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Reinagel, Pamela, Dwayne Godwin, S. Murray Sherman, and
Christof Koch. Encoding of visual information by LGN bursts.J.
Neurophysiol.81: 2558–2569, 1999. Thalamic relay cells respond to
visual stimuli either in burst mode, as a result of activation of a
low-threshold Ca21 conductance, or in tonic mode, when this con-
ductance is inactive. We investigated the role of these two response
modes for the encoding of the time course of dynamic visual stimuli,
based on extracellular recordings of 35 relay cells from the lateral
geniculate nucleus of anesthetized cats. We presented a spatially
optimized visual stimulus whose contrast fluctuated randomly in time
with frequencies of up to 32 Hz. We estimated the visual information
in the neural responses using a linear stimulus reconstruction method.
Both burst and tonic spikes carried information about stimulus con-
trast, exceeding one bit per action potential for the highest variance
stimuli. The “meaning” of an action potential, i.e., the optimal esti-
mate of the stimulus at times preceding a spike, was similar for burst
and tonic spikes. In within-trial comparisons, tonic spikes carried
about twice as much information per action potential as bursts, but
bursts as unitary events encoded about three times more information
per event than tonic spikes. The coding efficiency of a neuron for a
particular stimulus is defined as the fraction of the neural coding
capacity that carries stimulus information. Based on a lower bound
estimate of coding efficiency, bursts had;1.5-fold higher efficiency
than tonic spikes, or 3-fold if bursts were considered unitary events.
Our main conclusion is that both bursts and tonic spikes encode
stimulus information efficiently, which rules out the hypothesis that
bursts are nonvisual responses.

I N T R O D U C T I O N

The dorsal lateral geniculate nucleus of the thalamus (LGN)
is the primary relay by which visual information from the
retina reaches the cortex. Retinal ganglion cells are connected
to LGN relay cells with relatively little divergence or conver-
gence, so the spatial receptive-field organization that the LGN
inherits from the retina is largely preserved. Rather than ex-
tracting new spatial features in the visual input, the function of
the LGN may be to selectively transmit or “gate” visual infor-
mation as a function of time. Transmission could be facilitated,
inhibited, or filtered by the many nonretinal inputs to the LGN
relay cell, for example, from the brain stem, thalamic reticular
nucleus, or cortex (reviewed in Sherman and Guillery 1996;
Sherman and Koch 1986; Singer 1977; see also Crick 1984).

One mechanism by which the thalamus might gate visual
information is through controlled activation ofIt. The inward
currentIt is attributed to a low-threshold calcium conductance
(Guido and Lu 1995; McCormick 1992; McCormick and

Feeser 1990; Steriade and Llina´s 1988), which is voltage
dependent (Coulter et al. 1989). When this conductance is
inactive, at relatively depolarized membrane potentials, a brief
depolarizing pulse (such as might be generated by a presynap-
tic retinal action potential) will cause an LGN relay cell to fire
one or a few unitary action potentials. If the cell experiences a
prolonged hyperpolarization ($100 ms),It becomes primed or
“deinactivated” (Jahnsen and Llina´s 1984a,b). Once this has
occurred, the cell will respond to a depolarizing pulse with a
characteristic burst of action potentials riding the crest of a
slower calcium spike (Scharfman et al. 1990).

Thus each individual cell can be described as having a
response mode (burst or tonic) at each point in time, depending
on the instantaneous degree ofIt inactivation. To a first ap-
proximation, the mode can be regarded as binary (Coulter et al.
1989). When a cell is in tonic mode, it is poised to fire one or
more individual action potentials in response to an input, if it
fires at all; when a cell is in burst mode, its next response will
be a stereotyped burst. The bursts associated withIt can be
distinguished reliably from tonic spikes on the basis of its
interspike interval (ISI) pattern (Lu et al. 1992). Therefore, on
the basis of extracellular recordings, one can infer the under-
lying response mode of a cell at the time of each observed
response.

Under some conditions, such as low arousal or sleep, LGN
cells become uncoupled from retinal input (Coenen and Ven-
drik 1972; Fourment et al. 1984; Livingstone and Hubel 1981).
In this physiological state the LGN relay cells are relatively
hyperpolarized, such thatIt is in a primed state much of the
time, i.e., the cells are predominantly in burst mode. LGN cells
then burst rhythmically and synchronously, due to the biophys-
ical properties of the current in conjunction with other intrinsic
membrane properties and local circuit properties (Bal and
McCormick 1997; McCormick and Feeser 1990; Steriade and
Llinas 1988; von Krosigk et al. 1993). These observations
suggest the hypothesis that whenever an LGN cell enters burst
mode, the cell becomes uncoupled from visual input. This
hypothesis predicts that when bursts occur during visual stim-
ulation, individual bursts will not be related systematically to
stimulus events.

In lightly anesthetized or awake animals, a mixture of tonic
spikes and arrhythmic bursts is found, with the ratio of re-
sponses occurring in the two modes falling on a continuum
(Guido et al. 1992, 1995; Guido and Weyand 1995; Mukherjee
and Kaplan 1995). Under these conditions, when bursting was
varied pharmacologically, bursts were found to correlate with
enhanced detectability of near-threshold visual stimuli. The
improvement, due in part to the reduction in spontaneous
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activity, was at the expense of response linearity that may be
important for stimulus discrimination (Godwin et al. 1996b;
Guido et al. 1995). The correlation between detectability and
burst fraction suggests the hypothesis that the bursts directly
encode visual information. This hypothesis predicts that indi-
vidual bursts can be systematically related to individual stim-
ulus events.

In the present study, we set out to determine whether these
differences between burst and tonic firing response modes
correspond to differences in visual information transmission
properties. The “information” in a neural response is defined as
the extent to which observing the response would reduce a
receiver’s uncertainty about the particular visual stimulus,
compared with not observing the response and relying only on
the average statistics of that stimulus (Rieke et al. 1997;
Shannon and Weaver 1963). We estimated the information
using a stimulus reconstruction method (Bialek et al. 1991;
Rieke et al. 1997). We found that both burst and tonic firing
modes relay roughly equivalent amounts of stimulus-related
information to visual cortex. Preliminary results of this study
have been reported in abstract form (Reinagel et al. 1997).

M E T H O D S

Physiological methods

PREPARATION. We performed experiments on cats that we initially
anesthetized with 3.5% halothane and then maintained after surgery
on 0.5–1.5% halothane in a 70/30 mixture of N2O/O2. Cats were
paralyzed with gallamine triethiodide (5.0 mg) and were artificially
respired through a tracheal cannula. Paralysis was maintained with
gallamine triethiodide (3.6 mg/h) and tubocurarine (0.7 mg/h). We
treated wound margins and pressure points with a topical anesthetic.
Cats were placed in a stereotaxic apparatus for recordings. Rectal
temperature, heart rate, and end-tidal CO2 were continuously moni-
tored and maintained within normal physiological limits.

