

spike train entropy

stimuli spike trains

Conditional distribution:  P[stimulus|spike train]

How much does observation of the spike
train reduce uncertainty about the stimulus?

Prior: P[stimulus]

Measure reduction in uncertainty on
logarithmic scale (entropy)
• additivity

- information from two independent
  measurements should add

• relative measure
- compare information about different

           aspect of stimulus (e.g. color and orientation)



observe
spikes

Info =  -∫Ds P[s] log2 P[s] +

∫Ds Dti P[s|{ti}] log2 P[s|{ti}]

P[s]

s

P[s|{ti}]P[s]

s

For Gaussian signal and noise

Rinfo = ∫df log2[1 + SNR(f)]

Information theory (Shannon)



NOISE  IN  THE  ESTIMATED  STIMULUS 

•!difference between stimulus
and estimate contains both random
and systematic errors

•!separate by measuring correlation
at each temporal frequency

       s    (f) = g(f) * [ s(f) + n(f) ]est

slope g(f): systematic bias
scatter n(f): effective input noise



NOISE  IS  APPROXIMATELY  GAUSSIAN

reconstruction of vibration 
amplitude using afferent 
from frog sacculus

distribution of random 
errors in estimate



observe
spikes

Rinfo =  -∫Ds P[s] log2 P[s] +

∫Ds Dti P[s|{ti}] log2 P[s|{ti}]

P[s]

s

P[s|{ti}]P[s]

s

For Gaussian signal and noise

Rinfo = ∫df log2[1 + SNR(f)]

Information theory (Shannon)



SIGNAL-TO-NOISE  IN  SACCULUS  AFFERENT

R     = ∫df log  [1 + SNR(f)]

        = 150 bits/sec

info 2



coding
efficiency =

information provided
by spikes about stimulus

spike train entropy

stimuli spike trains

How many distinguishable spike
trains can the cell generate?

P[spikes]



S(Dt)=  -     [p log2p +

0 1 0 0 1 0 1 0 1 0

Dt 1
Dt

(1-p)log2(1-p)]

Spike train entropy (MacKay and McCulloch)

(1) measure Rinfo(Dt)

(2) measure S(Dt)
e(Dt)

Coding efficiency



coding
efficiency =

information provided
by spikes about stimulus

spike train entropy

entropy

information
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e(Dt)

naturalistic sounds

broad band
noise

CODING  EFFICIENCY  HIGHER  FOR
          'NATURAL'  SIGNALS

nonlinearities in 
peripheral auditory system
matched to statistical 
properties of signals

(Rieke, Bodnar and Bialek, 1995)



Summary of Coding Efficiency Measurements

system efficiency

frog mechanoreceptors

frog auditory afferents

cricket mechanoreceptors >50%

>50%

10-30% for broad band noise
50-90% for naturalistic sounds

retinal ganglion cells ~20% for white noise inputs
(Warland Reinagel and Meister, 1997)

EJC (2000): “We are all losing, the only
question is how badly”



SOME  OPEN  QUESTIONS

•!Coding in cell populations
- distributed coding (e.g. correlations)

•!Adaptive codes
- how maintain efficient coding when properties of input signals 
change?

•!Statistics of natural images
- efficiency of coding in ganglion cells

•!Optimal coding?
- coding is efficient -> predict dynamics?


