Encoding of Visual Information by LGN Bursts
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Reinagel, Pamela, Dwayne Godwin, S. Murray Sherman, and Feeser 1990; Steriade and Llnd988), which is voltage
Christof Koch. Encoding of visual information by LGN bursts. dependent (Coulter et al. 1989). When this conductance is
Neurophysiol81: 2558 -2569, 1999. Thalamic relay cells respond i 5ctive, at relatively depolarized membrane potentials, a brief

visual stimuli either in burst mode, as a result of activation of - .
low-threshold C&" conductance, or in tonic mode, when this Con_aepolarlzmg pulse (such as might be generated by a presynap-

ductance is inactive. We investigated the role of these two respoitéeretinal action potential) will cause an LGN relay cell to fire
modes for the encoding of the time course of dynamic visual stimuin€ or a few unitary action potentials. If the cell experiences a
based on extracellular recordings of 35 relay cells from the latefatolonged hyperpolarizatior=100 ms),l, becomes primed or
geniculate nucleus of anesthetized cats. We presented a spatiaiginactivated” (Jahnsen and Llisd984a,b). Once this has
optimized visual stimulus whose contrast fluctuated randomly in timgcyrred, the cell will respond to a depolarizing pulse with a

with frequencies of up to 32 Hz. We estimated the visual informatioq}, » -5 cteristic burst of action potentials riding the crest of a

in the neural responses using a linear stimulus reconstruction methqd

Both burst and tonic spikes carried information about stimulus Coﬁ_o'vver calcium spike (Scharfman et al. 1990).

trast, exceeding one bit per action potential for the highest variancel NUs each individual cell can be described as having a
stimuli. The “meaning” of an action potential, i.e., the optimal estifesponse mode (burst or tonic) at each point in time, depending
mate of the stimulus at times preceding a spike, was similar for bugh the instantaneous degree lpfinactivation. To a first ap-
and tonic spikes. In within-trial comparisons, tonic spikes carriggroximation, the mode can be regarded as binary (Coulter et al.
about twice as much information per action potential as bursts, %89). When a cell is in tonic mode, it is poised to fire one or

bursts as unitary events encoded about three times more informa;iﬁare individual action potentials in response to an input, if it

per event than tonic spikes. The coding efficiency of a neuron for, . . : :
particular stimulus is defined as the fraction of the neural codirg%es at all; when a cell is in burst mode, its next response will

capacity that carries stimulus information. Based on a lower bou a stgreotypeq burst. The byrsts_assomated W'“a.” be .
estimate of coding efficiency, bursts had..5-fold higher efficiency diStinguished reliably from tonic spikes on the basis of its
than tonic spikes, or 3-fold if bursts were considered unitary eventgterspike interval (ISI) pattern (Lu et al. 1992). Therefore, on
Our main conclusion is that both bursts and tonic spikes encote basis of extracellular recordings, one can infer the under-
stimulus information efficiently, which rules out the hypothesis thdying response mode of a cell at the time of each observed
bursts are nonvisual responses. response.

Under some conditions, such as low arousal or sleep, LGN
cells become uncoupled from retinal input (Coenen and Ven-
INTRODUCTION drik 1972; Fourment et al. 1984; Livingstone and Hubel 1981).

The dorsal lateral geniculate nucleus of the thalamus (LG tis physiological state the LGN relay cells are relatively
is the primary relay by which visual information from thelYPerpolarized, such that is in a primed state much of the

retina reaches the cortex. Retinal ganglion cells are connec%ﬂe'g'e":hﬁ (t:ﬁlls. arltla pregomin?‘ntly in blursat m?d?h LCb;.N Cr?"S
to LGN relay cells with relatively little divergence or conver-€h burstrythmically and synchronously, due to the biophys-

gence, so the spatial receptive-field organization that the LG‘N"I properties of the current in conjunction with other intrinsic

; ; P brane properties and local circuit properties (Bal and
inherits from the retina is largely preserved. Rather than € \embrar i : ) \
tracting new spatial features in the visual input, the function $icCormick 1997; McCormick and Feeser 1990; Steriade and

the LGN may be to selectively transmit or “gate” visual infor—'N3S 19ri]38;hvon hqusighk et r?" 1993). 'IliréeNse ollbsen/atigns
mation as a function of time. Transmission could be facilitate§t99€st the hypothesis that whenever an cell enters burst

inhibited, o filtered by the many nonretinal inputs to the LGNj10de. the cell becomes uncoupled from visual input. This
relay cell, for example, from the brain stem, thalamic reticulzﬂypmhes's predicts that when bursts occur during visual stim-

nucleus, or cortex (reviewed in Sherman and Guillery 199%lation, individual bursts will not be related systematically to

Sherman and Koch 1986: Singer 1977; see also Crick 19g#fimulus events. . . .
One mechanism by which the thalamus might gate visual!n 19htly anesthetized or awake animals, a mixture of tonic

information is through controlled activation &f The inward SPIkes and arrhythmic bursts is found, with the ratio of re-

L : low-threshol lci onses occurring in the two modes falling on a continugm
E(L;Lr%rg ‘;ﬁdattl_rhbuiggé(? i/l(?(\évo:n:i?:?( olggc; cmgncg?r?]?gkctzgc Guido et al. 1992, 1995; Guido and Weyand 1995; Mukherjee

and Kaplan 1995). Under these conditions, when bursting was
The costs of publication of this article were defrayed in part by the paymeK?rIEd pharmacolog_lc_:ally, bursts were founq to Corr.EIat.e with

of page charges. The article must therefore be hereby maskhaftisemerit €nhhanced detectability of near-threshold visual stimuli. The

in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.  improvement, due in part to the reduction in spontaneous
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activity, was at the expense of response linearity that may &igrent. The response of the cell was determined before, during, and
important for stimulus discrimination (Godwin et al. 1996bafter application of the drug.
Guido et al. 1995). The correlation between detectability anglassirication oF ceLLs. We initially determined neuronal re-

burst fraction suggests the hypothesis that the bursts dire@bptive-field position, center sign, size, and ocularity by plotting
encode visual information. This hypothesis predicts that indieuronal activity in response to small spots of light projected onto the
vidual bursts can be systematically related to individual stintangent screen. We then replaced the tangent screen with a Tektronix
ulus events. 608 oscilloscope monitor for the presentation of test stimuli. We
In the present study, we set out to determine whether the#gssified all neurons as X or Y using a battery of tests, including
differences between burst and tonic firing response modatency to electrical sﬁlmulatlon from optic chiasm, linearity of spatial
correspond to differences in visual information transmissigiymmation, center size, and the response of the surround to a large,

properties. The “information” in a neural response is defined %)idly moving stimulus of opposite sign to the receptive-field center.