Access to the LGN was obtained through a craniotomy (5.0 mm
diam) centered at A 5.0, L 9.0. We recorded from single neurons in
the LGN A-laminae with a tungsten-in-glass recording electrode [im-
pedances 8–14 MV (Godwin 1993)]. Neuronal activity was amplified,
displayed on an oscilloscope, voltage window discriminated, and
stored on computer as spike arrival times with a resolution of 0.1 ms.
A pair of insulated tungsten electrodes (500-mm exposed tips) were
lowered to rest on either side of the optic chiasm, through a second
craniotomy centered at A 13.0, L 0.0. To measure conduction veloc-
ity, we orthodromically activated LGN neurons through these elec-
trodes using 0.1-ms, 100- to 500-mA square-wave pulses at a fre-
quency of 1 Hz.

After dilating the pupils with atropine sulfate, we protected the
corneas with contact lenses selected to provide a focused image to the
retina of stimuli presented on a tangent screen positioned 57.0 cm in
front of the nodal points of the eyes. We used a fiber optic light source
to plot retinal landmarks (including the optic disk, area centralis, and
major retinal blood vessels) on the tangent screen by tapetal reflection
(Pettigrew et al. 1979).

In a subset of experiments, we recorded and delivered drugs with a
tungsten-in-glass recording electrode (impedances 8–14 MV) com-
bined with a multibarreled drug pipette (Godwin 1993). We applied
trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD, 30
mM), a selective agonist to metabotropic glutamate receptors, to
depolarize the membrane potential of LGN cells and to switch the
response state from burst to tonic (Godwin et al. 1996b). The amount
of ACPD applied is expected to depolarize the cell by;10 mV
(McCormick and von Krosigk 1992). Conventional iontophoretic
controls were performed to preclude nonspecific effects of pH and

current. The response of the cell was determined before, during, and
after application of the drug.

CLASSIFICATION OF CELLS. We initially determined neuronal re-
ceptive-field position, center sign, size, and ocularity by plotting
neuronal activity in response to small spots of light projected onto the
tangent screen. We then replaced the tangent screen with a Tektronix
608 oscilloscope monitor for the presentation of test stimuli. We
classified all neurons as X or Y using a battery of tests, including
latency to electrical stimulation from optic chiasm, linearity of spatial
summation, center size, and the response of the surround to a large,
rapidly moving stimulus of opposite sign to the receptive-field center.

VISUAL STIMULATION. We presented a time-varying contrast signal
to the cells on a Tektronix 608 monitor, with a space average lumi-
nanceL0 5 60 cd/m2. Monitor contrast was controlled by a computer
via a 12-bit A/D converter using the Picasso stimulus generation
system (Innisfree).

The spatial form of the stimulus was a stationary sinusoidal grating
presented through a fixed circular aperture (Fig. 1A). This particular
spatial structure is not relevant to the analysis except that LGN relay
cells respond well to its temporal modulation. We define contrast as
(Lmax 2 Lmin)/(Lmax 1 Lmin), where Lmax and Lmin refer to the
maximum and minimum luminance of the grating.

The contrast of the grating was randomly varied as a function of
time (Fig. 1B) according to a Gaussian amplitude distribution (Fig.
1C) with a flat spectrum up to a cutoff frequency (CF; Fig. 1D). The
random sequences were generated by selecting pseudorandom values
in the frequency domain, imposing the frequency cutoff, and inverse
Fourier transforming the result (Press et al. 1992; F. Gabbiani, per-
sonal communication). Each stimulus was derived from a unique seed
to the pseudorandom number generator; no specific random sequence
was ever repeated. Each contrast value was presented for the duration
of one 4.96-ms “frame” before jumping to the next contrast value. A
single “trial” refers to continuing such contrast modulation with fixed
statistics for a total trial time of 4 (or occasionally 20) minutes. One
4-min trial generally constitutes enough data for a comparison of burst
to tonic spikes, as described inNumerical methods.

Phase reversal of the grating was not permitted, so that the intensity
in the receptive-field center was always less than or equal to back-
ground forOFF cells and always greater than or equal to background
for ON cells. Therefore higher “contrast” always corresponds to a more
excitatory stimulus for the cell. When displaying the Gaussian distri-
bution, all negative values were displayed as zero contrast, and values
greater than one were displayed as a contrast of one. We report only
results obtained using stimuli whose mean contrastm was at least 2s
above zero and 2s below one. Therefore, at most, 2% of the stimulus
values were adjusted in this way, which resulted in a reduction in the
entropy of the stimulus of at worst 2%, compared with the originally
generated Gaussian distribution.

In different trials, the standard deviation (s) of the contrast was
varied from 0.001 to 0.2, the temporal cutoff (CF) was varied from 1
to 32 Hz, and the mean contrast (m) was varied between 0.2 and 0.5.
Preliminary experiments revealed that the amplitude of the contrast
modulations (s) had the strongest effects on firing rate and coding
properties, and therefore was explored in detail (seeRESULTS). In most
experiments,m was held constant at the estimated midpoint of the
cell’s contrast sensitivity range (typically 0.3–0.4), and CF was be-
tween 8 and 32 Hz.

Because the stimulus could theoretically assume 212 distinct values
and was updated every 4.96 ms, the maximum possible stimulus
entropy rate was 2.43 103 bits/s. The actual stimulus entropy was
substantially less than this, mainly because of the temporal correla-
tions imposed by the cutoff frequency (CF). An 8-Hz cutoff would
reduce the entropy to;96 bits/s, for example. The distribution of
contrast values had a less marked effect on the entropy. For example,
an approximate Gaussian withm 5 0.5 ands 5 0.1 had an effective
entropy only 10% lower than that of a uniform distribution of values.
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The resulting stimulus entropy rates typically exceeded the coding
capacity of the cells (seeNumerical methods), such that the stimuli
challenged the cells’ capacity for information.

Numerical methods

All calculations were carried out in Matlab 5.0 (MathWorks).

BURST IDENTIFICATION. We classified burst responses from extra-
cellularly recorded spike arrival times using previously published
criteria (Godwin et al. 1996b; Guido et al. 1995; Lu et al. 1992). Our
operational definition of a “burst” is a group of action potentials each
of which is,4 ms apart, with the first spike in a burst preceded by a
period of.100 ms devoid of spiking activity. Previous intracellular
recordings in this preparation (Lu et al. 1992) demonstrated that this
ISI pattern is a stringent criterion for identifying the bursts that are
associated with the low-threshold calcium conductance that results
from It. As additional evidence that these burst events in our data
reflectedIt activity, in a subset of experiments we also showed that
these events were sensitive to application of the metabotropic agonist
ACPD (data not shown), which slightly depolarizes LGN relay cells
and thereby inactivatesIt (Godwin et al. 1996b).

