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Abstract 

Studies of human and animal behavior have suggested that making a decision 

involves representing the overall desirability of each available course of action and then 

selecting that action that is most desirable. Over the last decade a number of physiologists 

have proposed that neurons in the posterior parietal cortex play a role in selecting movements 

for execution. These observations suggest that neurons in the posterior parietal cortex may 

encode the subjective desirability of making particular movements. To examine this 

hypothesis, we had humans and monkeys separately play the inspection game, a strategic 

contest between two opponents described by game theory. These experiments exploit Nash’s 

insight that when humans play strategic games, the average subjective desirability of the 

available actions comes to equivalence when rational agents reach a mixed strategy 

equilibrium. 

We report that humans and monkeys show similar choice behavior during the 

inspection game, suggesting that the monkeys’ choices may also be guided by subjective 

desirability under these conditions, as predicted by game theory. Further, the patterns of 

activity in monkey posterior parietal cortex observed under these conditions were appropriate 

for encoding the subjective desirabilities of the actions available to the monkeys. Under 

stationary conditions average neuronal activity tracked desirability as it varied with reward 

magnitude. During equilibrium game play, when average subjective desirability should have 

been equivalent, average neuronal activity also remained constant, irrespective of the specific 

combination of reward magnitude, reward probability, and response probability associated 

with each action. Trial-by-trial analyses revealed that neuronal activity during game play was 
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correlated with a dynamic estimate of desirability. Finally, the subjective desirability of an 

action appeared to be represented relative to the summed desirabilities of all available 

actions; neuronal activity remained unchanged during strategic equilibriums even when the 

absolute reward magnitude for each reinforced action was doubled. These observations may 

help place many recent findings regarding the posterior parietal cortex into a common 

conceptual framework.   
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Introduction 

Physiological studies conducted during different types of visual-saccadic decision 

making indicate a correlation between neural activity in the lateral intraparietal area (area 

LIP) and several variables related to an animal’s decision about what eye movement to 

produce. Among others, these variables include the intention to make a saccade (Gnadt and 

Andersen, 1988), the log likelihood that a given eye movement will result in a reward (Gold 

and Shadlen, 2000; 2001), the integral of perceptual signals indicating which saccade will be 

rewarded  (Shadlen and Newsome, 1996; 2001), the probability and magnitude of reward 

associated with a saccade (Platt and Glimcher, 1999), the average rate at which a saccade has 

been rewarded in the recent past (Sugrue and Newsome, 2002), the instantaneous likelihood, 

or hazard, that a reinforced saccade will be instructed (Janssen and Shadlen, 2003) or some 

combination of these variables (Coe et al., 2002). Each of these variables, in turn, may 

influence saccade production via the connection of area LIP with other saccade-related areas 

(Andersen, et al., 1985; Andersen et al., 1990; Paré and Wurtz, 2001). By manipulating the 

probability of reward, the magnitude of reward, or the recent history of rewards, these 

previous studies were similar in that they altered the overall desirability of producing a given 

saccade. 

In related work, behavioral and theoretical studies have begun to describe the 

algorithms by which rational human, animal, and artificial choosers actually compute the 

desirability of actions. Within the machine learning community choosers use algorithms that 

estimate the value of each available course of action and then select for execution the course 

of action estimated to have the highest average value (c.f. Sutton and Barto, 1998). Within 
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economic circles, human and animal choosers have been shown to compute the subjective 

desirability, often referred to as expected utility, of actions as a function of the probability, 

magnitude and delay to a reward (cf. Kreps, 1990). These studies indicate that decision-

making can be modeled as a process in which many variables influence a common 

representation of desirability, and it is this common representation upon which the choice 

mechanism is hypothesized to operate when it selects an action for execution. 

If decisions about what saccade to produce are generated in part by the neurons in 

area LIP, as a number of physiologists have proposed, and decision making involves a 

representation of the overall desirability of each available course of action, as decision 

scientists propose, then it would be logical to hypothesize that the subjective desirability of 

potential saccades may be represented in area LIP. Specifically, we hypothesize that LIP 

activity is correlated to the relative subjective desirability of saccades, that is, the subjective 

estimate of desirability associated with the saccade in the neuron’s response field divided by 

the sum of the subjective desirabilities associated with all available saccades (cf. Herrnstein, 

1961). All of the physiological results, which indicate that LIP activity is correlated with 

many decision-related variables, may be compatible with this notion.  

A strategy for examining this hypothesis further is to systematically disassociate the 

subjective desirability of a saccade from other decision variables associated with a saccade. 

To accomplish this, we borrowed a behavioral task from game theory, a branch of economics 

developed to describe the complex behavior that arises during strategic interactions among 

agents whose choices dynamically influence the desirability of each other’s actions. As stated 

by von Neumann and Morgenstern (1944) when they developed the first tools to tackle these 

problems: “If two or more persons exchange goods with each other, then the results for each 
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one will depend in general not merely upon his own actions but on those of the others as 

well. Thus each participant attempts to maximize a function...of which he does not control all 

the variables. This is certainly no [classical] maximization problem, but a peculiar and 

disconcerting mixture of several conflicting maximization problems”. 

The task we used was the inspection game (Kreps, 1990) and it has two important 

features for our purposes. First, there is no single correct action. Instead, rational subjects 

adopt a mixed strategy in which they devote a certain proportion of choices to each action 

(Fundenberg and Tirole, 1994). Second, Nash (1950; 1951) showed that during these mixed 

strategy games the subjective desirability of each of the available responses must be, on 

average, equivalent. Conceptually, mixed strategies require equivalence in subjective 

desirability because if one of the available actions was always more desirable, then rational 

choosers would always select that response. Therefore, the critical concept underlying these 

experiments is that when subjects are at a mixed strategy equilibrium, their relative 

subjective desirability remains equivalent regardless of how frequently a chooser makes any 

particular response, how much reward a particular response yields, or how likely a particular 

response is to yield a reward. 

Although the average subjective desirability of the two responses can be shown to be 

equivalent at a Nash equilibrium the dynamic and stochastic process by which this average 

equilibrium emerges is not yet fully understood. It is generally assumed that on a choice-by-

choice basis the subjective desirability of each action fluctuates weakly due to the 

corresponding strategic behavior of the opponent (c.f. Kagel and Roth, 1995).  

In this set of experiments, we demonstrated that the behavior of humans and monkeys 

playing the inspection game was nearly indistinguishable. We reasoned that similar behavior 
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in the two species suggests that like humans, monkeys’ choices are both guided by subjective 

desirability and that the subjective desirability of actions at behavioral equilibrium during 

strategic games are equivalent. We also found that LIP activity was correlated with relative 

subjective desirability under a variety of experimental manipulations that included this 

strategic game. Average LIP activity tracked desirability as it varied with reward magnitude 

during an instructed version of the task that did not involve a strategic conflict. Consistent 

with an equivalence in relative subjective desirability expected during a strategic equilibrium, 

during game play average LIP activity remained constant despite changes in other decision 

variables such as response probability, magnitude of reward, and probability of reward. 