the extent to which observing the response would reduce/IiSUAL STIMULATION. We presented a time-varying contrast signal
receiver's uncertainty about the particular visual stimulu® the cells on a Tektronix 608 monitor, with a space average lumi-
compared with not observing the response and relying only BANCeLo = 60 cd/nt. Monitor contrast was controlled by a computer
the average statistics of that stimulus (Rieke et al. 19972 tgml%l-rt\)gis/fb\r/e%)converter using the Picasso stimulus generation
Shannon {:lnd Weaver 1963).' We estlmatgd the informati . The spatial form of the stimulus was a stationary sinusoidal grating
using a stimulus reconstruction method (Bialek et a!' 1_9_9EJresented through a fixed circular aperture (Fig). Irhis particular
Rieke et al. 1997). We found that both burst and tonic firing,atia| structure is not relevant to the analysis except that LGN relay
modes relay roughly equivalent amounts of stimulus-relategdiis respond well to its temporal modulation. We define contrast as
information to visual cortex. Preliminary results of this study._ — L, /(L + L), Wherel,., andL,,, refer to the
have been reported in abstract form (Reinagel et al. 1997).maximum and minimum luminance of the grating.
The contrast of the grating was randomly varied as a function of
time (Fig. 1B) according to a Gaussian amplitude distribution (Fig.
METHODS 1C) with a flat spectrum up to a cutoff frequency (CF; Fif)1The
. . random sequences were generated by selecting pseudorandom values
Physiological methods in the frequency domain, imposing the frequency cutoff, and inverse
PREPARATION. We performed experiments on cats that we initiallfFourier transforming the result (Press et al. 1992; F. Gabbiani, per-
anesthetized with 3.5% halothane and then maintained after surgeopal communication). Each stimulus was derived from a unique seed
on 0.5-1.5% halothane in a 70/30 mixture ofQMO,. Cats were to the pseudorandom number generator; no specific random sequence
paralyzed with gallamine triethiodide (5.0 mg) and were artificiallyvas ever repeated. Each contrast value was presented for the duration
respired through a tracheal cannula. Paralysis was maintained vadftone 4.96-ms “frame” before jumping to the next contrast value. A
gallamine triethiodide (3.6 mg/h) and tubocurarine (0.7 mg/h). Wangle “trial” refers to continuing such contrast modulation with fixed
treated wound margins and pressure points with a topical anesthedtatistics for a total trial time of 4 (or occasionally 20) minutes. One
Cats were placed in a stereotaxic apparatus for recordings. Redtathin trial generally constitutes enough data for a comparison of burst
temperature, heart rate, and end-tidal G&ere continuously moni- to tonic spikes, as described Mumerical methods
tored and maintained within normal physiological limits. Phase reversal of the grating was not permitted, so that the intensity
Access to the LGN was obtained through a craniotomy (5.0 mim the receptive-field center was always less than or equal to back-
diam) centered at A 5.0, L 9.0. We recorded from single neurons gnound fororr cells and always greater than or equal to background
the LGN A-laminae with a tungsten-in-glass recording electrode [infier on cells. Therefore higher “contrast” always corresponds to a more
pedances 8—-14 M (Godwin 1993)]. Neuronal activity was amplified, excitatory stimulus for the cell. When displaying the Gaussian distri-
displayed on an oscilloscope, voltage window discriminated, atadtion, all negative values were displayed as zero contrast, and values
stored on computer as spike arrival times with a resolution of 0.1 nggeater than one were displayed as a contrast of one. We report only
A pair of insulated tungsten electrodes (500 exposed tips) were results obtained using stimuli whose mean contgasfas at least 2r
lowered to rest on either side of the optic chiasm, through a secaalobve zero and @ below one. Therefore, at most, 2% of the stimulus
craniotomy centered at A 13.0, L 0.0. To measure conduction velo@lues were adjusted in this way, which resulted in a reduction in the
ity, we orthodromically activated LGN neurons through these eleentropy of the stimulus of at worst 2%, compared with the originally
trodes using 0.1-ms, 100- to 5Q0A square-wave pulses at a fre-generated Gaussian distribution.
quency of 1 Hz. In different trials, the standard deviation)(of the contrast was
After dilating the pupils with atropine sulfate, we protected thearied from 0.001 to 0.2, the temporal cutoff (CF) was varied from 1
corneas with contact lenses selected to provide a focused image totth82 Hz, and the mean contragt)(was varied between 0.2 and 0.5.
retina of stimuli presented on a tangent screen positioned 57.0 cnPireliminary experiments revealed that the amplitude of the contrast
front of the nodal points of the eyes. We used a fiber optic light souro®dulations §) had the strongest effects on firing rate and coding
to plot retinal landmarks (including the optic disk, area centralis, aqmtoperties, and therefore was explored in detail fE®LT9. In most
major retinal blood vessels) on the tangent screen by tapetal reflectisperimentsu was held constant at the estimated midpoint of the

(Pettigrew et al. 1979). cell’s contrast sensitivity range (typically 0.3—-0.4), and CF was be-
In a subset of experiments, we recorded and delivered drugs withneeen 8 and 32 Hz.
tungsten-in-glass recording electrode (impedances 8—-14 &6m- Because the stimulus could theoretically assuffedistinct values

bined with a multibarreled drug pipette (Godwin 1993). We appliednd was updated every 4.96 ms, the maximum possible stimulus
trans(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD, 3@éntropy rate was 2.4 10° bits/s. The actual stimulus entropy was
mM), a selective agonist to metabotropic glutamate receptors, dobstantially less than this, mainly because of the temporal correla-
depolarize the membrane potential of LGN cells and to switch thiens imposed by the cutoff frequency (CF). An 8-Hz cutoff would
response state from burst to tonic (Godwin et al. 1996b). The amouetiuce the entropy te-96 bits/s, for example. The distribution of

of ACPD applied is expected to depolarize the cell b0 mV contrast values had a less marked effect on the entropy. For example,
(McCormick and von Krosigk 1992). Conventional iontophoretian approximate Gaussian with= 0.5 ando = 0.1 had an effective
controls were performed to preclude nonspecific effects of pH aedtropy only 10% lower than that of a uniform distribution of values.
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Numerical methods

All calculations were carried out in Matlab 5.0 (MathWorks).

BURST IDENTIFICATION. We classified burst responses from extra-
cellularly recorded spike arrival times using previously published
criteria (Godwin et al. 1996b; Guido et al. 1995; Lu et al. 1992). Our
operational definition of a “burst” is a group of action potentials each
of which is <4 ms apart, with the first spike in a burst preceded by a
period of >100 ms devoid of spiking activity. Previous intracellular
recordings in this preparation (Lu et al. 1992) demonstrated that this
ISI pattern is a stringent criterion for identifying the bursts that are
associated with the low-threshold calcium conductance that results
from |. As additional evidence that these burst events in our data
reflectedl, activity, in a subset of experiments we also showed that
these events were sensitive to application of the metabotropic agonist
ACPD (data not shown), which slightly depolarizes LGN relay cells
and thereby inactivates (Godwin et al. 1996b).