Burst identification was based on the spike times as recorded, at
0.1-ms resolution. For subsequent calculations of coding capacity and
stimulus reconstruction, the times of spikes were binned at the same
resolution as the stimulus update rate, 4.96 ms. The value in each time
bin was equal to the number of spikes that occurred in that interval.
Thus when all the spikes of a burst were analyzed, information about
the number of spikes in each burst was preserved. When we analyzed
the bursts as unitary events (Bair et al. 1994), we discarded informa-
tion about the number of spikes in each burst and replaced each burst
with a single event defined to occur at the time of the first action
potential of the burst.

ESTIMATION OF SPIKE TRAIN CODING CAPACITY. Given an ob-
served set of neural responses to a specific set of stimuli, the infor-
mation the responses could convey about the stimuli is limited by the
total variability of the response, i.e., the diversity of different spike
trains the cell uses across the entire range of stimuli. In our analysis
we represented neural responses, or components of these responses
(tonic or burst), as “spike trains,” in which the value in each time bin
reflects the number of action potentials in that interval. The variability
of these spike trains may be quantified in an information theoretical
framework by an entropy rate, which has units of bits per second. The
entropy rate of a spike train is analogous to the “baud rate” of a
computer modem: a spike train from an ensemble with a higher
entropy rate has greater capacity for carrying encoded information,
although this capacity may or may not be fully utilized. We call this
entropy rate the “coding capacity” of the response. Note that this is
different from the “channel capacity” of the neuron (Shannon and
Weaver 1963), which is the maximum coding capacity the cell could
have toanyset of stimuli, usinganycode, based only on its physical
limitations.

The maximal entropy rate for any spike train with firing rater (in
Hz) binned at resolutionDt (in seconds) can be approximated as

Hmax 5 r log2 ( e

rDt) bits/s (1)

wheree is the base of the natural logarithm (MacKay and McCulloch
1952). This approximation is accurate in the limit thatr Dt ,, 1. For
the bin size we used (Dt 5 4.96 ms) and the range of firing rates
observed, this function is increasing with the rater (Hmax decreases
with r only at firing rates exceedingr 5 200 Hz).

The observed interval distribution of our spike trains can be used to
place a more accurate upper limit on their entropy. If the statistics of
the spike train are completely characterized by its mean firing rater
and interspike interval distributionP(t) (in other words, if the spike
train is a renewal process), then the entropy rate of the spike train is
given by

Hcapacity5 2r ( P(t) log2 P(t) bits/s (2)

FIG. 1. Schematic diagram of the spatial structure of the stimulus.A: the
entire oscilloscope screen is represented by the gray rectangle (scale bar 1°
visual angle). This stimulus is for anON cell with a receptive field center
diameter of 0.5° (black circle), located at an eccentricity of 3.3° relative to the
area centralis (X). The spatial period of the grating was set to twice the
diameter of the receptive field center. An excitatory phase of the grating was
centered on the center of the cell’s receptive field, with the opposite phase
positioned within the surround. The aperture was centered on the receptive
field center and its diameter adjusted to 1.5 periods, to encompass the inhib-
itory flank. The background was set to the mean luminance: (Lmax 1 Lmin)/2.
The spatial structure was optimized for each cell and then held constant for all
trials on that cell.B: contrast of the static grating as a function of time. We
express contrast of the grating according to the convention (Lmax 2 Lmin)/
(Lmax 1 Lmin). Contrast was updated to a new randomly chosen value every
4.96 ms. Stimulus time course is shown for the 1st 2 s of a4-min trial. At the
indicated time points, the appearance of the stimulus in the vicinity of the
receptive field is shown above.C. The actual distribution of contrast values
over the entire 4-min trial is shown as the probabilityP(C) for each contrast
range (n 5 49,152 frames, bins of width 5% contrast contain;100 discrete
contrast values each). For this stimulus, the random contrast values were
chosen from a Gaussian distribution with a mean (m) of 0.4 and a standard
deviation (s) of 0.15. The closed circle indicates the number of negative values
in the originally generated distribution, which were displayed as zero contrast
(i.e., the illumination within the aperture was uniform and equal to the
background illumination).D: actual distribution of temporal frequencies is
shown by the power spectral density (PSD) of the stimulus, in units of Hz21.
In this trial the random contrast values were chosen from a temporal frequency
distribution that was flat (white spectrum) up to a cutoff frequency (CF) of
16 Hz.
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where the sum is taken over all observed interspike intervals, andr is
the number of intervals per second (i.e., the firing rate) (Rieke et al.
1993; Warland et al. 1997; Zador 1998). Note that in the limit of a
perfectly regular spike train,P(t) 5 1 for one interspike interval
lengtht andP(t) 5 0 for all the other interval lengths, resulting in a
coding capacity of zero.

If there are statistical dependencies among interspike intervals (i.e.,
the spike train is not a renewal process), this could only reduce the
entropy further. For example, if the probability of observing a given
interspike interval depends on the length of the previous interval, the
true entropy would be lower thanHcapacity. We did not generally have
sufficient data to measure statistical dependencies between intervals.
Therefore we useHcapacityas an upper bound on the true entropy rate
of the binned spike train. In general the entropy of a spike train also
depends on the time bin size, a relationship not explored here. We
used the same bin size throughout (4.96 ms) for bothHcapacity and
estimating transmitted information.

ESTIMATION OF TRANSMITTED INFORMATION. The information
transmitted by an LGN response about the stimulus contrast,Htrans,
was estimated by computing the optimal linear reconstruction of the
stimulus from the spike train (reviewed in detail in Rieke et al. 1997).
Thus our perspective is to ask how well a hypothetical recipient of the
neural response would be able to infer the stimulus. The stimulus
property we reconstructed was its contrast, but we note that recon-
structing any linear transform of the contrast by this method would
have produced identical results. For example, the temporal derivative
of the contrast is linearly related to the contrast; in our stimulus, the
luminance at the receptive field center is also linearly related to
contrast.

Figure 2 illustrates graphically this method of reconstruction and
information estimation, using an example spike train from our data.
Briefly, the spike train is convolved with a linear filter to obtain a
reconstruction (Fig. 2A). The filter is chosen to be “optimal” in the
sense of minimizing the mean squared error between this reconstruc-
tion and the original stimulus (seeOPTIMAL LINEAR FILTER). The recon-
struction is subtracted from the stimulus to obtain the “noise.” Figure
2B shows the power spectral densities of the stimulus and of the noise,
P(s) andP(n), respectively. Our stimulus update rate was 4.96 ms, or
201.6 frames per second. Thus we measure the power spectrum up to
100.8 Hz (the maximum frequency available for reconstruction is
given by the Nyquist limit5 sampling rate/2). The frequency range
from 0 to 100.8 Hz was divided into 128 intervals, resulting inDf 5
0.79 Hz.