Finally, trial-by-trial neuronal activity fluctuated weakly around this average rate in a manner 

that was correlated with a dynamic estimate of the desirability of each action. Our data 

suggest that neurons in area LIP may indeed encode the subjective desirability of saccadic 

eye movements, a finding which may place many studies of posterior parietal cortex within a 

common conceptual framework. 
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Results 

Behavior 

Our first goal was to compare the behavior of humans and monkeys during a strategic 

game to determine if monkeys showed mixed strategy behavior indicative of an equivalence 

in subjective desirability like that presumed to occur in human subjects (cf. Nash, 1950; 

1951; Kreps 1990; Fudenberg and Tirole, 1994). We chose the inspection game because in 

this game a subject’s payoffs remain constant across blocks of trials yet the proportion of 

responses that the subject devotes to each option can be experimentally manipulated simply 

by changing the payoffs of their opponent (Fig. 1A; variable I).   

Humans vs. Humans 

During the first experiment, human subjects competed against human opponents in a 

manual version of the inspection game (Fig. 1B). Figure 2 shows a running average over the 

last 20 trials of the strategic choice behaviors of a human subject (employee; black) and 

human opponent (employer; gray). Across the three blocks of trials, the opponent’s cost of 

inspection was stepped from 0.5 to 0.9 to 0.3 respectively. The percentage of risky choices 

predicted at the Nash equilibrium is represented by the horizontal gray lines (see METHODS 

equations 4-6). The opponent was predicted to choose the inspect option 50% of the time 

across all blocks of trials (see METHODS equation 1-3). During the first and third blocks, 

the subject’s behavior closely tracked the Nash equilibrium predictions as did the opponent’s 

behavior which approached a 50% inspect rate. Of course, the players’ rates of responding 

and are not fixed to those predicted by the Nash equations. This is exemplified in the second 

block of trials in which the subject failed to reach the predicted 90% rate of choosing the 
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risky option. This had the effect of lowering the desirability of the inspect option and, 

therefore, lowered the opponent’s inspect rate. For the remainder of the paper we report the 

behavior only of the subjects playing the role of employee.  

To quantify the influence of changing the opponents’ cost of inspection on the 

subjects’ rates of choosing the risky option, we averaged the choice behavior over the last 

half of each block once subjects had presumably reached a stable equilibrium state. We 

found that the human subjects (N = 5) did indeed adopt mixed strategies and that the 

equilibrium rates of choosing the risky option were repeatable and lawful functions of the 

cost of inspection to the employers (Fig. 3A – black circles). Because both players’ average 

behavior yielded mixed strategies of producing a certain proportion of each response, we 

conclude that under these conditions the subjective desirability of both available actions were 

equal on average (Nash, 1950). 

Humans vs. Computer 

  Having quantified behavior when humans competed against human opponents, we 

then employed a standardized computer opponent for the remainder of the experiments. 

Briefly, the computer opponent entered the subject’s history of choices into a reinforcement 

learning algorithm to estimate the probability that the subject would choose each of the two 

available options on the upcoming trial. Using this estimate of the subject’s choice 

probability, the computer then chose either to inspect or not inspect so as to maximize its 

own virtual reward (see METHODS for details). Our goal was not to develop a computer 

opponent that perfectly mimicked the behavior of human opponents. Instead our goal was to 

develop a computer opponent that elicited mixed strategy equilibrium behavior in subjects 

that could be lawfully manipulated by changing the computer opponent’s cost of inspection. 
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Standardizing the opponent in this manner provided consistency from one experimental 

session to another and allowed the behavioral strategies to be compared across species. 

 Human subject’s displayed mixed strategy behavior when competing against this 

computer algorithm and manipulations of the opponent’s cost of inspection changed the 

proportion of choices devoted to the risky option across blocks of trials (Fig. 3A – red 

triangles) (ANOVA, d.f. = 4, F=177, p<0.0001, N = 8 subjects). These results lead us to 

conclude that the subjective desirability of both available actions were equal on average 

when subjects were at behavioral equilibrium with the computer opponent (Nash, 1950). 

Monkeys vs. Computer 

We then trained monkeys to play an oculomotor version of the inspection game and 

assessed whether their behavior was comparable to that of human subjects when competing 

against the same computer opponent. In the monkey experiments, thirsty animals competed 

for water rewards rather than for money, and they indicated their choices on each trial with a 

saccadic eye movement directed to one of two eccentric visual targets rather than with a 

button press (Fig. 1C – see METHODS for details). Animals were taught to perform two 

types of trials. During inspection game trials, the fixation point reappeared as yellow and 

subjects were free to choose either the risky red target or the certain green target. During 

instructed trials, if the fixation point reappeared as red, then they were rewarded only for 

choosing the red target and if the fixation point reappeared as green, they were rewarded only 

for choosing the green target.  

Figure 3A plots the average choice behavior of two monkey subjects as the cost of 

inspection was varied across blocks of inspection game trials (blue squares). The choice 

behavior of the monkeys varied with the cost of inspection (ANOVA, d.f. = 4, F=1095, 
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p<0.0001, N = 29 data files from 2 monkeys). Therefore, monkeys displayed mixed strategy 

behavior during the inspection game suggesting that the subjective desirability of both 

options were equal on average when at behavioral equilibrium.  

Comparison of Monkey and Human Choice Behavior during Inspection Game 

   The choice behavior of humans and monkeys did not differ when competing against 

the same computer opponent (Fig. 3A blue vs. red - ANOVA, d.f. = 1, F=5.27, p>0.01). The 

choice behavior of both species varied in a similar way from that predicted by a simple form 

of the Nash equations (diagonal line in Figure 3A) in which subjective and objective 

desirability were presumed to be equivalent (see METHODS, equations 4-6). Specifically, 

monkeys chose the certain option more often than predicted by this set of equations in blocks 

for which the cost of inspection was 0.7 and 0.9 and both species chose the risky option more 

often than predicted at the 0.1 and 0.3 cost of inspection blocks (Student-Newman-Keuls test, 

p<0.01). Although, some of the observed deviations from the Nash predictions were 

doubtless due to imperfections in the computer opponent (see Barraclough et al., 2004), it 

should be noted that humans playing this opponent did not differ significantly from humans 

playing other humans (ANOVA, d.f.=1, F=0.22, p>0.05). More likely, much of the deviation 

resulted in error in the quantitative Nash prediction that arise from our assumptions about the 

equivalence of subjective and objective desireability, the influence of block transitions, and 

the well established observation that empirical behavior often differs from normative 

behavior during strategic interactions (Camerer, 2003).  In this case, deviations from the 

simple Nash predictions during the lowest cost of inspection blocks are likely the result of 

asymmetries in information regarding the opponent’s behavior inherent in the inspection 

game. Subjects can only update their estimate of the probability that the opponent will 
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inspect from payoffs associated with choosing the risky option. When subjects choose the 

certain option they gain no information about the behavior of their opponent. Thus subjects 

may choose the risky option more often than predicted during blocks with low costs of 

inspection because there may be some advantage gained by obtaining a more accurate 

estimate of the opponent’s behavior. This classic trade-off between exploiting a resource and 

exploring the possibility of a better resources elsewhere has been described previously 

(Sutton and Barto, 1998). 