Burst identification was based on the spike times as recorded, at
0.1-ms resolution. For subsequent calculations of coding capacity and
stimulus reconstruction, the times of spikes were binned at the same
resolution as the stimulus update rate, 4.96 ms. The value in each time
bin was equal to the number of spikes that occurred in that interval.
o 05 1'0 15 2'0 Thus when all the spikes of a burst were analyzed, information about

’ Time (s) ) ’ the number of spikes in each burst was preserved. When we analyzed
the bursts as unitary events (Bair et al. 1994), we discarded informa-
tion about the number of spikes in each burst and replaced each burst
with a single event defined to occur at the time of the first action

vy)

Contrast
o

D CF potential of the burst.
0.1 ESTIMATION OF SPIKE TRAIN CODING CAPACITY. Given an ob-
20.1 served set of neural responses to a specific set of stimuli, the infor-
o | mation the responses could convey about the stimuli is limited by the
0.05; total variability of the response, i.e., the diversity of different spike
; trains the cell uses across the entire range of stimuli. In our analysis
-00'0 05 10 Ob 8 16 24 we represented neural responses, or components of these responses
’ Contrast ' Frequency (Hz) (tonic or burst), as “spike trains,” in which the value in each time bin

reflects the number of action potentials in that interval. The variability

Fic. 1. Schematic diagram of the spatial structure of the stimulushe of these spike trains may be quantified in an information theoretical
entire oscilloscope screen is represented by the gray rectangle (scale bardfhework by an entropy rate, which has units of bits per second. The
visual angle). This stimulus is for aon cell with a receptive field center entropy rate of a spike train is analogous to the “baud rate” of a
diameter of 0.5° (black circle), located at an eccentricity of 3.3° relative to ”?ﬁ)mputer modem: a spike train from an ensemble with a higher

area centralis (X). The spatial period of the grating was set to twice t : : : :
diameter of the receptive field center. An excitatory phase of the grating W’é?ltropy rate has greater capacity for carrying encoded information,

centered on the center of the cell's receptive field, with the opposite pha%ihoth this Cap‘?uty may or ma},/ not be fully utilized. We call thls.
positioned within the surround. The aperture was centered on the recepfJiroOPY rate the “coding capacity” of the response. Note that this is
field center and its diameter adjusted to 1.5 periods, to encompass the ingiherent from the “channel capacity” of the neuron (Shannon and
itory flank. The background was set to the mean luminarige;(+ L,)/2. Weaver 1963), which is the maximum coding capacity the cell could
The spatial structure was optimized for each cell and then held constant fortedive toany set of stimuli, usingany code, based only on its physical
trials on that cell.B: contrast of the static grating as a function of time. Wdimitations.

express contrast of the grating according to the conventign,(~ L)/ The maximal entropy rate for any spike train with firing ratén

(Lmax + Lmin)- Contrast was updated to a new randomly chosen value eveny) pinned at resolutiort (in seconds) can be approximated as
4.96 ms. Stimulus time course is shown for the2s of a4-min trial. At the

indicated time points, the appearance of the stimulus in the vicinity of the e

receptive field is shown abov€. The actual distribution of contrast values Hpax = I log, | —| bits/s W

over the entire 4-min trial is shown as the probabilC) for each contrast ( At)

range ( = 49,152 frames, bins of width 5% contrast contaitiO0 discrete . .

contrast values each). For this stimulus, the random contrast values wéferee s the base of the natural logarithm (MacKay and McCulloch
chosen from a Gaussian distribution with a mepi ¢f 0.4 and a standard 1952). This approximation is accurate in the limit thatt << 1. For
deviation ¢) of 0.15. The closed circle indicates the number of negative valuéise bin size we usedA{ = 4.96 ms) and the range of firing rates
in the originally generated distribution, which were displayed as zero contragbserved, this function is increasing with the ratéH,, ., decreases
(i.e., the illumination within the aperture was uniform and equal to thgjith r only at firing rates exceeding= 200 Hz).

background illumination)D: actual distribution of temporal frequencies is  The observed interval distribution of our spike trains can be used to

shown by the power spectral density (PSD) of the stimulus, in units ofHz 5063 more accurate upper limit on their entropy. If the statistics of
In this trial the random contrast values were chosen from a temporal frequelﬁ) ’

distribution that was flat (white spectrum) up to a cutoff frequency (CF) &ﬁé s_pike "?“” are comp_let(_aly gharact_erized by its mean firing_rrate
16 Hz. and interspike interval distributioR(7) (in other words, if the spike

train is a renewal process), then the entropy rate of the spike train is
The resulting stimulus entropy rates typically exceeded the codifyen by
capacity of the cells (selumerical methods such that the stimuli _
challenged the cells’ capacity for information. Heapaciy= —T E P(7) log, P(7) bits/s @
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where the sum is taken over all observed interspike intervalsy &nd A
the number of intervals per second (i.e., the firing rate) (Rieke et al.
1993; Warland et al. 1997; Zador 1998). Note that in the limit of a Convolve
perfectly regular spike trainP(r) = 1 for one interspike interval
lengthT andP(7) = 0 for all the other interval lengths, resulting in a Reconsiruct \ o/
coding capacity of zero. ~ 7

If there are statistical dependencies among interspike intervals (i.e.,
the spike train is not a renewal process), this could only reduce the Noise .
entropy further. For example, if the probability of observing a given |
interspike interval depends on the length of the previous interval, the f T T T 1
true entropy would be lower thafl.,,..,, We did not generally have 0 0.25 0.5 0.75 1
sufficient data to measure statistical dependencies between intervals. Time (s)
Therefore we usel,,.ciyaS an upper bound on the true entropy rate
of the binned spike train. In general the entropy of a spike train also
depends on the time bin size, a relationship not explored here. weB

used the same bin size throughout (4.96 ms) for Btk .., and 0.5 B 0.1
o . . . 2 0.
estimating transmitted information. 8 £
c
ESTIMATION OF TRANSMITTED INFORMATION. The information o 8 0
transmitted by an LGN response about the stimulus contris},s 0 | v o4
was estimated by computing the optimal linear reconstruction of the 0 4 812 0 4 812 " 05 025 0
stimulus from the spike train (reviewed in detail in Rieke et al. 1997). Hz Hz Time (s)

Thus our perspective is to ask how well a hypothetical recipient of theg,s 2 Schematic of linear reconstruction metha¥. top plot (“Con-
neural response would be able to infer the stimulus. The stimuly§ive”) shows an example spike train, with a linear filter superimposed on the
property we reconstructed was its contrast, but we note that recepike train at the time of each spike. This filter was chosen to be optimal in a
structing any linear transform of the contrast by this method woufgnse explained in text. Tt&nd plot(“Reconstruct’) shows the sum of these
have produced identical results. For example, the temporal derivatierimposed filters (thick line), which is the reconstruction (the estimated
of the contrast is linearly related to the contrast; in our stimulus, tigeviation of the stimulus from the mean contrast). Superimposed (thin line) is

luminance at the receptive field center is also linearly related g(?e‘?cma' stimulus that elicited the spike train, expresse@d(@s- ., where
contrast t) is the grating contrast at timteand . is the mean contrast over the trial.