The signal-to-noise ratio (SNR) as a function of temporal frequency
is defined as SNR5 P(s)/P(n) 2 1 (Fig. 2C). For random, Gaussian
stimuli, the information transmitted by the spike train about a tempo-
ral frequencyf in the stimulus has been shown to be at least log2 [1 1
SNR( f )] Df bits/s (Rieke et al. 1997). Thus an estimate of the total
information transmitted by the spike train about the stimulus is given
by

Htrans5 (
f50

CF

log2 [1 1 SNR( f )]Df bits/s (3)

Observe that when SNR5 0, the information rate is log2 (1 1 0) 5
0 bits/s. We did not include frequencies above CF when computing
Htransbecause the power spectrum of the stimulus was essentially zero
by construction, and errors would be caused by taking ratios of
extremely small numbers.

OPTIMAL LINEAR FILTER. The optimal filter (Fig. 2D), expressed as
a function of frequency, is uniquely given byh( f ) 5 SAB( f )/SAA( f ),
where SAB( f ) is the Fourier transform of the cross-correlation be-
tween the spike train (A) and the stimulus (B), and SAA( f ) is the
Fourier transform of the autocorrelation of the spike train (Wiener
1949). If spikes were always farther apart than the extent of the filter

in time, the optimal filter would be simply the average stimulus
preceding a spike (sometimes called the “reverse correlation” or
“spike-triggered average”). However, because spikes are often close
enough together that filters overlap in time in the reconstruction, a
correction is needed for the autocorrelation of the spike train. For a
spike train completely unrelated to the stimulus, this filter is flat and
equal to the mean of the stimulus.

For convenience of calculation, we computed an acausal filter, i.e.,
one that extends after as well as before the spike. This produced
results numerically equivalent to those computed causally, as per
Warland et al. (1997). Although the acausal filter is numerically
defined at times after the spike, in practice spikes did not predict
future stimuli (except to the extent that temporal correlations in the
stimulus allowed the future stimulus to be predicted from the past
stimulus). We computed filters that extended to 635 ms (1283 4.96
ms time bins) before the spike. This filter length was chosen as the
closest even power of two (27) bins that amply exceeded the time
needed for the filter amplitude to fall to zero for all cells.

To avoid overfitting of our data, we split the data from each trial in
half, and used filters solved on each half to reconstruct the other half.
ThusHtranswas calculated from reconstructions of stimuli not used to
solve the filters. Therefore, it was possible to obtain negative values
for Htrans, if the amount of data were inadequate such that the filters
fit noise in the data.

This method provides strict lower bound on the transmitted infor-
mation (Bialek et al. 1991; Rieke et al. 1997; Warland et al. 1997). In
other words, this method entitles us to draw the strong conclusion that

FIG. 2. Schematic of linear reconstruction method.A: top plot (“Con-
volve”) shows an example spike train, with a linear filter superimposed on the
spike train at the time of each spike. This filter was chosen to be optimal in a
sense explained in text. The2nd plot(“Reconstruct”) shows the sum of these
superimposed filters (thick line), which is the reconstruction (the estimated
deviation of the stimulus from the mean contrast). Superimposed (thin line) is
the actual stimulus that elicited the spike train, expressed asC(t) 2 m, where
C(t) is the grating contrast at timet andm is the mean contrast over the trial.
The 3rd plot (“Noise”) shows the reconstruction error, i.e., the difference
between these 2 curves (stimulus2 reconstruction), to be compared with the
zero line. Thebottom two plotsshow contrast on the same scale, with zero
indicated by the horizontal line.B. The power spectral density (PSD) is plotted
for the stimulus (thin line) and noise (thick line), in units of Hz21. Power
spectra were computed by averaging the individual spectra of.100 nonover-
lapping short segments tapered by a Hanning window.C: the ratio of these
spectra P(s)/P(n)2 1 defines the signal-to-noise ratio (SNR), where log2 (11
SNR) is the transmitted information in bits (see text).D: the optimal linear
filter plotted as a function of time, wheret 5 0 is the time of an action
potential. The horizontal line indicates zero.
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the information content must beat leastwhat we measured, because
whenever we were forced to make assumptions in our analysis, we
always chose assumptions that, if incorrect, could only cause us to
underestimate information.

ESTIMATION OF CODING EFFICIENCY. The coding efficiency is the
fraction of coding capacity used to transmit visual information. We
estimate the efficiency by

E 5 Htrans/Hcapacity (4)

BecauseHcapacity is an upper bound (true entropy rate# Hcapacity),
and Htrans is a lower bound (true transmitted information rate$
Htrans), it follows thatE is a lower bound: the fraction of spike train
variability used to encode visual information must beat least E(Rieke
et al. 1993, 1997; Warland et al. 1997).

Burst responses have two properties that could affect the accuracy
of this estimate. First, the reproducible ISI pattern within bursts
implies thatHcapacityis more of an overestimate of the entropy rate for
bursts than for tonic spikes. We controlled for this possibility by also
analyzing the bursts as unitary events (Bair et al. 1994). Second,
bursts are highly nonlinear responses (Guido et al. 1995). Although
some nonlinear encoding mechanisms are linearly decodable, it is
possible that the visual information encoded by bursts is preferentially
underestimated by the linear reconstruction method, compared with
the information encoded by the more linear tonic responses. In both
cases, if there is any error, it is likely to be in the direction of
underestimating the coding efficiency of bursts relative to tonic re-
sponses. Thus our analysis is conservative with respect to the null
hypothesis that bursts are not coding stimulus information.

R E S U L T S

We recorded a total of 35 cells from 6 cats in response to
random temporal visual stimuli. We concentrate below on the
quantitative analysis of data from 25 cells from 4 cats, for
which we used stimuli with the properties described inMETHODS

(Fig. 1). This population consisted of nineON-center X cells,
eight ON-center Y cells, fourOFF-center X cells, and four
OFF-center Y cells. The remaining data showed qualitatively
similar trends, but could not be analyzed by the same quanti-
tative methods because of differences in the stimulus design.

Bursts are distinctive firing events

A representative short segment of the voltage trace from an
LGN relay cell in response to the randomly fluctuating visual
stimulus (Fig. 1) is shown in Fig. 3A. The events identified as
bursts by our criteria are marked with stars. In all the cells we
studied, we found that the responses contained bursts intermingled
with tonic spikes, as has been described previously (Guido et al.
1992, 1995; Lu et al. 1992; Mukherjee and Kaplan 1995). We
define the “burst fraction” as the fraction of action potentials in a
trial that were found in bursts according to our ISI criterion (see
METHODS). The X cells we recorded had a lower burst fraction
(0.2 6 0.2, mean6 SD) than the Y cells (0.66 0.3).