We were interested, however, in quantifying how much subjective desirability 

differed from objective desirability. During equilibrium conditions we know that the 

subjective desirabilities of the two actions at equilibrium should be equal. We therefore 

sought to determine whether, at these equilibriums, the objective desirability of each action 

varied. To this end, we computed the objective value of each action, a quantity known as 

expected value, across blocks of trials. Expected value is defined as the product of the 

probability of receiving a reward and the magnitude of that reward. Specifically, we 

calculated the relative expected value of the risky option as the expected value of the risky 

option divided by the sum of the expected values of both the risky and certain options. 

Across blocks of inspection game trials, the objective value of the risky option varied 

(p<0.01) when humans competed against human opponents (black) and by both humans (red) 

and monkeys (blue) competed against the computer opponent. This demonstrates that during 

blocks of the inspection game the objective value of the risky option varied. This necessarily 

raises the question of whether neuronal activity in posterior parietal cortex tracked this 

objective value, formally the expected value, or the more constant subjective desirability of 

these actions.  
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Unlike strategic games, during many other tasks that elicit mixed strategy behavior, 

such as those that use variable interval reward schedules, the environment within which 

choices are made is stationary (Lau and Glimcher, 2003; Sugrue et al., 2003). Under these 

conditions, choice behavior often follows a ‘matching law’ (Herrnstein, 1997) whereby the 

ratio of choices devoted to each option is a product of the ratio of rewarded trials of those 

options and the ratio of reward magnitudes of those options. Each data point in figure 4A 

represents the average of these parameters across blocks of trials with a given cost of 

inspection plotted on a log scale for our subjects engaged in this strategic game. Behavior 

approached the matching law when humans competed against human opponents (black 

cirles) and when both humans (red triangles) and monkeys (blue squares) competed against 

the computer opponent. In aggregate, the subjects ‘over-match’ slightly; the slope of the least 

square regression was 1.32 (black line) which is greater than a slope of 1 predicted by the 

matching law (gray line). 

The observation that there was overmatching in the aggregate behavioral strategy, 

however, should not be read to suggest that the subjects necessarily used a stationary 

matching-type strategy during this dynamic conflict. Unlike during traditional matching-type 

psychological tasks, during mixed strategy games the opponent’s behavior is dynamic and 

responds actively to the subject’s choices. Figure 4B demonstrates this property for the 

inspection game during inspection game trials with a cost of inspection of 0.5. In response to 

the opponent’s transient shift to a high inspect rate, the subject decreased his rate of choosing 

the risky option (1st arrow). After a brief lag, the opponent reacted to this change by 

decreasing it’s inspect rate which was then followed by the subject again choosing the risky 

option more frequently (2nd arrow). This example emphasizes the strategic nature of game-
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theoretic interactions. It can be true that in aggregate, behavior during these games appears 

similar to behavior in non-strategic environments but the underlying mechanisms that 

generate this aggregate behavior on a trial-by-trial basis are critically dynamic in a game 

theoretic setting.  

To quantify the dynamic nature of games further, we tested for unpredictability in 

subjects’ choice-by-choice behavior during equilibrium play by performing a Markov chain 

analysis on the choice behavior on blocks with a 0.5 cost of inspection. These were blocks in 

which subjects chose the risky option approximately 50% of the time. This analysis 

determined, for a given rate of choosing an option, whether subjects repeated or alternated 

their choices more often than would be expected by a random process that did not depend on 

previous choices. The strategic nature of this interaction makes a perfectly random selection 

of action optimal in these blocks when a player faces an optimal opponent. When competing 

against the computer opponent, three out of eight humans showed behavior that was 

significantly different from what would be predicted by a perfectly stochastic process when 

compared to the previous trial (X2 test, p<0.01) and three out of eight showed behavior that 

was significantly different from stochasticity when compared to the previous two trials. 

Monkey behavior was slightly more stochastic than that of humans; behavior in six out of 

forty-seven blocks of trials were significantly different from pure stochasticity when 

compared to the previous trial and behavior in eight out of forty-seven blocks was 

significantly different from stochastic when compared to the previous two trials. In summary, 

the human and monkey behavior was imperfect with regard to unpredictability. This might, 

of course, reflect a limitation intrinsic to our players or might reflect an inability of the 

computer opponent we designed to sufficiently exploit non-random patterns in the behavior 
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of our players (Glimcher, 2005). Existing evidence from other monkey studies, however, 

does suggest that had our computer opponent been better able to identify patterns in the 

behavior of the subjects this might have reduced the non-random component of the behavior 

we observed during these particular blocks (Barraclough et al., 2004). 

Neuronal activity 

Basic Inspection Game 

For these experiments we studied 52 LIP neurons with a mixture of instructed and/or 

inspection game trials. Figure 5A plots the average response of a single LIP neuron during 

inspection game trials as a function of whether or not the monkey decided to look at the red 

risky target located in the neuronal response field (black) or the green certain target located 

opposite the neuronal response field (gray). After the fixation point reappeared as yellow, 

indicating an inspection game trial, neuronal activity distinguished between trials that ended 

within or opposite the neuronal response field. Overall, neuronal activity became selective 

for movement direction for the population of neurons before the fixation point indicated 

whether it was an instructed or inspection game trial (Fig. 5B – p<0.01 for visual, delay, cue, 

and pre-motor epochs, paired t-test, N=52). For the remainder of this paper, we restrict our 

analyses to trials directed into the response fields of our neurons (Fig. 5A and B - black). 

Therefore, any differences in neuronal activity cannot be attributed to sensory stimuli or 

movement parameters that remain identical on every trial. 

Below, we test three predictions of the hypothesis that the activity of neurons in area 

LIP reflects the relative subjective desirability of upcoming saccades. First, during blocks of 

instructed trials, the firing rates of LIP neurons should vary with desirability when we 

manipulated the magnitude of reward associated with each action in a non-strategic setting. 
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This first prediction constitutes a replication of Platt and Glimcher (1999). Second, whenever 

the animals are at a mixed strategy equilibrium during the inspection game, the average firing 

rates of LIP neurons should be fixed. This is because Nash (1950) showed that at a mixed 

strategy equilibrium, the average subjective desirability of the responses being mixed must 

be equivalent. On a trial-by-trial basis, however, the mixed strategy equilibrium is presumed 

to be maintained by small fluctuations in the subjective desirability of each option around 

this fixed level caused by dynamic interactions with the opponent. Therefore, the third 

prediction is that LIP activity will be correlated with these small fluctuations in subjective 

desirability on a trial-by-trial basis. 