= 2 illustrat hicallv thi thod of tructi The 3rd plot (“Noise”) shows the reconstruction error, i.e., the difference
igure < tllustrates graphically this method Ot reconstruclion angy,yeen these 2 curves (stimulusreconstruction), to be compared with the

information estimation, using an example spike train from our datgerg |ine, Thebottom two plotsshow contrast on the same scale, with zero
Briefly, the spike train is convolved with a linear filter to obtain andicated by the horizontal lin®. The power spectral density (PSD) is plotted
reconstruction (Fig. &). The filter is chosen to be “optimal” in the for the stimulus (thin line) and noise (thick line), in units of Hz Power
sense of minimizing the mean squared error between this reconstipectra were computed by averaging the individual spectral®0 nonover-
tion and the original stimulus (S&®TIMAL LINEAR FILTER). The recon- lapping short segments tapered by a Hanning windowthe ratio of these
struction is subtracted from the stimulus to obtain the “noise.” Figu@ectra P(s)/P(n) 1 defines the signal-to-noise ratio (SNR), where logZ (1
2B shows the power spectral densities of the stimulus and of the noi %R) is the transmitted information in bits (see tex)).the optimal linear
P(s) andP(n), respectively. Our stimulus update rate was 4.96 ms, I} r plotted as a function of time, where= 0 is the time of an action

ofential. The horizontal line indicates zero.
201.6 frames per second. Thus we measure the power spectrum up {

1.00'8 Hz (the ma.Xim.um frequen_cy available for reconstruction fﬁ time, the optimal filter would be simply the average stimulus
given by the Nyquist limit= sampling rate/2). The frequency range d', ik . lled the * lation”
from 0 to 100.8 Hz was divided into 128 intervals, resulting\in= preceding a spixe (sometimes called the reverse correlation” or
0.79 Hz ' “spike-triggered average”). However, because spikes are often close
The signal-to-noise ratio (SNR) as a function of temporal frequen&'ﬂough together that filters overlap in time in the reconstruction, a
is defined as SNR= P(s)P(n) — 1 (Fig. 2C). For random, Gaussian correction is needed for the autocorrelation of the spike train. For a
stimuli, the information transmitted by the spike train about a tempép'ke train completely unrelated to the stimulus, this filter is flat and
ral frequencyf in the stimulus has been shown to be at leasf [agr ~ ©dual to the mean of the stimulus. o
SNR(f)] Af bits/s (Rieke et al. 1997). Thus an estimate of the total For convenience of calculation, we computed an acausal filter, i.e.,
information transmitted by the spike train about the stimulus is givéifl® that extends after as well as before the spike. This produced

(0]

by results numerically equivalent to those computed causally, as per
Warland et al. (1997). Although the acausal filter is numerically

oF defined at times after the spike, in practice spikes did not predict

Hyuno E log, [1 + SNR(f )] Af bits/s 0 future stimuli (except to the extent that temporal correlations in the

stimulus allowed the future stimulus to be predicted from the past
f=0 stimulus). We computed filters that extended to 635 ms (£2896

Observe that when SNR 0, the information rate is log(L + 0) = ms time bins) before the spike. This filter length was chosen as the

0 bits/s. We did not include frequencies above CF when computiﬁgmESt even power of two {Pbins that amply exceeded the time

H.ansbecause the power spectrum of the stimulus was essentially 8 ded for the filter amplitude to fall to zero for all cells.

oy ‘Consirucon. and erors would be caused by taking raios iy eid Cerng of our data e, splt e dta rom cach i,
extremely small numbers. ’ :

ThusH,,,.swas calculated from reconstructions of stimuli not used to
OPTIMAL LINEAR FILTER. The optimal filter (Fig. D), expressed as solve the filters. Therefore, it was possible to obtain negative values
a function of frequency, is uniquely given byf) = Sas(f)/Saa(f), for H,.ns if the amount of data were inadequate such that the filters
where 3B(f) is the Fourier transform of the cross-correlation befit noise in the data.

tween the spike trainaj and the stimulusg), and Sw(f) is the This method provides strict lower bound on the transmitted infor-
Fourier transform of the autocorrelation of the spike train (Wienenation (Bialek et al. 1991; Rieke et al. 1997; Warland et al. 1997). In
1949). If spikes were always farther apart than the extent of the filtether words, this method entitles us to draw the strong conclusion that
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the information content must ke leastwhat we measured, becausdyzed in some very long trials, one of which is shown in Fig.
whenever we were forced to make assumptions in our analysis, 88 For each action potential, a single point is plotted based on
always chose assumptions that, if incorrect, could only cause usyiey preceding ISI (abscissa) versus the subsequent ISI (ordi-
underestimate information. _ o _ nate). The observed pattern is not that expected from a highly
ESTIMATION OF CODING EFFICIENCY. The coding efficiency is the reqylar spike train, for which the points would fall on the
fraction of coding capacity used to transmit visual information. Waia onal. A conspicuous firing pattern observed in our data
estimate the efficiency by .g : . : . . P
evident as a clear cluster in this ISI plot, is the event identified
E = Htrane{Hcapacily (4) by OUI’ bLll’St Cl’lterlon
; The shaded area at thttom rightof Fig. 3B defines the
BecauseHcapaciy IS an upper bound (true entropy rat Heapaciy. criterion for the first spike of a bt?rst' a 9r]ecedin interval of
and H,... is a lower bound (true transmitted information rate p _ -ap g
Hyang it follows thatE is a lower bound: the fraction of spike train=100 ms, and a subsequent intervako4 ms. All subsequent
variability used to encode visual information mustdtéeast E(Rieke  spikes in bursts must by definition lie within the shaded area on
et al. 1993, 1997; Warland et al. 1997). the left (preceding intervak4 ms). Those falling within the
Burst responses have two properties that could affect the accurggyy at thebottom leftare spikes within a burst (because the
of this estimate. First, the reproducible ISI pattern within burstﬁext interval is<4 ms, these are not the last spikes of bursts).

implies thatH ., ,acit,iS More of an overestimate of the entropy rate fo . . .
bursts than for tonic spikes. We controlled for this possibility by als{ghe cluster near the closed arrow represents the final spikes in

analyzing the bursts as unitary events (Bair et al. 1994). SecoRylI'sts that were followed by a short interval; the cluster near
bursts are highly nonlinear responses (Guido et al. 1995). Althoutite open arrow represents the last spikes in bursts that were
some nonlinear encoding mechanisms are linearly decodable, ifadowed by a long interval. Some but not all of the latter spikes
possible that the visual information encoded by bursts is preferentiaflye followed by another burst. In this trial, 73% of the spikes
underestimated by the linear reconstruction method, compared Wifre in bursts, with an average of 2.9 spikes per burst. In other

the information encoded by the more linear tonic responses. In by : -
cases, if there is any error, it is likely to be in the direction o rds.’ .abOUt half of the ;ndgpetnient fmn.lg events were bursts
underestimating the coding efficiency of bursts relative to tonic r€PNtaiNing an average of about three spikes.

sponses. Thus our analysis is conservative with respect to the nulll O further explore the degree to which bursts were stereo-

hypothesis that bursts are not coding stimulus information. typed events, we measured the variability of the number of
spikes in a burst within individual trials. Figur&€&hows, for
RESULTS the data shown in Fig.B the distribution of the number of