Under our recording conditions, LGN cells did not exhibit
sustained periods of burst (or tonic) mode, in the sense of
extended stretches of time during which exclusively burst (or
tonic) activity occurred. Nor was the occurrence of bursts
oscillatory. We did not find any consistent relationship of the
burst fraction with the stimulus parameters we varied. How-
ever, greater depth of anesthesia appeared to increase the burst
fraction (data not shown) (see also Guido and Weyand 1995).

The distribution of successive pairs of ISIs could be ana-

lyzed in some very long trials, one of which is shown in Fig.
3B. For each action potential, a single point is plotted based on
the preceding ISI (abscissa) versus the subsequent ISI (ordi-
nate). The observed pattern is not that expected from a highly
regular spike train, for which the points would fall on the
diagonal. A conspicuous firing pattern observed in our data,
evident as a clear cluster in this ISI plot, is the event identified
by our burst criterion.

The shaded area at thebottom rightof Fig. 3B defines the
criterion for the first spike of a burst: a preceding interval of
$100 ms, and a subsequent interval of#4 ms. All subsequent
spikes in bursts must by definition lie within the shaded area on
the left (preceding interval#4 ms). Those falling within the
box at thebottom leftare spikes within a burst (because the
next interval is#4 ms, these are not the last spikes of bursts).
The cluster near the closed arrow represents the final spikes in
bursts that were followed by a short interval; the cluster near
the open arrow represents the last spikes in bursts that were
followed by a long interval. Some but not all of the latter spikes
are followed by another burst. In this trial, 73% of the spikes
were in bursts, with an average of 2.9 spikes per burst. In other
words, about half of the independent firing events were bursts
containing an average of about three spikes.

To further explore the degree to which bursts were stereo-
typed events, we measured the variability of the number of
spikes in a burst within individual trials. Figure 3C shows, for
the data shown in Fig. 3B, the distribution of the number of
spikes in the bursts. All bursts by definition have at least two
spikes, but the number of spikes per burst in this single trial
varied from two to as many as five. This variability in burst
size can be quantified by the coefficient of variation (CV),
defined as the standard deviation divided by the mean. The CV
of number of spikes in a burst in this trial was 0.26. This is less
variability than would be found if the number of spikes had
been determined by a Poisson process for a fixed duration, in
which case the expected CV would be 1.0 (Gabbiani and Koch
1998; Papoulis 1984). Similar results were found for all cells in
this study: the mean number of spikes per burst was 3.06 1.4
(X cells) or 2.76 0.5 (Y cells), and the CV of burst size within
individual trials was 0.256 0.11 (X cells) or 0.236 0.05 (Y
cells).

The timing of spikes within a burst was also stereotyped.
The ISIs within a burst increased in length systematically. In
the trial shown, the mean lengths for the first three intervals in
a burst were 2.5, 3.0, and 3.4 ms, respectively; the mean length
of the first postburst interval was much longer (360.3 ms; Fig.
3D). The sharp shoulder at 4 ms in the distribution of lengths
for the later intervals in the bursts implies that some spikes that
belong to a burst have not been classified as such due to the
stringent 4-ms cutoff we impose on the ISI. The width of the
distributions for within-burst intervals (SD is 0.4 for each of
the 1st 3 intervals) indicates that the variability in the timing of
spikes within burst was small. This variability was similar for
all X and Y cells studied (not shown).

Taken together, the results presented in Fig. 3 confirm that in
the responses to this novel dynamic stimulus, the burst criteria
identify a frequent and stereotyped class of firing events having
properties consistent with the bursts associated with the low-
threshold calcium conductance.

2562 P. REINAGEL, D. GODWIN, S. M. SHERMAN, AND C. KOCH



Within-trial comparison of bursts to tonic spikes

We show the response of an LGN relay cell at thetopof Fig.
4A. The cell was responsive to the stimulus, in that its firing
rate varied with time as more and less excitatory stimulus
sequences occurred in the random pattern. For example, with
the use of a sliding 100-ms window to compute a time-varying
firing rate, the LGN response in this trial was,10 Hz 85% of
the time, but exceeded 40 Hz 2% of the time, and reached 90
Hz at its peak.

The first step of our analysis was to identify the bursts in the
LGN response and represent the burst and tonic spikes as
separate “spike trains” for analysis (also shown in Fig. 4A).
The “Tonic” channel contained all spikes not identified as parts
of bursts. We either used all the spikes in each burst (“Bursts”),
or represented each burst by a single event (“Burst Events”), as
described inMETHODS. The difference is that Burst Events
lacked information about thenumberof spikes in the event.
Neither representation was sensitive to the differences between
bursts in thetiming of spikes, because these differences were
small (Fig. 3D) compared with our time bins (4.96 ms). We use
the term spike train generically to refer to any kind of event

train, including Tonic, Burst, or Burst Event response compo-
nents.

Information transmission

The stimulus reconstruction we obtained from each compo-
nent spike train (as described inMETHODS

1) is shown in Fig. 4A.
Based on these reconstructions, we estimated the amount of
visual information each spike train contained, at each temporal
frequency present in the stimulus. The results for this trial are
shown in Fig. 4C. The similarity in the shapes of these curves
(inset) indicates that all the temporal frequencies present in this
stimulus were encoded equally well by either tonic or burst
responses. When stimuli contained higher frequencies, we

1 Figures 2 and 4–6 are related to one another hierarchically. In Fig. 2
(METHODS) we used asingle spike trainto illustrate the method by which we
measure the transmission of visual information. In Fig. 4 we present the
detailed results of such an analysis, for all the spike trains obtained from a
single trial. We then demonstrate how the spike trains and their coding
properties vary across trials for asingle cellwhen the stimulus amplitude is
varied in Fig. 5. Finally, we show the distribution of the key results over the
entirepopulation of cellsin our study (Fig. 6).

FIG. 3. Bursts are distinctive firing events.A: a short voltage trace from anON-center Y cell is shown above the contrast of the
visual stimulus. Both traces are shown at the 0.1-ms resolution of data acquisition. Stars (*) mark the events that are classified as
“bursts” by our interspike interval criterion. The cluster of spikes marked by the arrow is not considered a burst because of the
absence of a 100-ms silence preceding the spikes. The low-amplitude high-frequency noise in these unfiltered voltage traces does
not have a peak near 60 Hz.B: for each spike a point is plotted at the previous vs. subsequent interspike intervals, in units of ms,
plotted on a log-log scale. Data are from 1 long (;20 min) trial from a representativeON-center Y cell with stimulus parameters
m 5 0.4, s 5 0.2, CF5 8.0. Features indicated by shaded areas, boxes, and arrows are described in the text.C: probability
distribution of the number of spikes in a burst, from the same data plotted in (B). By definition, all bursts have at least 2 spikes.
D: probability distribution of interspike interval lengths for each interval within bursts. Data are from the same single trial as in
B andC. The distribution for the 1st interval within bursts (thin black line, “1”) is based on all bursts containing$2 spikes (n 5
1,645). The 2nd interval (medium weight line, “2”) is based on all bursts with$3 spikes (n 5 1,143). The 3rd interval (thick line,
“3”) is based on all bursts with$4 spikes (n 5 382). Bursts with$5 spikes were rare (n 5 18), so subsequent intervals were not
analyzed. Part of the distribution of postburst intervals (dashed line, “post”) is also shown; the remaining 69% of postburst intervals
were $8 ms (off the scale). Probabilities sum to one within each distribution. The binwidth of all histograms is 0.2 ms. By
definition, within-burst intervals are#4 ms and postburst intervals are.4 ms. The absence of intervals,1.6 ms is due to the cell’s
refractory period.
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sometimes observed qualitative differences in the shapes of
these curves. However, longer recordings would have been
necessary to determine the rolloff frequency from these high
CF stimuli, because the estimation of the SNR at each fre-
quency is noisier for broader band stimuli.