To test the first prediction, we varied the amount of liquid reward associated with the 

targets in two successive blocks of instructed trials while the probability of responding to the 

targets was maintained at 50%. The first two blocks of trials in figure 6A show a running 

average of choice behavior (black line) and neuronal activity (gray dots) during the visual 

epoch under these conditions. During the first block, a movement to the red target in the 

neuron’s response field yielded twice as much reward (0.5 ml of water) as a movement to the 

green target opposite the neuron’s response field (0.25 ml of water). During the second block 

of trials, the payoffs associated with each target were reversed such that a movement to the 

red target in the neuron’s response field yielded only half as much reward as the green target 

opposite the neuron’s response field. Neuronal firing rate was high during the large reward 

condition and low during the small reward condition. This difference in firing rate occurred 

during the visual and delay epochs early in the trial when there was uncertainty as to which 

target would be rewarded (Fig. 6B). After the fixation point indicated that the target in the 

response field would be, the firing rate of the neuron was the same irrespective of the amount 
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of reward associated with the movement. This early difference in firing rate could not be the 

result of visual stimuli, response probability, or movement direction because each of these 

variables remained the same across both blocks of trials.  

To test the second prediction, we changed the opponent’s cost of inspection across 

blocks of inspection game trials while recording the activity of this same neuron (Fig. 6A 

blocks 3-6). At equilibrium, the relative subjective desirability of the two choices remained 

constant even as the proportion of choices devoted to each option fluctuated across blocks of 

trials. Despite these large changes in response rate across blocks of trials, neuronal activity 

remained relatively constant at a level between that observed for the high and low reward 

conditions during instructed trials. This equivalence in firing rate remained throughout the 

duration of the trial as observed in the average firing rate of this neuron for each block of 

trials (Fig. 6C). This was true even though the objective value of this option changed from 

block to block (Fig. 3B). Unlike instructed trials, the reappearance of the fixation point did 

not resolve the uncertainty of whether the risky target would be rewarded. Correspondingly, 

the firing rate of the neuron during the cue and pre-motor epochs was less during inspection 

game trials (Fig. 6C) than during instructed trials (Fig. 6B).  

We quantified the population activity of LIP neurons during the instructed and 

inspection game blocks in figure 7. Before the change in fixation point color indicated which 

movement would be rewarded during instructed trials, the firing rate of the neuronal sample 

responded more strongly if the red target in the response field yielded a larger rather than 

smaller reward (Fig. 7A - p<0.01, paired t-test for visual and delay epochs, N=30). Thus, the 

first prediction that LIP firing rates vary with the desirability of saccades during the 

instructed task was fulfilled (see also Platt and Glimcher, 1999). Next we examined 52 
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neurons (including 13 that were also studied in the instructed task) while animals played 5 

blocks of the inspection game in which the opponent’s cost of inspection varied from 0.1 to 

0.9. LIP firing rates remained constant across the five blocks of trials (Fig. 7B – p>0.01, 

paired t-test for all epochs, N=52), thus fulfilling the second prediction that LIP activity, like 

relative subjective desirability, would be equivalent at mixed strategy equilibriums.  

This relationship between the firing rates of individual LIP neurons and the 

desirability of saccades is further quantified in figure 8. The top panels represent the trial-by-

trial firing rate of a single LIP neuron across inspection trial blocks for each epoch. There is 

no significant correlation between the firing rate of this neuron and the cost of inspection for 

any epoch (Fig. 8A). Although some neurons showed a significant correlation (Fig. 8B – 

gray-filled histograms, p<0.05), the average correlation coefficients (gray lines) did not vary 

from zero for any of the epochs tested (p>0.01, Fischer’s r to z test). This same analysis was 

performed for LIP firing rates and the relative magnitude of rewards across two blocks of 

instructed trials (not shown). Many neurons showed a significant positive correlation during 

the epochs before the fixation point indicated what target would be rewarded (Fig. 8B – 

black-filled histograms, p<0.05) and the average of these correlation coefficients differed 

from zero (black lines) for the visual, delay, and cue epochs (p<0.01).  

The final prediction was that LIP firing rates should be correlated to the small trial-

by-trial fluctuations in the subjective desirability of the choices resulting from the strategic 

interactions of the two opponents at behavioral equilibrium. Casual inspection of the activity 

pattern of the neuron shown in figure 6A during inspection game trials suggests it may have 

this character. Of course, developing such a correlation is difficult because we do not know 

exactly how the subjective desirability of the two movements is assessed on a trial-by-trial 
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basis by the animal. However, we attempted to derive a crude estimate of how the relative 

subjective desirability of choosing each option might fluctuate from trial-to-trial and asked 

whether this crude estimate was correlated with the fluctuations in neuronal rate. 

We therefore employed the algorithm developed for use as the computer opponent to 

estimate how subjective desirability might be fluctuating from trial-to-trial. The computer 

algorithm normally tracks the monkey’s behavior and combines this with its own potential 

payoffs to determine the desirability of inspecting and not inspecting on the upcoming trial 

(see Methods section for details). We simply reversed the inputs to this algorithm, having it 

analyze the choice behavior of the computer and the payoffs received by the monkey 

throughout a block of trials to calculate the subjective desirability of choosing the risky 

option on the upcoming trial. Lastly, using the monkey’s behavior recorded during the same 

experimental session, we performed an optimization based on maximum likelihood methods 

on the variable alpha (see METHODS – equation 7) that determined the learning rate of the 

reinforcement learning algorithm. This optimization successfully converged for 48 out of 52 

neurons with a mean alpha of 0.27 +/- 0.13. This trial-by-trial estimate of the relative 

subjective desirability of the two options was then correlated to the trial-by-trial 

measurement of LIP activity. Note that the presence of 20% interleaved instructed trials were 

not ideal for this analysis, and although far from a perfect solution, these trials were simply 

excluded. 

To see how any such correlation evolved throughout the duration of a trial, we 

segregated each trial into six sequential epochs. For this neuron, there was a positive 

correlation between our crude estimate of relative subjective desirability and firing rate for 

two of the four epochs during which the targets were visible (Fig. 9A - p<0.05, Fisher’s r to z 
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test, during visual and delay epochs). Of our 48 analyzed neurons, 23 had a significant 

correlation between these two variables during at least one of the epochs (p<0.05). 

Conversely, only 6 of the 48 neurons had a significant negative correlation between these 

variables during the same epochs (p<0.05). To ensure that this was not the result of a 

spurious secondary correlation, we next performed a multiple regression analysis that 

correlated firing rate with saccade amplitude, peak velocity, latency and the cost of 

inspection. We then repeated our correlation analysis on the residual variance that remained 

after this multiple regression had been performed (Fig. 9B – relative desirability). During the 

inspection game trials, none of these other individual regressions reached the level of 

significance except the correlation between saccade amplitude and firing rate during the post-

motor epoch (p<0.05). The residual correlation between this estimate of relative subjective 

desirability and firing rate was significant during the visual, delay and cue epochs (p<0.05). 