] spikes in the bursts. All bursts by definition have at least two
We recorded a total of 35 cells from 6 cats in response &jkes, but the number of spikes per burst in this single trial
random temporal visual stimuli. We concentrate below on thgyjed from two to as many as five. This variability in burst
quantitative analysis of data from 25 cells from 4 cats, fQlize can be quantified by the coefficient of variation (CV),
which we used stimuli with the properties describedinHoos  yeineq as the standard deviation divided by the mean. The CV
('.:'% 1). This pogulanl?n $0n3|sted of mm)x(m—celrllter Xdceflls, of number of spikes in a burst in this trial was 0.26. This is less
glng-cte?lT;e?irells ?h:’re?ﬁjé?rfiﬁseﬁ; shc():\(/evesd, c?lSalit;[K/re ariability than would be found if the number of spikes had
Simiar trenc, but cou ot be anlyzed by the same quafEe" Ce1eTined by » Passon process o s ed duraton
tative methods because of differences in the stimulus desi 98; Papoulis 1984). Similar results were found for all cells in
e this study: the mean number of spikes per burst wast3104
Bursts are distinctive firing events (X cells) or 2.7+ 0.5 (Y cells), and the CV of burst size within

A representative short segment of the voltage trace from #lividual trials was 0.25= 0.11 (X cells) or 0.23+ 0.05 (Y
LGN relay cell in response to the randomly fluctuating visugells).
stimulus (Fig. 1) is shown in Fig./8 The events identified as The timing of spikes within a burst was also stereotyped.
bursts by our criteria are marked with stars. In all the cells wehe ISIs within a burst increased in length systematically. In
studied, we found that the responses contained bursts interminglegltrial shown, the mean lengths for the first three intervals in
with tonic spikes, as has been described previously (Guido etaburst were 2.5, 3.0, and 3.4 ms, respectively; the mean length
1992, 1995; Lu et al. 1992; Mukherjee and Kaplan 1995). W the first postburst interval was much longer (360.3 ms; Fig.
define the “burst fraction” as the fraction of action potentials in 3D). The sharp shoulder at 4 ms in the distribution of lengths
trial that were found in bursts according to our ISI criterion (sefer the later intervals in the bursts implies that some spikes that
METHODS). The X cells we recorded had a lower burst fractiobelong to a burst have not been classified as such due to the
(0.2 = 0.2, meant+ SD) than the Y cells (0.6- 0.3). stringent 4-ms cutoff we impose on the ISI. The width of the

Under our recording conditions, LGN cells did not exhibitlistributions for within-burst intervals (SD is 0.4 for each of
sustained periods of burst (or tonic) mode, in the sense thk 1st 3 intervals) indicates that the variability in the timing of
extended stretches of time during which exclusively burst (spikes within burst was small. This variability was similar for
tonic) activity occurred. Nor was the occurrence of burstl X and Y cells studied (not shown).
oscillatory. We did not find any consistent relationship of the Taken together, the results presented in Fig. 3 confirm that in
burst fraction with the stimulus parameters we varied. Howhe responses to this novel dynamic stimulus, the burst criteria
ever, greater depth of anesthesia appeared to increase the ldestify a frequent and stereotyped class of firing events having
fraction (data not shown) (see also Guido and Weyand 199pjoperties consistent with the bursts associated with the low-

The distribution of successive pairs of ISIs could be an#ireshold calcium conductance.
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FIG. 3. Bursts are distinctive firing event: a short voltage trace from amn-center Y cell is shown above the contrast of the
visual stimulus. Both traces are shown at the 0.1-ms resolution of data acquisition. Stars (*) mark the events that are classified as
“bursts” by our interspike interval criterion. The cluster of spikes marked by the arrow is not considered a burst because of the
absence of a 100-ms silence preceding the spikes. The low-amplitude high-frequency noise in these unfiltered voltage traces does
not have a peak near 60 Hg: for each spike a point is plotted at the previous vs. subsequent interspike intervals, in units of ms,
plotted on a log-log scale. Data are from 1 long2Q min) trial from a representativen-center Y cell with stimulus parameters
n = 04,0 = 0.2, CF= 8.0. Features indicated by shaded areas, boxes, and arrows are described in tbepmtiability
distribution of the number of spikes in a burst, from the same data plotte).ilBy definition, all bursts have at least 2 spikes.
D: probability distribution of interspike interval lengths for each interval within bursts. Data are from the same single trial as in
B andC. The distribution for the 1st interval within bursts (thin black line, “1”) is based on all bursts contairngpikes § =
1,645). The 2nd interval (medium weight line, “2") is based on all bursts mi#spikes ( = 1,143). The 3rd interval (thick line,
“3") is based on all bursts witk=4 spikes (i = 382). Bursts with=5 spikes were raren(= 18), so subsequent intervals were not
analyzed. Part of the distribution of postburst intervals (dashed line, “post”) is also shown; the remaining 69% of postburst intervals
were =8 ms (off the scale). Probabilities sum to one within each distribution. The binwidth of all histograms is 0.2 ms. By
definition, within-burst intervals are4 ms and postburst intervals arel ms. The absence of intervaisl.6 ms is due to the cell’'s

refractory period.

Within-trial comparison of bursts to tonic spikes train, including Tonic, Burst, or Burst Event response compo-

We show the response of an LGN relay cell attibyeof Fig. nents.

4A. The cell was responsive to the stimulus, in that its firinP i .
rate varied with time as more and less excitatory stimuldigformation transmission
sequences occurred in the random pattern. For example, Withhe stimulus reconstruction we obtained from each compo-
the use of a sliding 100-ms window to compute a time-varyingant gpike train (as describediatHons?) is shown in Fig. A.
firing rate, the LGN response |n0th|s trial wasl0 Hz 85% of pased on these reconstructions, we estimated the amount of
the time, but exceeded 40 Hz 2% of the time, and reached 3@\,5| information each spike train contained, at each temporal
Hz at its peak. _ o __frequency present in the stimulus. The results for this trial are
The first step of our analysis was to identify the b_ursts_m th&,own in Fig. €. The similarity in the shapes of these curves
LGN response and represent the burst and tonic spikes @sey indicates that all the temporal frequencies present in this
separate “spike trains” for analysis (also shown in Fig).4 stimylus were encoded equally well by either tonic or burst
The “Tonic cha_mnel contained all s.plke.s not identified as parltésponses. When stimuli contained higher frequencies, we
of bursts. We either used all the spikes in each burst (“Bursts”),
or represer!ted each burst by_a single event (“Burst Events”), aBFigures 2 and 4-6 are related to one another hierarchically. In Fig. 2
described inmeTHops. The difference is that Burst Events(verrops) we used asingle spike trairto illustrate the method by which we
lacked information about theumberof spikes in the event. measure the transmission of visual information. In Fig. 4 we present the