The overall transmission of visual information by each spike
train (Htrans, Fig. 4F) is given by the area under each curve in
Fig. 4C. The LGN response as a whole transmitted 3.4 bits/s of
visual information about this stimulus. The tonic response
transmitted 2.6 bits/s, and the bursts transmitted 2.4 bits/s, or
2.5 bits/s when they were treated as unitary events. To take into
account differences in the number of events of each type (Fig.
4D), we expressed the information rate in units of bits per spike
or event (Fig. 4G). We found that in this trial, the tonic spikes

carried more information per action potential (0.9 bits/spike)
than the bursts (0.4 bits/spike), but bursts regarded as unitary
events encoded more information per event (1.4 bits/event).

The coding capacity of a spike train depends on both the
number of spikes and the regularity of the spike train. We
estimated the information coding capacity of each of the spike
trains of Fig. 4A, based on the entropy of their ISI histograms
(not shown). This estimate,Hcapacity(Fig. 4E), is the maximum
information coding capacity for a spike train (binned at this
resolution) that is consistent with the statistical regularity we
observed (seeMETHODS). Although the burst response had many
more spikes than the tonic response in this trial (Fig. 4D), the
tonic spikes were more variable, such that both channels had
about the same coding capacity (Fig. 4E).

FIG. 4. Within-trial comparison of bursts
to tonic spikes.A: response of a different
ON-center Y cell to a stimulus withm 5 0.4,
s 5 0.2, CF5 8.0 Hz. A short segment of a
20-min trial is shown. The spike trains ana-
lyzed are shown attop: the unprocessed
spike train (“LGN All”) in blue, the spike
train components (“Burst” in red and “Tonic”
in green) after sorting by the interspike in-
terval criteria, and the 1st spike of each iden-
tified burst (“Burst Events” in purple). For
each spike train, the optimal linear recon-
structions (thick lines) are compared with the
original visual stimulus (thin black line) on
the same time scale in the curves below.A
serves as the color key forB–H. B: the op-
timal filter was solved separately for each
spike train. The optimal filters as a function
of time h(t) have amplitudes in units of stim-
ulus contrast.Inset: same filters scaled to a
peak of 1.C: visual information encoded by
the reconstructions at each temporal fre-
quency, expressed as the information den-
sity: log2 [1 1 SNR( f )], in units of Bits s21

Hz21. The total information transmitted
(Htrans) is equal to the area under this curve
in the interval 0, f , CF. Inset: same
curves scaled to their respective peaks.D:
time averaged firing rate of spike trains in
units of spikes per second or Hz, where
“spike” refers to an action potential for LGN
(L), Bursts (B), and Tonic spikes (T), or an
inferred It calcium spike for Burst Events
(V). Average is over the entire trial.E: time
averaged entropy rate or coding capacity
(Hcapacity) of the spike trains in bits per sec-
ond, based on the interspike interval distri-
bution (not shown).F: average rate of trans-
mission of visual information (Htrans) by the
reconstructions in bits per second. These val-
ues reflect the area under the curves inC. G:
average amount of visual information en-
coded per spike (bits per spike), the ratio of
values inF to those inD. H: average coding
efficiency (E), the ratio of values shown inF
to those inE.
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The coding efficiency is defined as the fraction of the coding
capacity used to carry information about this stimulus. On the
basis of the maximum capacity (set byHcapacity) and the min-
imum visual information (set byHtrans), we could determine
the minimum efficiency,E (Fig. 4H). In this trial, tonic spikes
and spikes in bursts had about the same coding efficiency (14
and 13%, respectively), whereas bursts regarded as events were
somewhat more efficient (19%).

Interpreting the optimal filters

To obtain the linear reconstructions discussed above, we
computed the optimal linear filter for each spike type, based on
the data from this trial (seeESTIMATION OF TRANSMITTED INFOR-
MATION in METHODS). These optimal filters are shown in Fig. 4B.
The filters for tonic and burst responses have similar shapes, as
revealed by scaling them all to the same peak (inset). The small
amplitude oscillations in the filter reflect the temporal correla-
tions in the visual stimulus, and depend on the temporal cutoff
frequency CF (not shown). The large positive lobe between
zero and2100 ms reflects that thisON-center Y cell fired
preferentially when the stimulus in the previous 100 ms was
brighter than average in the receptive field center (and thus,
darker than average in the immediate surround). The negative
lobe between2100 and2200 ms indicates that the cell was
also more likely to fire if this interval was preceded by a
stimulus that was dark in the receptive field center (and thus,
bright in the surround). In other words, the cell integrated over
;200 ms, and responded best toincreasesin luminance in the
center ordecreasesin luminance in the surround.

The similarity of the filter shapes can be measured by the
correlation coefficient between them, which can range from
zero (no correlation) to11 (perfect correlation) or21 (perfect
anticorrelation). This measure is insensitive to linear scaling of
the filters. In the example of Fig. 4B, the burst and tonic filters
have a correlation coefficient of 0.92. We measured the corre-
lation coefficient between the burst and tonic filter, for every
trial in which both burst and tonic responses had at least 50
spikes encoding at least 0.1 bits per spike. We found that burst
and tonic filter shapes were always similar (correlation coeffi-
cient 0.836 0.11, n 5 74 trials). We conclude that the two
types of response always encodedqualitatively similar mes-
sages about the visual stimulus.

The complete analysis shown in Fig. 4 was performed for
every individual trial, to compare the coding properties of
bursts to tonic spikes within trials. The key results we obtained
from each trial were the information rates (expressed in bits per
spike or per event), and the coding efficiencies (expressed as a
fraction of coding capacity) of each response type.

Effect ofs on spike trains and visual coding

We varied the stimulus effectiveness by varyings, the
standard deviation of the contrast modulation. Figure 5 shows
results from a single cell as the amplitude of the contrast
modulation was increased from 0.01 to 0.20 in different trials.
This covers the range from stimuli that are well below response
threshold to ones that are well above it.