Performing the same multiple regression analysis on the instructed trial blocks showed that 

neuronal activity was also significantly correlated with a subjective desirability estimate 

under those conditions during the visual and cue epochs (not shown, p<0.05). While we do 

not yet know how our monkeys determine the subjective desirability of each available option, 

this crude estimate of that value on a trial-by-trial basis is correlated with the trial-by-trial 

fluctuations in neuronal rate that we observed. Once again, this is exactly the observation one 

would expect if area LIP neurons reflect the relative subjective desirability of saccades. 

 

Encoding relative versus absolute subjective desirability 

We performed two controls during the inspection game to further test our hypothesis 

that LIP firing rates encode the relative subjective desirability of saccades. First, we tested 
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whether absolute or relative subjective desirability was encoded by LIP activity by doubling 

the magnitudes of all rewards. Second, we switched the location of the two targets across 

blocks of trials, thus changing both the probability and magnitude of reward associated with 

the option in the neuron’s response field. In both cases, neuronal firing rates should remain 

unaffected by these manipulations if these neurons encode the relative subjective desirability 

of saccades. 

In order to explicitly test the hypothesis that LIP neurons encode the relative 

subjective desirability of movements rather than the absolute subjective desirability of 

movements, we had monkeys perform two blocks of the inspection game in which the cost of 

inspection was fixed at 0.5 and therefore, responses were typically divided equally between 

the risky and certain targets. Standard magnitudes of reward were used for one block of 

trials, whereas, the magnitudes of reward were doubled for all targets in the other block. If 

LIP activity is sensitive to the absolute subjective desirability of the saccade in the neuron’s 

response field, it should fire more for a block of inspection game trials on which the rewards 

are doubled. If, however, LIP activity is sensitive only to the relative subjective desirability 

of choices inside compared to outside the neuron’s response field, then the firing rate should 

be roughly the same for both of these blocks of trials. Consistent with LIP encoding the 

relative subjective desirability of saccades, there was no significant change in the firing rate 

of these neurons during this manipulation (Fig. 10A - p>0.05, paired t-test, N=22, for all 6 

epochs). 
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Altering the Magnitude and Likelihood of Reward 

For a subset of 24 neurons we examined the effects of reversing the locations of risky 

and certain targets during a block of trials in which the cost of inspection was again 0.5. 

Switching the target in the response field from the risky to certain option changed both the 

probability of reward and the magnitude of reward, but according to game theory, the relative 

subjective desirability of the two options should have remained constant. Firing rates should 

differ across the blocks if they reflect either the probability or magnitude of reward but they 

should remain constant if they reflect the relative subjective desirability of the options. Firing 

rates remained constant across these conditions consistent with the hypothesis that these 

neurons encode the relative subjective desirability of choices (Fig. 10B - p>0.05, paired t-

test, N=24, for all 6 epochs). 
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Discussion 

Over the course of the last decade, a number of researchers have begun to develop 

evidence suggesting that areas in the frontal cortex, posterior parietal cortex, and the basal 

ganglia participate in some classes of decision making (Schall and Thompson, 1999; 

Hikosaka et al., 2000; Glimcher, 2003a). Typically these studies have demonstrated that 

when the actual costs or benefits of an action are manipulated, the activity in brain areas 

associated with that action is also modulated. Both humans and animals are known, however, 

to make decisions based on a subjective internal representation of the costs and benefits of 

their actions rather than based upon the actual costs or benefits of those actions (Stephens 

and Krebs, 1986; Kreps, 1990; Kagel and Roth, 1995; Krebs and Davies, 1996; Glimcher, 

2003b). Neural correlates of these subjective internal representations of costs and benefits 

during decision-making, however, are rare. 

In Breiter and colleague’s (2001) study, for example, human subjects passively 

viewed a lottery. Although activity in the sublenticular extended amygdala was correlated 

with subjective evaluations of the desirability of outcomes, or prospects, these evaluations 

did not influence the outcome of the lottery. Similarly, Platt and Glimcher (1999) had 

monkeys perform a task involving early uncertainty about what eye movement would be 

reinforced, followed by an instructional cue that resolved this uncertainty. Although parietal 

activity during this early period was correlated with the actual values of the two actions, the 

later instruction ultimately indicated which saccade would be rewarded. Therefore, it was 

equivocal whether this parietal activity would be involved in decision making under free 

choice conditions. Other neurophysiological studies have employed dynamic reward 
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contingencies to elicit more deliberate, free choice behavior (Coe et al., 2002; Shima and 

Tanji, 1998), however, there was no effort to gauge the subjective desirability during these 

tasks. 

In the experiment presented here, we examined a form of free choice behavior that 

has been well studied in humans, decision making during strategic conflict (Camerer, 2003). 

Our behavioral experiments indicate that rhesus monkeys produce behavior that is 

empirically very similar to the behavior produced by humans engaged in the same strategic 

conflict. To gain access to the subjective desirability of the two options, we exploited the 

Nash equilibrium concept that showed how subjective desirability is rendered equivalent by 

the strategic play of the two opponents.  

We tested the hypothesis that LIP activity was correlated with subjective desirability 

under a number of experimental manipulations. First, we verified that neuronal activity was 

modulated when the desirability of the options was manipulated with reward magnitude 

during an instructed task (Platt and Glimcher, 1999). When animal subjects were free to 

select either of two options during the inspection game, we found that the average neuronal 

activity remained constant like the average subjective desirability at a Nash equilibrium. 

Furthermore, trial-by-trial fluctuations in neuronal activity were correlated with our trial-by-

trial estimate of subjective desirability. Our results are not consistent with the view that LIP 

activity encodes strictly the probability or intention to make a saccade (Andersen and Buneo, 

2002) because activity remained constant across blocks of trials while response probability 

varied. Moreover, LIP activity cannot encode strictly the probability of receiving a reward or 

magnitude of reward associated with a certain saccade (Platt and Glimcher, 1999) because 

neuronal activity remained unchanged whether a risky large reward or smaller certain reward 
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was in the neuron’s response field. Finally, LIP cannot encode the objective expected value 

of saccades because we showed that the expected value of the risky target varied across 

blocks of trials even though neuronal firing rates did not. Instead our findings are consistent 

with the hypothesis that LIP neurons encode relative subjective desirability in a manner 

appropriate for selecting a course of action. 