Neither representation was sensitive to the differences betwdégiqiled results of such an analysis, for all the spike trains obtained from a
ingle trial. We then demonstrate how the spike trains and their coding

bursts II’) thalmlng of splke_s, beca,use these differences Weg operties vary across trials forsingle cellwhen the stimulus amplitude is
small (Fig. ) compared with our time bins (4.96 ms). We USgaried in Fig. 5. Finally, we show the distribution of the key results over the
the term spike train generically to refer to any kind of everhtire population of cellsn our study (Fig. 6).
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LGN Al L L1 Il L - ,
Bursts H | | ‘ ] FIG. 4. Within-trial comparison of bursts
to tonic spikes.A: response of a different
BurstEvents ‘ J J on-center Y cell to a stimulus witly = 0.4,
Tonic 1] \ o = 0.2, CF= 8.0 Hz. A short segment of a
20-min trial is shown. The spike trains ana-
| I I ] lyzed are shown atop: the unprocessed
0 0.5 1 1.5 2 spike train (“LGN All") in blue, the spike
Time (s) train components (“Burst” in red and “Tonic”
in green) after sorting by the interspike in-
terval criteria, and the 1st spike of each iden-
tified burst (“Burst Events” in purple). For
each spike train, the optimal linear recon-
structions (thick lines) are compared with the
original visual stimulus (thin black line) on
the same time scale in the curves beldw.
serves as the color key f@—H. B the op-
timal filter was solved separately for each
spike train. The optimal filters as a function
of time h(t) have amplitudes in units of stim-
ulus contrastlnset same filters scaled to a
peak of 1.C: visual information encoded by
the reconstructions at each temporal fre-
quency, expressed as the information den-
sity: log, [1 + SNR(f)], in units of Bits s *
Hz™ 1. The total information transmitted
(Hyand is equal to the area under this curve
in the interval 0< f < CF. Inset same
curves scaled to their respective peaks.
time averaged firing rate of spike trains in
8 units of spikes per second or Hz, where
“spike” refers to an action potential for LGN
(L), Bursts (B), and Tonic spikes (T), or an
inferred |, calcium spike for Burst Events
(V). Average is over the entire triaE: time
averaged entropy rate or coding capacity
(Hcapaciry) Of the spike trains in bits per sec-
ond, based on the interspike interval distri-
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Bursts =

BurstEvents =
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O
o
@
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o

Contrast
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o
»

o
)
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. : bution (not shown)F: average rate of trans-
Time(s) Frequency (Hz) mission of visual informationH,,,.) by the
reconstructions in bits per second. These val-
ues reflect the area under the curve€irG:
D 10 E F s G 15 H o2 average amount of visual information en-
40 coded per spike (bits per spike), the ratio of
o 4 & ..0.15 values inF to those inD. H: average coding
o §30 23 z 1 :c)’ efficiency €), the ratio of values shown iR
25 T 20 % 5 % e 0.1 to those inE.
i & 05 i
10 1 0.05
0 0 0 0
LBVT LBVT LBVT LBVT LBVT

sometimes observed qualitative differences in the shapescafried more information per action potential (0.9 bits/spike)
these curves. However, longer recordings would have betian the bursts (0.4 bits/spike), but bursts regarded as unitary
necessary to determine the rolloff frequency from these higlvents encoded more information per event (1.4 bits/event).
CF stimuli, because the estimation of the SNR at each fre-The coding capacity of a spike train depends on both the
guency is noisier for broader band stimuli. number of spikes and the regularity of the spike train. We
The overall transmission of visual information by each spikestimated the information coding capacity of each of the spike
train (H,ans Fig. 4F) is given by the area under each curve itrains of Fig. 4\, based on the entropy of their ISI histograms
Fig. 4C. The LGN response as a whole transmitted 3.4 bits/s @fot shown). This estimaté].,p,cir,(Fig- 4E), is the maximum
visual information about this stimulus. The tonic responseformation coding capacity for a spike train (binned at this
transmitted 2.6 bits/s, and the bursts transmitted 2.4 bits/s,resolution) that is consistent with the statistical regularity we
2.5 bits/s when they were treated as unitary events. To take iotzserved (seeetHops). Although the burst response had many
account differences in the number of events of each type (Figore spikes than the tonic response in this trial (FIg),4he
4D), we expressed the information rate in units of bits per spiltenic spikes were more variable, such that both channels had
or event (Fig. &). We found that in this trial, the tonic spikesabout the same coding capacity (Fid)4
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The coding efficiency is defined as the fraction of the coding
capacity used to carry information about this stimulus. On the
basis of the maximum capacity (set bBy,pacir) @and the min-
imum visual information (set b¥,..d, we could determine
the minimum efficiencyE (Fig. 4H). In this trial, tonic spikes
and spikes in bursts had about the same coding efficiency (14
and 13%, respectively), whereas bursts regarded as events were
somewhat more efficient (19%).

Interpreting the optimal filters

To obtain the linear reconstructions discussed above, we
computed the optimal linear filter for each spike type, based on
the data from this trial (SEESTIMATION OF TRANSMITTED INFOR
MATION in METHODS). These optimal filters are shown in Figd 4
The filters for tonic and burst responses have similar shapes, as
revealed by scaling them all to the same peagd). The small
amplitude oscillations in the filter reflect the temporal correla-
tions in the visual stimulus, and depend on the temporal cutoff
frequency CF (not shown). The large positive lobe between
zero and—100 ms reflects that thisn-center Y cell fired
preferentially when the stimulus in the previous 100 ms was
brighter than average in the receptive field center (and thus,
darker than average in the immediate surround). The negative
lobe between—-100 and—200 ms indicates that the cell was ]
also more likely to fire if this interval was preceded by a 0 0.05 o
stimulus that was dark in the receptive field center (and thus,
bright in the surround). In other words, the cell integrated over
~200 ms, and responded bestitareasesn luminance in the C
center ordecreasesn luminance in the surround.

The similarity of the filter shapes can be measured by the
correlation coefficient between them, which can range from
zero (no correlation) te-1 (perfect correlation) or-1 (perfect
anticorrelation). This measure is insensitive to linear scaling of
the filters. In the example of FigB4the burst and tonic filters
have a correlation coefficient of 0.92. We measured the corre-
lation coefficient between the burst and tonic filter, for every
trial in which both burst and tonic responses had at least 50
spikes encoding at least 0.1 bits per spike. We found that burst 0 0.05 04
and tonic filter shapes were always similar (correlation coeffi- stimulus ©
cient 0.83% 0.11,n = 74 trials). We conclude that the two

types of response always encodgahlitatively similar mes- FiIc. 5. Relative coding properties do not depend on absolute coding.
sages about the visual stimulus relationship between firing rate and the coding capacity of the spike trains, for

Th | VSi h in Fig. 4 f d fBursts (closed circles), Tonic spikes (triangles), and Burst Events (open circles,
e complete analysis shown in Fig. 4 was performe Wseb. The stimulus parameter was varied from 0.01 to 0.2 across trials,

every individual trial, to compare the coding properties folding constant CF= 16 andw = 0.3. Each symbol represents a result
bursts to tonic spikes within trials. The key results we obtainédm a single trial. Al trials shown were recorded from a singie-center Y
from each trial were the information rates (expressed in bits p*@fl Firing rate is defined as action potentials per second for Tonic or Bursts,

