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Information theory in
the brain
Pamela Reinagel

Claude Shannon’s classic 1948 paper
introduced a general theory for
measuring the transmission of
information from a source, across a
noisy channel, to a receiver
(Figure 1). This theory became
known as information theory. Shannon
illustrated his theory with such
examples as messages sent over
telegraph lines by Morse code.
But the same principles can be
applied to neurons: a neuron
transmits information along its
axon to other neurons, using a neural
code. Information theory has proved
to be a powerful tool for quantifying
the communication of information
by neurons.

Bits
Shannon argued that information
should be measured in the
now-familiar units of bits. A bit is a
binary digit (0 or 1), or the amount of
information needed to give an
answer to a single yes-or-no
question. The outcome of one coin
toss could be reported in one bit (0
for heads, 1 for tails). The result of
two coin tosses could be reported in
two bits, which can represent four
possible combinations (00 , 01 , 10 ,
11). In general, with n coin tosses
there are N=2n possible outcomes.
Turning this around, if there are 2n

possible combinations or messages,
then there are log2 (2n) = n bits of
information. The reason log2 shows
up so often in information theory is
that the unit of information is the
binary (base 2) digit.

Information content
The information content in a source
can be measured as the minimum
number of bits that could represent
the messages from that source. This

quantity is called the entropy of the
source, because its equation has the
same form as the entropy in
statistical thermodynamics. In the
simplest case, when there are N
possible messages and all are equally
likely, the entropy is log2N, as for the
coin tosses above.

The situation is more
complicated if two coins are
weighted, so that each of them
comes up heads in 95% of tosses. At
first, it seems we still need two bits
to represent the four possibilities.
But we could instead use a short
code, 1, to designate the usual
outcome, and longer codes for the
three uncommon outcomes, for
example 0 as a prefix for rare
outcomes followed by 00 , 01 or 10
to distinguish them.This scheme
would use 1 bit 0.95 ´ 0.95 » 90% of
the time, and 3 bits 10% of the time,
hence on average using 1.2 bits
instead of 2. But is 1.2 the minimum
number of bits that could represent
this source?

According to information theory, a
message (outcome) that occurs with
probability P has an entropy of
log2(1/P) bits. For a simple coin toss,
each outcome has a probability P=1/2
and thus an entropy of log2(2) = 1 bit.
In the case of the two weighted
coins, the outcome two heads is so
likely that its actual occurrence does
not contain much new information:
P=0.9, and log2(1/0.9) » 0.15 bits. By
contrast, the outcome two tails would
be very surprising, and thus highly
informative: P=1/400, and
log2(400) » 8.6 bits. Shannon proved
that the entropy of an information
source is the sum over all possible
messages of the entropy of the
message, log2(1/P), weighted by how
often it occurs (P):

In the case of the two weighted coins
above, the entropy turns out to be
only 0.6 bits. This means an optimal
code could be twice as efficient as the
code proposed above, which used

1.2 bits. Note that the entropy of the
two weighted coins is much less than
two fair coins (2 bits). In general, a
system has maximum entropy when
every possible message is equally
likely. When probabilities are
unequal, the entropy is always
reduced. At the extreme, when one
message has a probability P=1 and all
others P=0, the entropy is 0.

Finally, we have been assuming
that each message is independent of
the others. Entropy is reduced if the
probability of a message depends on
previous ones. For example, the
letter u is fairly uncommon in
English text, but after a q it is almost
always present. Thus the letter u has
high information in general, but
almost no information when
following q. When messages are not
independent, it is necessary to
measure the probabilities of
sequences of messages to determine
the entropy of the source.

Information transmission
Between the source and the
receiver, information may become
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Figure 1

Shannon’s schematic of a general
communication system. An information
source produces a message, which is then
transmitted over a noisy channel to the
receiver. The message received at the
destination is a corrupted version of the
original message.
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corrupted by noise (Figure 1). The
amount of information that gets
through can be measured by how
much information the sent and
received messages have in common
— their mutual information. To
choose an example from
neuroscience, a visual display on
which a stimulus is shown could be
considered an information source.
All the optical and neural events
leading up to the firing of a neuron
could be taken as the channel, and
the neuron’s firing rate could be
taken as the message received at the
destination. We can then ask: how
much information about the
stimulus is represented by the cell’s
firing rate?

Suppose the stimulus, S, has two
possible values — black and
white —chosen randomly on each
experimental trial with equal
probability. The minimum number
of bits required to represent this
stimulus is 1 bit, so this is the
stimulus entropy. One could classify
the cell’s response, R, as either on
or off in each trial, and choose the
threshold in such a way that the
cell is considered on in exactly
half the trials. Defined this way,
the response also has an entropy
of 1 bit.

To find out how much
information this response contains
about the stimulus, we tabulate the
probability of each combination of S
and R (Figure 2). The response of
the neuron in Figure 2a is
completely independent of the
stimulus, as we might find if we were
recording from a purely auditory
neuron in response to this visual
stimulus. The probability of any
combination of stimulus and
response is the same as expected by
chance. Thus, even though the
response has 1 bit of entropy, it
contains no information about the
stimulus. The response of the
neuron in Figure 2b, however, is a
perfectly reliable indicator of the
stimulus. It contains all the
information in the stimulus, 1 bit.
A noisy visual neuron, whose

response was partially determined
by the stimulus, would fall between
these extremes. 

