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What constraints does behavioral sensitivity

place on detection and processing in retina?

e What is absolute sensitivity of behavior?

e Wwhat are properties of noise limiting
behavioral sensitivity?

What are properties of single photon
responses in rod photoreceptors and how
do they relate to behavior?

How are signals resulting from absorption
of a few photons maintained through retina?
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BEHAVIORAL EVIDENCE FOR SINGLE PHOTON DETECTION BY RODS

shutter

\

target

N
fixation point

target covers
~500 rods

e just detectable flash about 100 photons at cornea
*[10-30% of photons at cornea absorbed by rods
(quantum efficiency)

CONCLUSION: threshold ~10-30 absorbed photons,
spread over ~500 rods

PROBLEM: Quantum efficiency difficult to measure




target

fixation
point

FREQUENCY OF SEEING
(Hecht, Shlaer and Pirenne, 1942)
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% seen

40

target covers 20 -

~500 rods

10 100

photons at cornea

KEY: use variability in response to avoid unknown fraction absorbed
CONCLUSION: © = 5-7 photons absorbed spread over 500 rods
PROBLEMS: (1) Estimated quantum efficiency low (~5%)

(2) No way to account for false positives (intrinsic noise)




"DARK LIGHT" AND VISUAL SENSITIVITY

K (Barlow, 1956)

False positives: internal noise masquerading as light response.
Use false positive rate to estimate noise limiting absolute sensitivity.




Prob

THRESHOLD TRADES FOR FALSE POSITIVES

criterion
—» See

don't see ——

amplitude

see

(Barlow, 1956; Teich et al., 1982)

0 100 1000
Photons at Cornea

information from small # of photons available, but
accessing it produces errors due to intrinsic noise




QUANTUM EFFICIENCY, DARK LIGHT AND THRESHOLD TRADE
(Barlow, 1956; Teich et al., 1982)

1.0~ Qy = 0.049 1.0
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(1) Behavioral Qg lower than absorptive Q, some single
photon responses discarded

OR

(2) Behavioral and absorptive Q; similar, thresholds and
dark noise elevated




WHAT IF NOISE IS NOT ALL ADDITIVE?

N N

Poisson fluctuations
in photon absorption

? Psee

Poisson fluctuations oLe
in spike generation
0

Combination of additive and multiplicative noise
permits high Qg with low dark light and threshold

Lol
1000
Photons at Cornea




What constraints does behavioral sensitivity

place on detection and processing in retina?

* [perception influenced by a small number
of photons, perhaps one

e noise limiting behavior ~0.01-0.03 photon
like events/rod/sec

What are properties of single photon
responses in rod photoreceptors and how
do they relate to behavior?

e What are sources of noise in rod signals?

¢ how close does behavior come to limits
imposed by rod noise?

How are signals resulting from absorption
of a few photons maintained through retina?

g

l..'..-

— Light






IMPLICATIONS

rod
rod (ON) cone (ON and
bipolar OFF) bipolars

All

amacrine ganglion

cells

(Dacheux and Raviola, 1986;

OF BEHAVIORAL SENSITIVITY

e [phototransduction:
- single photons reliably transduced

* Synaptic transmission:
- reliable transmission of single
photon responses

* neural coding:
absorption of a few photons
(and perhaps 1) produces
change in optic nerve activity

Sterling et al., 1988)



ROD DARK CURRENT
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SUCTION ELECTRODE RECORDING

(Baylor et al., 1979)
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RODS RESPOND TO SINGLE PHOTONS
(Field and Rieke, 2002)

\J\f‘( photocurrent
|

flash times

Responses to a repeated flash are quantized
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FUNCTIONAL REQUIREMENTS OF PHOTON DETECTION

o AMPLIFICATION
explained by known
1 pA

properties of
phototransduction

(Pugh and Lamb, 1993)

e [LOW DARK NOISE
lf \ﬂ UM _"dark light" ~ 0.01-0.03 Rh*

from behavior
- implications for
retinal processing

o REPRODUCIBLE SINGLE
PHOTON RESPONSE
- required for photon counting
- temporal sensitivity (?)

0 10 20 30
time (sec)




DARK NOISE IN MAMMALIAN RODS
(Baylor et al., 1984)

—— noise event

1p A[ —— ave single
Dark + Instrumental Noise L
. discrete
continuous 0.2 sec
1pA |:
o}
Instrumental Noise .
1 pA |:
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BEHAVIORAL "DARK LIGHT" CLOSE TO THERMAL RATE IN RODS

see

1.0
0.8
0.6
0.4
0.2

0.0L®

100
Photons at Cornea

1000

BEHAVIOR:
dark noise equivalent to
~0.01-0.03 photon-like noise
events per sec per rod

DISCRETE ROD NOISE:
event rate
~0.005-0.01 per sec

TO THINK ABOUT:
what happened to

continuous noise?




What constraints does behavioral sensitivity

place on detection and processing in retina?

* [perception influenced by a small number
of photons, perhaps one

e noise limiting behavior ~0.01-0.03 photon
like events per rod per sec

What are properties of single photon

responses in rod photoreceptors and how

do they relate to behavior?

e (thermal activation of rhodopsin generates
photon-like noise events at ~0.005 per sec

e feproducible responses to each absorbed

photon preserve information about time
of photon arrival

How are signals resulting from absorption

of a few photons maintained through retina?

e how does rod-bipolar signal transfer influence
sensitivity?