. . - . s bursts per second for Burst Everts, ..,y iS defined inEqg. 2. The
spike or per event), and the coding efficiencies (expressed q‘ﬁa%mum possible entropy given the A site . (seeEq. 1), is

fraction of coding capacity) of each response type. shown as a function of firing rate (solid lin®: visual information transmitted
(Hyandfiring rate) in bits/spike. Data and symbols ashinAt each value ofr,
Effect of ike trai d vi | codi the mean result is shown by the symbol, with the range of values indicated by
€Ct Ofo on spike trains and visual coding the bars. Ther values used were as follows: 0.01+ 2 trials), 0.0251 = 4),
We varied the stimulus effectiveness by varying the gf?sset(n for 3i)s’igil(i)t;.5Seas‘tl-)éc?ggrgdlf(i)trg arg)éggvsnsggﬁr(:léssggecii?wlgté?f?cisgggly
standard deviation of the contrast modulation. Figure 5 Sho\Es= H,,,.{Hcapaci) @s a function of, data and symbols as .
results from a single cell as the amplitude of the contrast
modulation was increased from 0.01 to 0.20 in different trials.
This covers the range from stimuli that are well below respon§ét, possibly due to adaptation to the amplitude of fluctuations
threshold to ones that are well above it. in spatial contrast (Smirnakis et al. 1997b).
As the contrast modulations were made stronger, firing ratesThe spike train coding capacityH{,pacir) increased with
increased on average over the entire trial (not shown). Tfigng rate, but according to a different relationship for bursts
increase in firing rate witlor was variable and relatively mod-and tonic spikes, as shown in FigAS0ver the range of firing

Efficiency
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FIG. 6.  Summary of within-trial comparisons of burst and tonic spikes. For this figure and for population statistics, we restricted
analysis to trials in whiclw + 20 = 0.77, to ensure that stimuli were well within the linear range of the contrast response of the
monitor, and also excluded trials that did not have at least 150 events of each type to be analyzed. Each symbol represents a single
trial of at least 4 min duration. Results are shown from 59 individual trials recorded from 15 cells. On average, results from 4
different stimuli are shown per cell. For statistics, we treat each cell as an independent observation, by determining the number of
stimuli (trials) for which bursts were better than tonic spikes. We then used a binomial test of significance overioéisnation
rate, expressed in bits per spike,(,s in bits/s divided by firing rate in spikes/s). Each open symbol compares the visual
information transmitted by all the tonic action potentials (horizontal axis) to the information transmitted by all the action potentials
in bursts (vertical axis) within a single trial. The closed symbols show the results for the same trials when bursts are treated as single
events in the analysis. The information rate is then expressed in bits per event, where a single event is defined as either a tonic action
potential or an entire burst. Circles are trials recorded from X cells, squares are trials recorded from Y cells. The diagonal
corresponds to equality between the tonic and burst respdBisesding efficiency E), the fraction of the spike train entropy that
carries visual information. Data and key are afdirDashed lines indicate 100% coding efficiency.

rates observed, the coding capac&géa(pacit) of the tonic spike (0.45 = 0.14), application of ACPD reduced the burst
trains was close to the maximum possible, given our choskgaction by at least half (to 0.03+ 0.03) in the cell's
temporal resolution of 4.96 ms. The coding capacity of burstssponse to a stimulus with the same parameters. Despite the
was much lower than this maximum at any given firing ratghange in burst fraction, there was no statistically significant
This reflects the greater regularity in burst firing patternghange in the average firing rate, coding capacity, informa-
When this regularity is taken into account, by treating bursts gn rate, or coding efficiency (not shown).

unitary events, bursts then had close to maximal entropy. Thes@\|though burst and tonic modes were essentially similar,
results emphasize the importance of measuring the entropys@{;eral small differences were statistically significant in the
the spike trains, rather than using firing rate as an indir&gtihin_trial comparisons. In most trials, the amount of visual
measure of coding capacity. information encoded per burst was greater than per tonic

The rate of transmission of visual informatioHl, (9 in- . " ;
creased with the amplitude of stimulus modulation. There nglke (see closed symbols in FigA Information per burst

. - - . . was on average 2.7 times greater than per tonic spgtke
a baseline firing rate In the _absence. of st|_mulat|on, appro>8-001 by a bin%mial test sege legend) ngever torﬁﬁ: Sp(ikes
mated byo = 0.01, for which no visual information was " y ' y '

encoded. Therefore, asand thereforeH,,. increased, more qonsstently encoded more information than bursts per ac-
information was encoded per spike (Fid)5and the coding ton potential (1.8-fold more on avarag, = 0.006, see
efficiency €) increased (Fig. 8). In other words, the timing of OP€n symbols in Fig. &). The coding efficiency K) was
spikes became increasingly determined by the stimulus. ~ higher for bursts than for tonic spikes (FigB); regardless
We performed an equivalent analysis of each cell in o@f whether all the spikes in the burst are considered (1.5-
study. The amplitude of stimulus modulation determined ttield, P = 0.011) or only the burst as an event (2.8-fdR<
absolutecoding properties of both burst and tonic response®,001).
but we did not find any evidence that this affected theliative The Y cells in our population encoded more information
coding properties. Therefore we include trials from all stimukibout this visual stimulus than the X cells (i.e., circles, repre-

in our population summary below. senting X cells, are below and to the left of squares, represent-
ing Y cells, in Fig. 6,A andB). However, the relative coding
Population results properties of bursts and tonic spikes were the same in both

populations. The coding efficiencyE (= HyandHcapaciy) Of

Whether measured in bits per event or in fractional codirmursts was higher when bursts were treated as unitary events
efficiency, on a trial-by-trial basis the information encodetlosed symbols are above open symbols in FiB). 8Ne
by the two response modes was similar. This is illustrated attribute this to two distinct reasons: the entropy rétg,{.cir)
Fig. 6 by the fact that all the points fall roughly along thevas lower, and the visual informatiorl(,,J was also higher
diagonal. The approximate equivalence of burst and tonicot shown). Thus the additional variability contained within
spikes for coding this stimulus was supported by fact thatrsts, considered at the temporal resolution of 4.96 ms, car-
ACPD reduced bursting (seeTHops), yet had little effect ried more noise than linearly decodable visual information (but
on visual coding. For 13 trials with a high burst fractiorsee McCormick and Feeser 1990).
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DISCUSSION 6B). These findings are consistent with prior indications that
LGN bursts have selective advantages in the detection of
periodic visual stimuli with comparable temporal frequencies
We have shown that burst responses of LGN relay cell§uido et al. 1995).
carry information about the time-varying contrast of randomly There is precedent in other systems for the observation that
changing visual stimuli with temporal frequencies of up to 3Bursts carry qualitatively the same information as isolated
Hz. The coding efficiency of tonic and burst responses wapikes, but with higher reliability (reviewed in Lisman 1997).
roughly similar within individual trials, over a wide range ofln pyramidal cells of the electrosensory organ of the fish
absolute coding efficiencies (Fig. 6). We found that both burdtsgenmanniapursts and isolated spikes appear to detect sim-
and tonic spikes can have information rates exceeding 1 bigr stimulus features, but the burst response appeared to be a
spike. We observed examples of coding efficiency as high sre reliable detector of the feature (Gabbiani et al. 1996).
60% for tonic spikes and 63% for bursts treated as singkmilarly, ganglion cells of the salamander retina were found
events. In previous experiments using random stimuli ana fire discrete bursts (Smirnakis et al. 1996), and these bursts
similar analysis methods, typical estimates of information rategre preceded by a narrower distribution of possible stimuli
in other sensory neurons were 1-3 bits per spike, and estimdtem were single spikes (Smirnakis et al. 1997a).
of the average coding efficiency in other sensory neurons
ranged from 11 to 60% (Bialek et al. 1991; Buracas et al. 1998emporal filtering by bursts
Rieke et al. 1993; 1995, 1997; Warland et al. 1997; Wessel efpreyious experiments in vitro showed that LGN bursts fol-