In most neurobiology
experiments, both the stimuli and
the responses are more complicated
than this example. Some stimuli
have hundreds or thousands of bits of
information per second. For
example, a stimulus could have many
distinct shades of gray, with different
shades at different spatial locations,
and the shades could be changed
hundreds of times per second, to
make a black-and-white movie.
Neural responses are also much
richer than simply on and off. For
example, a response could be
defined by the exact time of each
action potential fired by each cell in
a large population of sensory
neurons. Even for fairly simple

experiments, it is usually impossible
to collect enough experimental data
to fill in a table like those in
Figure 2. Fortunately, several
sophisticated tricks have been
devised to estimate the mutual
information in other ways (for one
example, see Figure 3).

Cracking neural codes
Information theory has ben used to
study how neurons encode
information. Firing rates have long
been known to be important for
neural codes; the firing rates of single
neurons often correlate
systematically with experimental
parameters we can vary or measure in
the laboratory, such as the intensity
of a sensory stimulus or the
magnitude of a muscular contraction.
Using information theory, we can put
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Shannon showed that the mutual
information between R and S can be
calculated from the joint probability
distribution (Figure 2) by the equation:

This seems more complicated than it is.
The joint probability of stimulus S and
response R (one shaded square) is written
P(S,R). The ratio compares this joint
probability to what might happen by
chance — the product of the two individual

probabilities P(S) ´ P(R). If these two are
equal, as for the neuron in Figure 2a, then
the ratio is 1, and log2(1) = 0 bits. If the
joint   probability  differs  from  chance,
information is encoded. For example, for
the neuron in Figure 2b the joint probability
of getting an on response with a black
stimulus is 0.5, compared to the expected
0.5 ´ 0.5 = 0.25, so the ratio is 2, and
log2(2) = 1 bit. Finally, SS SR P(S,R) simply
indicates taking a sum over all stimuli and
all responses, weighted according to how
often the combination occurs.
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Figure 2

Responses of two neurons during presentation of a random, binary stimulus. The neuron in
(a) codes no information, whereas the cell in (b) is a perfect encoder.
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a number on the amount of
information encoded by the firing
rate of a neuron. We can then ask
whether additional information is
transmitted by other features of the
neural response. 

The most striking lesson to
emerge over the past decade is that
the exact timing of action potentials
is important in neural coding,
particularly when the encoded signal
is itself rapidly varying. For the most
part, this is an extension of the idea
that firing rates code information, but
we now think of a neuron’s rate
(probability of firing) as varying on
the timescale of milliseconds rather
than seconds. There has been
intense interest in whether
information is encoded in other
aspects of neural responses, such as
temporal patterns of firing, or firing
patterns involving multiple cells.
In recent years, a few examples of
such temporal and population coding

have been demonstrated, although
so far the amount of information
involved has been modest. It remains
controversial whether these
codes will turn out to be
functionally important.

From information theory, we
know that the most efficient code to
transmit a signal depends on the
statistics of the signal. This is why
Morse code uses a short symbol (•)
for the frequent letter e, and a clumsy
long one (— — • —) for the rare q.
But for a language with few es and
many qs, this would be an especially
bad code. Similarly, a neural code
that represented one class of sensory
stimuli efficiently would necessarily
be inefficient for other stimuli. It has
been proposed that sensory neurons
evolved to send as much information
to the brain as possible under real-
world conditions. Early tests of this
theory have confirmed the prediction
that sensory neural codes seem to be

specifically adapted for the statistics
of their natural stimuli. 

Broader applications
Information theory is a completely
general method to measure the
transfer of information from one
place to another, and is particularly
suited to describing many aspects of
neural function. Information theory
has been applied most widely in the
field of sensory coding, but it is
equally applicable to the
transmission of neural commands
for motor output patterns. One can
also measure the mutual
information between the spike train
of one neuron and that of its
postsynaptic target, or between a
single cell’s synaptic currents and its
action potentials. 

The term information suggests to
us something about the intention of a
sender or the value to the receiver.
But, in the uses of information
theory presented above, neither is
implied. For example, there is more
information content (entropy) in a
randomly flickering visual stimulus
than in a real-world scene, even
though the flickering is meaningless.
In the future it will be important for
the field to address such additional
issues as: the value of different
stimulus information for the animal;
the role of active exploration of the
enviroment in selection stimuli for
encoding; and the mechanisms in the
brain for decoding the information
carried by neural responses. 
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One approach to studying neural codes is
to try to decode a neural response and
reconstruct the original signal. 
Any information about the stimulus that
can be successfully reconstructed is
thereby demonstrated to be encoded by
the neuron(s). The successful decoding
algorithm may also provide insight into
how that information is represented, and
how other neurons might extract it. For
example, suppose one has recorded the
spike trains of several visual neurons in

response to a randomly modulating
stimulus (Figure 3). One could try to find
a decoder that would estimate the visual
stimulus from the responses of the cells.
With judicious choice of the input signal,
efficient methods can be used to
compare the reconstruction to the original
signal, to obtain an information estimate
without recourse to a joint probability
table (Figure 2). In this way mutual
information can be estimated with
comparatively little data.

Decoding a neural code

Figure 3

The luminance of a visual stimulus s(t) is chosen independently at each time step. The
responses of retinal ganglion cells r(t) are recorded on multiple electrodes. A decoder is
sought that can produce a reconstruction, u(t), that matches the original stimulus as well as
possible. (Adapted with permission from Warland DK, Reinagel P, Meister M: J Neurophysiol
1997, 78:2336-2350.)
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