As the contrast modulations were made stronger, firing rates
increased on average over the entire trial (not shown). The
increase in firing rate withs was variable and relatively mod-

est, possibly due to adaptation to the amplitude of fluctuations
in spatial contrast (Smirnakis et al. 1997b).

The spike train coding capacity (Hcapacity) increased with
firing rate, but according to a different relationship for bursts
and tonic spikes, as shown in Fig. 5A. Over the range of firing

FIG. 5. Relative coding properties do not depend on absolute coding.A:
relationship between firing rate and the coding capacity of the spike trains, for
Bursts (closed circles), Tonic spikes (triangles), and Burst Events (open circles,
inset). The stimulus parameters was varied from 0.01 to 0.2 across trials,
holding constant CF5 16 andm 5 0.3. Each symbol represents a result
from a single trial. All trials shown were recorded from a singleOFF-center Y
cell. Firing rate is defined as action potentials per second for Tonic or Bursts,
or as bursts per second for Burst Events.Hcapacity is defined inEq. 2. The
maximum possible entropy given the time bin size,Hmax (see Eq. 1), is
shown as a function of firing rate (solid line).B: visual information transmitted
(Htrans/firing rate) in bits/spike. Data and symbols as inA. At each value ofs,
the mean result is shown by the symbol, with the range of values indicated by
the bars. Thes values used were as follows: 0.01 (n 5 2 trials), 0.025 (n 5 4),
0.05 (n 5 4), 0.075 (n 5 4), and 0.10 (n 5 4). The symbols are plotted slightly
offset for visibility. Least-squared fits are shown as lines.C: coding efficiency
(E 5 Htrans/Hcapacity) as a function ofs, data and symbols as inA.
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rates observed, the coding capacity (Hcapacity) of the tonic spike
trains was close to the maximum possible, given our chosen
temporal resolution of 4.96 ms. The coding capacity of bursts
was much lower than this maximum at any given firing rate.
This reflects the greater regularity in burst firing patterns.
When this regularity is taken into account, by treating bursts as
unitary events, bursts then had close to maximal entropy. These
results emphasize the importance of measuring the entropy of
the spike trains, rather than using firing rate as an indirect
measure of coding capacity.

The rate of transmission of visual information (Htrans) in-
creased with the amplitude of stimulus modulation. There was
a baseline firing rate in the absence of stimulation, approxi-
mated bys 5 0.01, for which no visual information was
encoded. Therefore, ass and thereforeHtrans increased, more
information was encoded per spike (Fig. 5B), and the coding
efficiency (E) increased (Fig. 5C). In other words, the timing of
spikes became increasingly determined by the stimulus.

We performed an equivalent analysis of each cell in our
study. The amplitude of stimulus modulation determined the
absolutecoding properties of both burst and tonic responses,
but we did not find any evidence that this affected theirrelative
coding properties. Therefore we include trials from all stimuli
in our population summary below.

Population results

Whether measured in bits per event or in fractional coding
efficiency, on a trial-by-trial basis the information encoded
by the two response modes was similar. This is illustrated in
Fig. 6 by the fact that all the points fall roughly along the
diagonal. The approximate equivalence of burst and tonic
spikes for coding this stimulus was supported by fact that
ACPD reduced bursting (seeMETHODS), yet had little effect
on visual coding. For 13 trials with a high burst fraction

(0.45 6 0.14), application of ACPD reduced the burst
fraction by at least half (to 0.036 0.03) in the cell’s
response to a stimulus with the same parameters. Despite the
change in burst fraction, there was no statistically significant
change in the average firing rate, coding capacity, informa-
tion rate, or coding efficiency (not shown).

Although burst and tonic modes were essentially similar,
several small differences were statistically significant in the
within-trial comparisons. In most trials, the amount of visual
information encoded per burst was greater than per tonic
spike (see closed symbols in Fig. 6A). Information per burst
was on average 2.7 times greater than per tonic spike (P ,
0.001 by a binomial test, see legend). However, tonic spikes
consistently encoded more information than bursts per ac-
tion potential (1.8-fold more on avarage,P 5 0.006, see
open symbols in Fig. 6A). The coding efficiency (E) was
higher for bursts than for tonic spikes (Fig. 6B), regardless
of whether all the spikes in the burst are considered (1.5-
fold, P 5 0.011) or only the burst as an event (2.8-fold,P ,
0.001).

The Y cells in our population encoded more information
about this visual stimulus than the X cells (i.e., circles, repre-
senting X cells, are below and to the left of squares, represent-
ing Y cells, in Fig. 6,A andB). However, the relative coding
properties of bursts and tonic spikes were the same in both
populations. The coding efficiency (E 5 Htrans/Hcapacity) of
bursts was higher when bursts were treated as unitary events
(closed symbols are above open symbols in Fig. 6B). We
attribute this to two distinct reasons: the entropy rate (Hcapacity)
was lower, and the visual information (Htrans) was also higher
(not shown). Thus the additional variability contained within
bursts, considered at the temporal resolution of 4.96 ms, car-
ried more noise than linearly decodable visual information (but
see McCormick and Feeser 1990).

FIG. 6. Summary of within-trial comparisons of burst and tonic spikes. For this figure and for population statistics, we restricted
analysis to trials in whichm 1 2s # 0.77, to ensure that stimuli were well within the linear range of the contrast response of the
monitor, and also excluded trials that did not have at least 150 events of each type to be analyzed. Each symbol represents a single
trial of at least 4 min duration. Results are shown from 59 individual trials recorded from 15 cells. On average, results from 4
different stimuli are shown per cell. For statistics, we treat each cell as an independent observation, by determining the number of
stimuli (trials) for which bursts were better than tonic spikes. We then used a binomial test of significance over cells.A: information
rate, expressed in bits per spike (Htrans in bits/s divided by firing rate in spikes/s). Each open symbol compares the visual
information transmitted by all the tonic action potentials (horizontal axis) to the information transmitted by all the action potentials
in bursts (vertical axis) within a single trial. The closed symbols show the results for the same trials when bursts are treated as single
events in the analysis. The information rate is then expressed in bits per event, where a single event is defined as either a tonic action
potential or an entire burst. Circles are trials recorded from X cells, squares are trials recorded from Y cells. The diagonal
corresponds to equality between the tonic and burst responses.B: coding efficiency (E), the fraction of the spike train entropy that
carries visual information. Data and key are as inA. Dashed lines indicate 100% coding efficiency.
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D I S C U S S I O N

Bursts encode visual information

We have shown that burst responses of LGN relay cells
carry information about the time-varying contrast of randomly
changing visual stimuli with temporal frequencies of up to 32
Hz. The coding efficiency of tonic and burst responses was
roughly similar within individual trials, over a wide range of
absolute coding efficiencies (Fig. 6). We found that both bursts
and tonic spikes can have information rates exceeding 1 bit/
spike. We observed examples of coding efficiency as high as
60% for tonic spikes and 63% for bursts treated as single
events. In previous experiments using random stimuli and
similar analysis methods, typical estimates of information rates
in other sensory neurons were 1–3 bits per spike, and estimates
of the average coding efficiency in other sensory neurons
ranged from 11 to 60% (Bialek et al. 1991; Buracas et al. 1998;
Rieke et al. 1993; 1995, 1997; Warland et al. 1997; Wessel et
al. 1996).