Importantly, we also found that the LIP activity was more tightly correlated with 

relative rather than absolute subjective desirability. This study (Fig. 7A) and previous work 

out of our lab (Platt and Glimcher, 1999) has reported that the firing rates of neurons in area 

LIP are correlated with the magnitude of reward yielded by the movement they encoded 

divided by the sum of all available rewards; the neurons encoded the relative values (in this 

limited sense) of the saccades with which they were associated. However, many previous 

investigators had informally varied the magnitude of reward delivered during single target 

tasks and seen little or no effect of that variation on LIP firing rates. These seemingly 

incompatible results are, in fact, exactly what would be expected if LIP activity encodes the 

relative subjective desirability of saccades. Varying the magnitude of reward in a single 

target task changes the absolute subjective desirability for the option in the response field but 

the relative subjective desirability remains unchanged because it is compared to the only 

available option, itself. In fact, LIP displays differential firing with different reward 

magnitudes early during instructed trials but the activity becomes equivalent after the 

instruction indicates which target will be rewarded, essentially changing a two target task 

into a one target task (Fig. 7A) (see Basso and Wurtz, 1998 for similar result in the superior 

colliculus). Also consistent with this view is the finding that doubling the reward magnitude 

of both options during the inspection game had no effect on LIP firing rates given this 
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manipulation did not change the relative subjective desirability of those options. If LIP 

activity encodes the relative subjective desirability, the prediction follows that firing rates 

should scale as a function of the number of available options. For example, when faced with 

only one option (e.g., a single target task) firing rates should approach the maximum of a 

neuron’s dynamic range, when faced with two options (e.g., our inspection game) firing rates 

should be roughly one-half of that maximum, and when faced with three options (e.g., rock-

paper-scissors) firing rates should be roughly one-third of that maximum. In this context it is 

interesting to note that the average firing rate of the posterior parietal neurons we examined 

in the inspection game was about 50 Hz. This evidence that the neuronal architecture encodes 

the value of an action relative to the value of other actions also accords well with studies 

which suggest that human decision-making is almost always based on relative values (c.f. 

Kahneman and Tversky, 1979).  

Function of Posterior Parietal Cortex 

Over the course of the last two decades a number of hypotheses have been advanced 

as to the principle functions of the posterior parietal cortex. Studies in monkey suggest that 

the cluster of cortical subareas lining the intraparietal sulcus may participate in the allocation 

of attentional resources (Colby and Goldberg, 1999), the transformation of sensory data into 

coordinate frameworks appropriate for movement generation (Andersen et al., 1997), and the 

selection of movements for execution (Andersen and Buneo, 2002). Importantly, these 

hypotheses are not necessarily mutually exclusive; indeed they are computationally and 

behaviorally inter-related. As a result, evidence examining the relationship between neuronal 

firing rates in these areas and these psychological processes might be expected to proceed in 
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parallel. The results presented here suggest a correlation between activity in area LIP and the 

psychological processes involved in decision-making. Over the course of the last several 

decades there has been several attempts to demonstrate that neural activity in a particular 

region is uniquely associated with a single psychological process, even if that psychological 

process shares many features with other closely related processes. While there is little doubt 

that many psychological processes will prove to have separable neural bases, simply on the 

grounds of efficient neural coding (Barlow, 1961) we might expect to see an incomplete 

neural segregation of psychological processes that share many informational features. 

Importantly, the results here do not test the hypothesis that this pattern of neural activations 

may also be related to the allocation of attention. They merely indicate that activity in area 

LIP, which is anatomically tied to the saccade generating circuitry itself (Platt et al, 2003), 

carries signals appropriate for saccade selection. 

Conclusion 

Neurobiologists have been increasingly interested in how the primate neural 

architecture produces voluntary decisions but have been limited in their ability to bring these 

behaviors into a laboratory setting. Previous neurophysiological tasks have been unsatisfying 

in this regard because they required animal subjects to react in a stereotyped manner to fixed 

stimuli or the animals were free to make any response but received rewards for only one 

action. To study voluntary decision making in non-human primates, therefore, requires tasks 

specialized for this class of decision making.  

Within the social sciences, game theory has become a popular tool for the study of 

voluntary decision making. Economists have argued that when humans make voluntary 
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decisions they do so by weighing the relative subjective desirability of the actions available 

to them. During mixed strategy games, this results in unpredictable behavior from choice-to-

choice and subjects self-report that they have behaved in a volitional manner. Indeed, our 

human subjects reported this conviction when they played the inspection game in our 

laboratory. The similarity in behavioral data across species presented here suggests that non-

human primates provide a good model for human decision makers under these conditions of 

strategic conflict. 

While we cannot ask non-human primates to report their subjective impressions of the 

decision making process during these experiments, the data described here may still shed 

light on the mechanisms of human voluntary decision-making. The neural data presented 

here suggests that the neurons of area LIP encode the relative subjective desirability of 

saccadic eye movements. If human choices are guided by circuits involving neurons like 

those in monkey area LIP, then it is tempting to speculate that the average firing rates of 

these neurons may also encode the subjective desirability of actions in humans. Furthermore, 

variations in these spike trains may be the source of unpredictably in decisions from choice-

to-choice which would be consistent with the highly variable spike trains of cortical neurons 

(Dean, 1981; Glimcher, 2004; 2005; Tolhurst et al., 1981). Completely unanswered, however 

is a question central to game theory; how does this stochastically maintained equilibrium of 

neuronal activities give rise to game theoretic behavioral equilibriums in which subjects mix 

two or more responses asymmetrically? We can only speculate that future studies of neuronal 

and behavioral dynamics during game play may provide insight into the mechanistic nature 

of the volitional process. 
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Methods 

Subjects played a repeated, mixed strategy, game-theoretic task known as the 

inspection game for either monetary (humans) or water (monkeys) reward. All human 

procedures were approved by the New York University Committee on Activities Involving 

Human Subjects. All monkey procedures were approved by the New York University 

Animal Care and Use Committee and were in compliance with the Public Health Service’s 

Guide for the Care and Use of Laboratory Animals. 

 

General Behavioral Task 

Subjects played the inspection game whose general payoff matrix is shown in figure 

1A. On each trial, the subject’s payoff was determined by their own action and that of their 

opponent. It is assumed that rational decision-makers choose the option that they perceive as 

being most desirable on each trial. If both the subject and opponent act rationally in this 

sense, then a behavioral equilibrium will be reached in which the average subjective 

desirability for each option is rendered equivalent for both players by the dynamic interaction 

with an opponent. The available options and their associated payoffs will be described first 

for the experimental subjects (or ‘employees’ in game-theoretic terminology) followed by 

those of the opponent (or ‘employers’). 

On each trial, the experimental subject was simply required to choose either the 

certain option or the risky option (Fig. 1A). The certain option was guaranteed to yield the 

same small reward regardless of the opponent’s choice. The risky option yielded twice the 

magnitude of reward if the opponent did not inspect but yielded zero reward if the opponent 
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did inspect. Unless otherwise stated (i.e., Fig. 10A), the options available and their associated 

payoffs were the same for the subjects across all blocks of trials.  

Similarly, the subject’s opponent had to choose either the inspect option or the no 

inspect option on each trial. The payoffs associated with inspecting varied across blocks of 

trials by the cost of inspection (Fig. 1A - variable I).  

The normative rates of choosing each option at the Nash equilibrium are outlined 

below. The subject’s rate of choosing the risky option increases linearly with the opponent’s 

cost of inspection given the simplifying assumptions that the subjective desirability of an 

option is the normative expected value of that option (expected value = probability of 

receiving a reward x magnitude of reward), that block boundaries can be neglected, and that 

each player can assume his opponent to be perfectly rational. Of course, perfect linearity 

should not be expected in subjects’ actual behavior (e.g., Fig. 3) for two principle reasons: 1) 

true subjective desirability is known to vary from objective expected value, and 2) there are 

asymmetries in information associated with the inspection game (see RESULTS). 