Light



IMPLICATIONS

rod
rod (ON) cone (ON and
bipolar OFF) bipolars

All

amacrine ganglion

cells

(Dacheux and Raviola, 1986;

OF BEHAVIORAL SENSITIVITY

e [phototransduction:
- single photons reliably transduced

* Synaptic transmission:
- reliable transmission of single
photon responses

* neural coding:
absorption of a few photons
(and perhaps 1) produces
change in optic nerve activity

Sterling et al., 1988)



CONVERGENCE AND SPARSE SIGNALING
IN MAMMALIAN RETINA

e [At visual threshold photons small
fraction of rods contribute to each
independent visual image

* Sensitivity can be substantially increased
if signals from rods absorbing photons
can be retained and others discarded - e.g.

by thresholding

* (General problem in nervous system!



DARK NOISE IN MAMMALIAN RODS

—— noise event
1p A[ —— ave single

Dark + Instrumental Noise

. discrete 0.2 sec
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SEPARATION OF ROD SIGNAL AND NOISE
BY THRESHOLDING NONLINEARITY
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rods

nonlinearity

sum

rod bipolar
response

* Mouse rod-rod bipolar signal transfer

is nonlinear.
- dependence of response on flash

strength
- discreteness of dim flash response

* Nonlinear signal transfer eliminates
or severely attenuates majority of rod’s

single photon responses.

e Rejection of noise more than
compensates loss of signal - thus rod
bipolars provide near-optimal readout
of rod signals near visual threshold.



DIM FLASH RESPONSES OF RODS GROW LINEARLY
WITH FLASH STRENGTH
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RESPONSES OF ROD BIPOLARS BUT NOT RODS GROW
SUPRALINEARLY WITH FLASH STRENGTH
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photocurrent
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Does rod-rod bipolar
signal transfer separate
rod signal and noise?




MOUSE ROD SINGLE PHOTON RESPONSES ARE
PARTIALLY OBSCURED BY NOISE
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ROD BIPOLARS GENERATE DISCRETE RESPONSES TO DIM FLASHES
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* Mouse rod-rod bipolar signal transfer
is nonlinear.

rods e Nonlinear signal transfer eliminates
or severely attenuates majority of rod’s
single photon responses.

nonlinearity
* Rejection of noise more than
compensates loss of signal - thus rod
bipolars provide near-optimal readout
sum of rod signals near visual threshold.

rod bipolar
response



MODEL FOR ROD-ROD BIPOLAR SIGNAL TRANSFER
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MANY OF ROD’S SINGLE PHOTON RESPONSES ELIMINATED
IN ROD-ROD BIPOLAR SIGNAL TRANSFER
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rods

nonlinearity

sum

rod bipolar
response

* Mouse rod-rod bipolar signal transfer
is nonlinear.

* Nonlinear signal transfer eliminates
or severely attenuates majority of rod’s

single photon responses.
- can this explain low Qg from behavior?

e Rejection of noise more than
compensates loss of signal - thus rod
bipolars provide near-optimal readout
of rod signals near visual threshold.
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DISTRIBUTION OF ROD RESPONSES AT VISUAL THRESHOLD
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ROD BIPOLAR PROVIDES NEAR OPTIMAL READOUT OF ROD
SIGNALS AT VISUAL THRESHOLD (0.0001 Rh*/rod/integration time)
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NONLINEAR SIGNAL TRANSFER LIMITS SENSITIVITY WELL
ABOVE VISUAL THRESHOLD (0.01 Rh*/rod/integration time)
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olfactory bulb (CNS)

glomerulus

——

olfactory
epithelium
d (receptors)

Mombaerts et al, 1996



What constraints does behavioral sensitivity

place on detection and processing in retina?

e perception influenced by a small number
of photons, perhaps one

e noise limiting behavior ~0.01-0.03 photon
like events per rod per sec

What are properties of single photon

responses in rod photoreceptors and how

do they relate to behavior?

e thermal activation of rhodopsin generates
photon-like noise events at ~0.005 per sec

e feproducible responses to each absorbed

photon preserve information about time
of photon arrival

How are signals resulting from absorption

of a few photons maintained through retina?

e thresholding nonlinearity at rod-to-rod
bipolar synapse separates signal and noise

Light



- Does rod bipolar-All synapse remove noise intrinsic to bipolar?
- What is role of ‘alternate” pathways?

— s, —y

rod bipnlar rod-cone rod-OFF

pathway pathway pathway




firing rate (spikes/s)

40 —

20 —

How sensitive are retinal ganglion cells?
(Barlow, Levick and Yoon, 1971)

Stim: 5 quanita

¢I Count gate

Criterion spikes

e 3ormore
© 6 ormore
= 9ormore
o 12 o0rmore

Ao  15o0rmore

Prob. of reaching criterion P(cIS+R)

a 18 ormore

0.8 0.9 1.0 11 1.2

0 200 400 600 800 log(stimulus +dark light)
time (ms)

temporal and detection sensitivity (it’s not all about
detecting the presence or absence of photons)



- Are kinetics of rod-bipolar synapse matched to
rod signal and noise - i.e. does synapse cut off
variable part of rod responses?

- What does this mean for temporal sensitivity?

A. Salamander

normalized response
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—— rod bipolar
---- ganglion

cell




# responses

15
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EVIDENCE FOR REPRODUCIBILITY

(Field and Rieke, 2002)
singles
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amplitude (pA) sec
CV_. . =standard deviation / mean = 0.26 + 0.06

area




original discretized

reproducible responses + quantal flucts
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ESTIMATING PROPERTIES OF
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ROD-ROD BIPOLAR SIGNAL TRANSFER

Nonlinear dependence on flash strength
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