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Moments of Stopping Times and Scalar
Timing
Weber's law for time

Michael Shadlen, August 2003

m 1. Using the Derivatives of Wald's identity. This does not lead to a
general solution

m 2. Use Brownian motion to a single barrier (drift = 0)

We show that for Brownian motion to barrier, the hitting times obey scalar timing (constant CV) if the gaussian increments
possess variance proportional to the mean. We do this two ways: using the pdf for the first crossing times and using the
moment generating function. The idea is to verify the method for gaussian increments and then generalize to other processes.

m 2.1 Use the PDF to derive moments for the absorption times (and Weber fraction)

m 2.2, Use the MGF to derive moments for the absorption times (and Weber fraction)

m 3. Derive the MGF for absorption times when the diffusion is driven by
"difference of Poisson" increments

Before considering the APoisson increments, let's we review the derivation for Brownian motion (Karlin & Taylor, Chapter
7, p. 381ff). This is sort of a practice run.

m 3.1 Gaussian increments

m 3.2 Difference of Poissons
Consider two Poisson intensities, @ and . The mgf for these random values are given by

M[e_]:= (The
Mp[6_]:= (oM
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and the difference variable, D, has a distribution whose mgf is

Mp[6_] :=M[8] M [ -6]
FullSimplify[M,[ 6]]

(-1+ Oy a+r(-1+ @) B
Let X(n) represent discrete Brownian motion,that is the sum of a sequence of n gaussian random numbers. We know that
VIn_] := Mp [A] " Exp[AX]

is a martingale. We proved this in the Wald_Indentity notebook. I am following K & T here by using A instead of the tradi-
tional 6 for the argument of M.

Vn]

-n

XA ( (-1+ 1) ar (-1+ *)B)

Define
6=(-1+ Ma+(-1+ *)B
(-1+ Mo+ (-1+ M) B
This yields a simpler experssion for V[n]:
XA -neé

-n ((-1+ M) a+(-1+ 1) B)+X X

Because V is a martingale, we can apply the optional sampling theorem to the stopped process at X =
A and know nonetheless that the expectation is 1. For the stopped process, X% is nota random variable and we may write

Expectation[ *¥* 29] =1
A Expectation[ 79] =1
Expectation|[ 79] = 2

We recognize the left side as the Laplace transform of the stopping times. All that is needed is to express A in terms of 6

Unset[6]

Solve[(-1+ M) a+(-1+ *)B-6 0, 1]

Solve::ifun : Inverse functions are being used by Solve, so some solutions may not be found.

+[3-\- + (~0-B-6)% + + B3+ V- + (m0-B-06)% +
{{x Iog|® B \/4a/32éa B-6) eH,{A Log| B \/40162(601 B-0) em

We use the first root for reasons I do not understand. I have discovered that if you use the other root, you get negative 1st

moments and other odd results. This gives us an expression for the Laplace transform of the absorption times. (Note, so far,
this is the only step for which Mathematica proved useful.)
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a+[3—'\/—4a[3+(-a—[3—9)2 +6
23

1]

Exp[A Log|

a+B-V-4ap+ (-a-B-6)2 +6 *

-A
2 B

By changing the sign of 6, we get the moment generating function for the absorption times:

A

a+[3—'\/—4a[3+(-a—[3+9)2 -6

M,[6 =2
[e_] 8

a+B-6-V-4aB+ (-a-B+06)°

-A
2 B

m 4. Use the MGF for APoisson increments to derive moments for the
absorption times (and Weber fraction)

From section 3, we obtain an expression for the moment generating function of the absroption times at positive barrier, A,
given random increments drawn from a difference of Poissons with rates @ and g:

A

Mo , A 61 . a+[3—9—'\/—4aﬁ+(-a—[3+9)2
s BA_, A, _ =

B
First derivative with respect to 6
D[M[®, A, a, B], €]
~1+A
-A 1 _ —0-f3+6 a+f-6-V -4 af+ (-a-p+6)2
2 A< 1 V-4 0B+ (-a-B+0) 2 ) ( B )

B

Use this to define a function that evaluates the 1st derivative (I could not get Mathematica to do this in 1 step).

-1+A
—a-B+6 ) (a+B—6—‘\/—4aB+(—a—B+9)2 )

V-2 o B+ (-a-B+6) 2 B

B

222 (-1
MIF[6 , A, a_, B_] :=

Does this return a reasonable 1st moment? Yes, so long as we use the 1st root.

M1F[0, 30, 6, 5]

30

Define a function that returns the 1st moment

momentl[A , a_, B_] := MIF[O, A, a, 3]
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momentl[30, 6, 5]

30

Second derivative of the MGF with respect to 6

D[M[®, A, a, B], {6, 2}]

1+a)A (-1 ~o-p+0 2 (oo aap aBo? e
g | LFRIAL it ) B )
5 "
1 (-o-pB+06)2 B 1
B (~4aB+ (~a-B+0))"""  J-4aB+ (-a-p+0)?

a+p-0-V-4ap+ (-a-B+6)?
B

1+A]

Define a function for the 2nd derivative

M2F[6_, A _, a_, B_] :=

V-2 ap+(-a-B+6)2 B
+ A
B? B

2 -2+A
_ 1. —a-B+6 a+B-6-V -4 a B+ (-a-p+6)2 )
o (1+A)A(1 ) ( 1 (ca-B+0)2

(-4aB+ (~a-B+0)%)°""

'\/—4a[3+(-a-[3+9)2 A

-1+A
1 a+B—9—'\/—4a[3+(-a-[3+e)2] ]]

M2F[0, 30, 6, 5]

1230
Define a function that returns the 2nd moment

moment2[A_, a_, B_] := M2F[O0, A, a, ]

The variance is

var[A_, a_, B_] :=moment2[A, a, ] -momentl[A, a, B1?

momentl[30, 6, 5]
moment2[30, 6, 5]
var[30, 6, 5]

30
1230

330

Weber fraction
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'\/MZF[O, A, a, B] -MIF[0, A, a, B]?

FullSimplify[ MIF[O, A, a, B]

, {A>0,a>0, 8 >0, a>p}]

A (a+f3)
a-

A

This does givse a constant Weber fraction, so long as ng is constant.

[ A (a+B)
a-B

WeberFraction[A_, a_, B_] :=
A

N[WeberFraction[400, 20, 18]]

0.217945

Here is a plot of the Weber fraction as a function of barrier height for one pair of poissons. Of course the mean time can be
scaled by multiplying the pair of rates by a constant.

Plot [WeberFraction[A, 6, 5], {A, 20, 1000}]
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Graphics



moments_of_stopTimes.nb

Plot3D[momentl[a, 6k, 5k], {A, 20, 1000}, {k, 1, 10}]

1000

SurfaceGraphics

Suppose that Poisson rates are computed in 10 msec epochs. The following graph tells us that for k ~3-5, we would time in
the half second to 1.5 second range.

Plot[momentl1[500, 6 k, 5k], {k, 1, 10}]
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Graphics

I like values for k in this range because they might be seen as equivalent to the average of 100 weakly correlated spike
trains. This argument will require some work.