 For the subject, at Nash equilibrium the subjective desirability for choosing the 

certain option is equal to the subjective desirability for choosing the risky option: 

(Equation 1) SD(certain) = SD(risky) 

which given the payoff matrix (Fig. 1A) expands to 

(Equation 2) p(inspect)*0.5 + (1-p(inspect))*0.5 = p(inspect)*0 + (1-p(inspect))*1 

solving for p(inspect) 

(Equation 3) p(inspect) = 0.5 
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where SD(certain) is the subjective desirability for choosing to the certain option, SD(risky) 

is the subjective desirability for choosing the risky option, p(inspect) is the probability of the 

opponent choosing to inspect and 1-p(inspect) is the probability of the opponent choosing to 

not inspect when at equilibrium. 

Similarly, for the opponent at Nash equilibrium the subjective desirability for 

choosing the inspect option is equal to the subjective desirability for choosing the not inspect 

option.  

(Equation 4) SD(inspect) = SD(not inspect) 

which given the payoff matrix (Fig. 1A) expands to 

(Equation 5) p(risky)*(1-I) + (1-p(risky))*(2-I) = p(risky)*0 + (1-p(risky))*2 

solving for p(risky) 

(Equation 6) p(risky) = I 

where p(risky) is the probability of the subject choosing the risky option and 1-p(risky) is the 

probability of the subject choosing the certain option when at equilibrium. Across blocks of 

trials, I, the opponent’s cost of inspection, was experimentally manipulated between 0.1 – 0.9 

in steps of 0.2 with the intended effect of changing the subject’s rate of choosing the risky 

option (Equation 6). 
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Human Behavioral Task 

Human subjects were required to choose with a computer mouse one of two buttons 

on a monitor that corresponded to either the certain or the risky option (Fig. 1B). Subjects 

were naive to the nature of the payoff matrix and were simply instructed to “make as much 

money as possible” learning through trial and error. The payoff for each trial was presented 

in the center of the screen at the end of each trial along with a cumulative total of earnings 

over the last 10 trials. The first block of 50 trials was a practice session. Afterwards, 5 

separate blocks of 150 trials, each at a different cost of inspection, were played in a 

randomized order. At the end of the session, subjects were paid their cumulative earnings that 

depended on performance and were typically about $35 US. Subjects were not aware of the 

nature of their opponent which could be another human in a different room or a standardized 

computer algorithm (see below). 

 

Monkey Behavioral Task 

Monkeys played the same computer opponent as the human subjects in an oculomotor 

version of the inspection game for water reward (Figure 1C). On each trial, the monkey 

began by looking at a central yellow fixation point. Two targets were presented 300 ms later; 

a red risky target in the center of the neuron’s response field and a green certain target at a 

position of equal eccentricity but in the opposite direction from the fixation point. The 

fixation point was extinguished for 500 ms and could reappear as one of three colors – 

yellow, red or green. After 500 ms the fixation point disappeared, which was the cue for the 

monkey to indicate its choice with an eye movement to one of the targets within 70-500 ms 

to obtain reward. On 80% of the trials, the fixation point reappeared as yellow. On these 
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inspection game trials, the monkey could voluntarily choose either target. On each of 10% of 

the remaining trials, the fixation point reappeared as red or green. If, on these instructed 

trials, the monkey correctly chose the target that matched the color of the fixation point, he 

received the reward associated with that target. Instructed trials were interleaved with 

inspection game trials so the monkey would remain uncertain about what response would be 

reinforced until each trial was underway. 

 

Computer Opponent 

For the majority of experiments both human and monkey subjects competed against a 

standardized computer algorithm which played the role of the opponent (see 

http://www.cns.nyu.edu/~glimcher/inspection_game for MATLAB code of complete 

algorithm). Briefly, the computer algorithm worked by tracking two variables of the subject’s 

behavior: (1) the history of the subject’s choices to give an estimate of the overall p(risky), 

(2) the subject’s repetition rate (repactual), that is, how often a subject repeated the response of 

the previous trial. The expected repetition rate (repexpected) was calculated for a given p(risky) 

assuming the probability of a response on each trial was controlled by a random process 

independent of previous choices. 

The computer updated its estimate of the probability of the subject choosing the risky 

option on each trial using the following reinforcement learning algorithm: 

(Equation 7) p(risky)t+1 = p(risky)t + alpha(C-p(risky)t) 

where t is the current trial. If the subject chose the risky option on the current trial, C = 1. If 

the subject chose the certain option on the current trial, C = 0. Alpha, which determined the 

rate of learning, was set to 0.1 during game play. 
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(Equation 8) repexpected = (p(risky) * p(risky)) + ((1-p(risky)) * (1-p(risky))) 

the difference in the repactual from repexpected was used to bias the computer’s estimate of 

p(risky) for the upcoming trial 

(Equation 9) p(risky)corrected = p(risky) + Lamda(repexpected – repactual) 

in which Lamda was set to 0.1.  

The variable p(risky)corrected represents an estimate of the probability of the subject 

choosing the risky option given his past history of doing so and allows the algorithm to 

exploit dependencies of upcoming behavior on actions taken during the previous trial. The 

variable p(risky)corrected was substituted for p(risky) in calculating the relative subjective 

desirability of inspecting and not inspecting on the upcoming trial which, in turn, was used to 

guide the opponent’s choice. In addition, an exploration bonus was added which gradually 

increased as the algorithm continued to produce a single response. Because p(risky) was only 

updated after inspection trials - and by extension so was the estimate of relative subjective 

desirability as well - the exploration bonus was necessary so the computer did not get stuck 

always choosing no inspect. Variations of this exploration bonus are used for similar 

purposes by other reinforcement learning algorithms in an effort to strike a balance between 

exploring for potentially more desirable resources and exploiting resources already available 

(Sutton and Barto, 1998). 

The computer opponent would be deterministic if it always chose the option with the 

highest desirability on every trial. If a subject had sufficient precision in a trial-by-trial 

estimate of their own p(risky), they could accurately predict the actions of the algorithm. In 

order to incorporate stochasticity into the actions of the algorithm we employed a decision-
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rule that converted relative subjective desirability into a response probability. When 

inspecting and not inspecting had equal subjective desirability, the decision rule randomly 

selected the inspect and no inspect options with equal probability. As subjective desirability 

increased for one option over another, the probability that the more desirable response would 

be selected increased gradually. 

Neurophysiology 

In two monkeys, we recorded the activity of single neurons that were located in the 

lateral bank of the intraparietal sulci using standard electrophysiological techniques. The 

location of the neurons was established using neuronal response properties and 

neurosonography (Glimcher at al., 2001; Platt and Glimcher, 1997). After isolation of a 

single neuron, animals were required to make a series of 50-100 eye movements beginning 

from a central fixation point and directed to eccentric targets selected randomly from among 

several hundred peripheral locations. The monkeys were trained to withhold the eye 

movement to the eccentric target until the fixation point was extinguished (500-800 ms after 

target presentation). We used this delayed saccade task to identify the center of the neuronal 

response field, defined as the position of the eccentric target for which the neuron was 

maximally active during the delay period. 