These findings challenge the view that burst firing in the
LGN is exclusively a feature of the sleeping or pathological
brain (McCormick and Feeser 1990; Steriade 1992; Steriade
and Llinás 1988; Steriade and McCarley 1990; Steriade et al.
1993). The fact that bursts participate in thalamic oscillations
in normal sleep or in pathological conditions does not preclude
the possibility that the same biophysical machinery could, in
other circumstances, transmit useful data. Indeed, visually
driven bursts have also been observed in the responses of LGN
relay cells of awake, visually behaving cats (Guido and
Weyand 1995) and monkeys (Ramcharan et al. 1998; P.
Reinagel, unpublished analysis of data from McClurkin et al.
1991).

Our analysis was designed to be conservative with respect to
assigning visual function to bursts. For this reason, we used a
stringent criterion for identifying bursts. We also report only
strict lower bounds on visual information content and coding
efficiency, so that the information content and coding effi-
ciency must beat least what we report. We estimated the
information content of each response by an optimal first-order
linear reconstruction. The result may be an underestimate, for
three reasons:1) additional information might be encoded in
the spike trains in a form that could only be reconstructed using
higher order (nonlinear) terms;2) additional visual information
might be encoded by spike time information at higher temporal
resolution than the 4.96 ms time bins used; and3) the use of the
power spectra to estimate the information in the reconstruction
entails a worst-case assumption that the errors are Gaussian.
Moreover, our stimulus is unlikely to be optimal for the cell,
and natural stimuli in particular may be much more efficiently
encoded (Rieke et al. 1995). Therefore, future studies may well
reveal additional visual information, and higher coding effi-
ciencies, in both the burst and tonic responses of LGN relay
cells.

Bursts are efficient

We did not find any evidence that bursts encode a special
feature of the visual stimulus. However, we found that a relay
cell in burst mode can transmit slightly more information in an
event than the same cell in tonic mode (Fig. 6A), and does so
with slightly less stimulus-unrelated response variability (Fig.

6B). These findings are consistent with prior indications that
LGN bursts have selective advantages in the detection of
periodic visual stimuli with comparable temporal frequencies
(Guido et al. 1995).

There is precedent in other systems for the observation that
bursts carry qualitatively the same information as isolated
spikes, but with higher reliability (reviewed in Lisman 1997).
In pyramidal cells of the electrosensory organ of the fish
Eigenmannia,bursts and isolated spikes appear to detect sim-
ilar stimulus features, but the burst response appeared to be a
more reliable detector of the feature (Gabbiani et al. 1996).
Similarly, ganglion cells of the salamander retina were found
to fire discrete bursts (Smirnakis et al. 1996), and these bursts
were preceded by a narrower distribution of possible stimuli
than were single spikes (Smirnakis et al. 1997a).

Temporal filtering by bursts

Previous experiments in vitro showed that LGN bursts fol-
low high-frequency stimulation poorly (McCormick and
Feeser 1990), and in vivo experiments have suggested a role
for bursts in filtering out high frequencies in visual stimuli
(Mukherjee and Kaplan 1995). When we averaged SNR curves
over trials and cells, we found that the average tonic SNR
rolled off at somewhat higher frequencies than the average
burst SNR, in both X and Y cell populations (not shown). From
these population results, we cannot distinguish whether there is
a direct causal connection between bursting and temporal fil-
tering, or whether both filtering and bursting both result from
some common cause, such as hyperpolarization. To explore
this question further, it will be important to devise experiments
that allow for within-trial comparisons, so that visual informa-
tion in each frequency range may be attributed specifically to
the burst events and tonic events within the responses of one
cell under a single physiological condition.

Control of burst mode

We have shown that switching the response mode of the
LGN cell has only minor consequences for the visual informa-
tion content of the cell’s response. Our experiments do not
address what mechanisms normally determine the response
mode during visual processing (but see Godwin et al. 1996b;
Lu et al. 1993). Because burst mode reflects the activation of a
voltage-dependent conductance, it could in principle be influ-
enced by any of the cell’s synaptic inputs, including cortical
feedback (Sherman and Guillery 1996). Nonretinal inputs con-
stitute the majority (90–95%) of the synapses onto LGN relay
cells (Erisir et al. 1997), yet their function for vision is poorly
understood. One possible function could be to modulate the
response mode of an LGN cell, perhaps feeding back results of
higher level visual processing or implementing an automatic
bottom-up form of attention. Our data neither support nor
exclude this possibility. If burst mode is controlled by such
mechanisms, we conclude that the consequences for vision
would probably not be found at the level of the information
encodedby the LGN; the consequences of bursting might
instead be found at the level of itsdecoding.

Synaptic mechanisms

The temporal pattern of action potentials could have impor-
tant consequences for transmission of visual information across
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the thalamocortical synapses (reviewed in Castro-Alamancos
and Connors 1997b; Lisman 1997; see also Maass and Zador
1997). Based on our results, to maximize the recovery of visual
information from the LGN, a synapse should transmit both
bursts and single spikes reliably, and transmit bursts as unitary
events. Indeed, layer 4 thalamocortical synapses with high
transmission probability and paired-pulse depression (Castro-
Alamancos and Connors 1996, 1997a; Stratford et al. 1996)
might have these properties.

If other thalamocortical synapses are more like other cortical
synapses, with low transmission probability and paired-pulse
facilitation, these could transmit a distinct, burst-only informa-
tion stream. For example, the layer 6 targets of LGN relay cells
might have distinct information requirements. These cortical
cells send axons back to the LGN to modulate relay cell
responses (Godwin et al. 1996a,b; Sillito et al. 1994), and also
project to the LGN cell targets in layer 4 to modulate the
efficacy of the primary feed-forward projection (Ferster and
Lindstrom 1985a,b; Katz 1987; Usrey and Fitzpatrick 1996;
Wiser and Callaway 1996).

A direct test of these hypotheses will require measuring the
postsynaptic potentials of cortical cells in response to a tha-
lamic input spike train containing the pattern of ISIs ofIt
bursts, as well as the ISI patterns characteristic of tonic LGN
responses.

Computer programs used to generate stimulus sequences and for preliminary
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Vaughan for adapting stimulus display software for the experiment.
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