al. 1996). o . L low high-frequency stimulation poorly (McCormick and
These findings challenge the view that burst firing in theeeser 1990), and’in vivo experirrf)entsyha(ve suggested a role
LGN is exclusively a feature of the sleeping or pathologicah, pyrsts in filtering out high frequencies in visual stimuli
brain (McCormick and Feeser 1990; Steriade 1992; Steriafig kherjee and Kaplan 1995). When we averaged SNR curves
and Llinzs 1988; Steriade and McCarley 1990; Steriade et ey trials and cells, we found that the average tonic SNR
_1993). The fact thgt bursts participate in thalamic oscillation§|eq off at somewhat higher frequencies than the average
in normal sleep or in pathological conditions does not precluglg, st SNR, in both X and Y cell populations (not shown). From
the possibility that the same biophysical machinery could, {iese population results, we cannot distinguish whether there is
other circumstances, transmit useful data. Indeed, visualgirect causal connection between bursting and temporal fil-
driven bursts have also been observed in the responses of Lahhg, or whether both filtering and bursting both result from
relay cells of awake, visually behaving cats (Guido angyme common cause, such as hyperpolarization. To explore
Weyand 1995) and monkeys (Ramcharan et al. 1998; Ris question further, it will be important to devise experiments
Reinagel, unpublished analysis of data from McClurkin et a4t allow for within-trial comparisons, so that visual informa-

1991). tion in each frequency range may be attributed specifically to

Our analysis was designed to be conservative with respecii@ rst events and tonic events within the responses of one
assigning visual function to bursts. For this reason, we used & under a single physiological condition.

stringent criterion for identifying bursts. We also report only
strict lower bounds on visual information content and codingontrol of burst mode

efficiency, so that the information content and coding effi- L
ciency must beat leastwhat we report. We estimated the W€ have shown that switching the response mode of the

information content of each response by an optimal first-orde®N cell has only minor7 consequences for the visual informa-
linear reconstruction. The result may be an underestimate, f§n content of the cell’s response. Our experiments do not
three reasonst) additional information might be encoded in2ddress what mechanisms normally determine the response

the spike trains in a form that could only be reconstructed usifigPde during visual processing (but see Godwin et al. 1996b;
higher order (nonlinear) termg) additional visual information LU €t al. 1993). Because burst mode reflects the activation of a
might be encoded by spike time information at higher tempor4p!tage-dependent conductance, it could in principle be influ-
resolution than the 4.96 ms time bins used; aithe use of the €nced by any of the cell's synaptic inputs, including cortical
power spectra to estimate the information in the reconstructiifdPack (Sherman and Guillery 1996). Nonretinal inputs con-
entails a worst-case assumption that the errors are Gaussitite the majority (90-95%) of the synapses onto LGN relay
Moreover, our stimulus is unlikely to be optimal for the Ce||,cells (Erisir et al. 1997)., yet thelr_ function for vision is poorly
and natural stimuli in particular may be much more efficientlynderstood. One possible function could be to modulate the
encoded (Rieke et al. 1995). Therefore, future studies may wig§fPonse mode of an LGN cell, perhaps feeding back results of
reveal additional visual information, and higher coding eff2igher level visual processing or implementing an automatic

ciencies, in both the burst and tonic responses of LGN relg9ttom-up form of attention. Our data neither support nor
cells. exclude this possibility. If burst mode is controlled by such

mechanisms, we conclude that the consequences for vision
would probably not be found at the level of the information
encodedby the LGN; the consequences of bursting might

We did not find any evidence that bursts encode a spedf$tead be found at the level of iteecoding
feature of the visual stimulus. However, we found that a rel . .
cell in burst mode can transmit slightly more information in aagynaptlc mechanisms
event than the same cell in tonic mode (Fig)6and does so  The temporal pattern of action potentials could have impor-
with slightly less stimulus-unrelated response variability (Figant consequences for transmission of visual information across

Bursts encode visual information

Bursts are efficient
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the thalamocortical synapses (reviewed in Castro-Alamandesck, F. Function of the thalamic reticular complex: the searchlight hypoth-
and Connors 1997b; Lisman 1997; see also Maass and Zad®&pis-Proc. Natl. Acad. Sci. USB1: 45864590, 1984. _
1997). Based on our results. to maximize the recovery of ViSLFﬁfS'R' A., VAN HORN, S. C.,AND SHERMAN, S. M. Relative numbers of cortical

: . . and brainstem inputs to the lateral geniculate nuclBusc. Natl. Acad. Sci.
information from the LGN, a synapse should transmit both ;g g, 1517-1520, 1997.

bursts and single spikes reliably, and Fransmit bursts as Unit_@EXSTER D. AND LINDSTROM, S. Augmenting responses evoked in area 17 of
events. Indeed, layer 4 thalamocortical synapses with highhe cat by intracortical axon collaterals of cortico-geniculate cells.

transmission probability and paired-pulse depression (Castrod. Physiol. (Lond.367: 217-232, 1985a.

Alamancos and Connors 1996, 1997a; Stratford et al. 1996}sTER D. AND LiNDSTROM, S. Synaptic excitation of neurones in area 17 of
might have these properties he cat by intracortical axon collaterals of cortico-geniculate cells.

P . . J. Physiol. (Lond.B67: 233-252, 1985b.
If other thalamocortical synapses are more like other corti URMENT, A., HIRSCH, J.. MARG, M.. AND GUIDET, C. Modulation of postsyn-

synapses, with low transmission pl_’Ok_)ablhty and pa'red'pmseaptic activities of thalamic lateral geniculate neurons by spontaneous
facilitation, these could transmit a distinct, burst-only informa- changes in number of retinal inputs in chronic cats. 1. Input-output relations.

tion stream. For example, the layer 6 targets of LGN relay cellsNeuroscienca 2: 453-464, 1984.

might have distinct information requirements. These cortic&hesiant, F. aNp Koch, C. Principles of spike train analysis. Ibethods in
cells send axons back to the LGN to modulate relay Ce||Neuronal Modglllng: From lons to Networkgdited by C. Koch and I.
responses (Godwin et al. 1996a,b; Sillito et al. 1994), and alégege"' Cambridge, MA: MIT Press, 1998.

. he LGN I in | 4 dul h ABBIANI, F., METZNER, W., WESSEL R.,AND KocH, C. From stimulus encod-
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