To study the evolution of neuronal activity, we divided each trial into 6 epochs (Fig. 

5A): pre-target (300 ms before presentation of targets), visual (50-350 ms after target 

presentation), delay (50-350 ms after initial fixation point offset), cue (50-350 ms after 

fixation point reappearance), pre-motor (0-150 ms after second fixation point offset), and 

post-motor (350-500 ms after second fixation point offset). Neurons were included in this 

study if, during inspection game trials with a 0.5 cost of inspection, their activity: (1) was 
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choice selective (activity was higher for trials into the response field than for movements 

opposite the response field during at least 1 epoch while the choice targets were present at 

p<0.01 by paired t-test during visual, delay, cue, or pre-motor epochs), (2) increased with the 

presentation of a target in the neuronal response field (there was a significant increase in 

activity 50-150 ms after the targets were presented compared to the 150 ms before the targets 

were presented at p<0.01 by paired t-test).  
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Figure Legends 

Figure 1. The mixed strategy inspection game. A. General form of the payoff matrix. The 

variables in the bottom left of each cell determine the subject’s payoffs and the variables in 

the top right of each cell determine the opponent’s payoffs for each combination of player’s 

responses. I = cost of inspection to the opponent = 0.1 to 0.9 in 0.2 steps. 1 unit of payoff = 

0.25mL of water for monkey = $0.05 for human. See METHODS for more details. B. 

Manual inspection game played by human subjects. Humans were free to choose either the 

certain (button 1) or risky (button 2) option by clicking the appropriate button with a pointer 

controlled by a computer mouse (black arrow). At the end of each trial their payoff in cents 

was presented in the center of the display. C. Oculomotor inspection game played by monkey 

subjects. Monkey subjects were free to choose either the certain target (green) or the risky 

target (red) when the central fixation point was extinguished for the second time. The dashed 

circles indicate the current direction of gaze. Instructed trials were identical except the 

fixation point reappeared as either green or red indicating which target would be rewarded at 

the end of the trial (not shown).  

Figure 2. Human versus human choice behavior during 3 blocks of inspection game trials. 

The thick black line denotes the 20 trial running average of the percentage of the risky option 

chosen by the subject. The line gray line denotes the corresponding 20 trial running average 

of the percentage of the inspect option chosen by the opponent. The opponent’s costs of 

inspection were stepped sequentially from 0.5 to 0.9 to 0.3 across the 3 blocks of trials. 150 

trials/block. The horizontal gray lines denote the rates of choosing the risky option predicted 

at the Nash equilibrium. The opponent’s predicted rate of choosing the inspect option at Nash 

equilibrium was 50% for all blocks of trials. 
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Figure 3. Influence of changing the opponent’s cost of inspection on the subject’s response 

rate and the expected value of choices. A. Average choice behavior (+/- SEM) of human 

subjects competing against human opponents (black) and human (red) and monkey (blue) 

subjects competing against the computer opponent during inspection game trials. Human vs 

human data: N=5, 150 trials/block. Human vs computer data: N=8 subjects, 150 trials/block. 

Monkey data: N=29 blocks of trials (13 blocks from monkey 1, 16 blocks from monkey 2), 

100+/-14.3 s.d. trials/block. The diagonal gray line denotes the predicted rates of responding 

at the Nash equilibrium. B. Influence of expected value on choice behavior. The relative 

expected value of the risky choice plotted on the abscissa was calculated as the product of the 

probability of receiving the reward for choosing the risky option and the magnitude of reward 

associated with the risky option divided by the sum of the expected values of both the risky 

and certain options. Each datum point is calculated from blocks of trials with a different cost 

of inspection. Note: Same data sets as Fig. 3A except N=3 for human vs. human data. For the 

first two experiments, the opponent’s choices were not saved and therefore the subject’s 

probability of receiving a reward could not be calculated.  

Figure 4. A. Plot of the matching law. Ratio of choices plotted on the ordinate was calculated 

as the number of risky choices divided by the number of certain choices. On the abscissa, the 

ratio of rewarded trials was calculated as the number of rewarded risky trials divided by the 

number of rewarded certain trials and the ratio of rewards was calculated as the magnitude of 

the risky reward divided by the magnitude of the certain reward. Both axes are plotted in log 

coordinates.  Each data point represents averages from blocks with the same cost of 

inspection. Same data sets as Fig. 3B. Subjects ‘overmatch’ indicted by the best fit regression 

(black line) with a slope of 1.32 that differs from the line of unity (gray line) with a slope of 
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1. B. Dynamics of strategic interaction between monkey subject (black) and computer 

opponent (gray). See text for details. 

Figure 5. LIP activity related to choice direction. Data are shown during blocks of trials in 

which the cost of inspection was 0.5 and the monkey chose either the target in (black - risky 

target) or opposite (gray - certain target) the response field. A. Individual neuron. Each raster 

represents the time of an extracellularly recorded action potential and each row of rasters 

represents action potentials from the last 20 trials of each response option. Triangles 

represent the time of initiation of the saccade for each trial. Average firing rate is displayed 

as a post-stimulus time histogram with 50 ms bin widths for all trials during a block. The 

timing of the presentation of the fixation point (FP), risky target (risky T) and certain target 

(certain T) are shown at the bottom of the panel. The 6 epochs during which neuronal activity 

was calculated for subsequent analyses is depicted by the gray bars. B. Neuronal population 

activity (N=52) of the same comparison as in A. Note that the ordinate is half the range of 

that in A. 

Figure 6. Monkey’s choice behavior and corresponding activity of a single LIP neuron during 

instructed and inspection game trials. A. Two instructed trial blocks (block 1 – large 0.5 ml 

reward into response field, block 2 – small 0.25 ml reward into the response field) followed 

by four blocks of inspection game trials. The black line denotes a 20 trial running average of 

the percentage of saccades directed to the target in the neuron’s response field. The 

horizontal gray lines denote the predicted percentage of trials directed to the target in the 

neuron’s response field either as instructed by the color of the fixation point (instructed trials) 

or by the Nash equilibrium equations (inspection game trials). The gray dots denote a 

running average of the firing rate during the visual epoch only for those trials in which the 
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animal chose the target in the neuron’s response field over the last 20 trials. Because only 

those trials in which the monkey looked into the response field were included, this firing rate 

average is composed of more observations during blocks when the monkey chooses this 

option more often (e.g., block 5) than less often (e.g., block 4). B. Average activity of the cell 

in A, throughout the duration of large (black) and small (gray) reward blocks of instructed 

trials. Same conventions as Fig. 5A. C. Average activity of the same cell throughout the 

duration of 4 blocks of inspection game trials with different costs of inspection. Gray bar in 

B and C denotes the visual epoch sampled in A. 

Figure 7. Population LIP activity during instructed and inspection game trials. Same 

comparisons as in Fig. 6. A. Population firing rate (N=30) during instructed trials when the 

target in the response field yielded a large (black – 0.5 ml) or small (gray – 0.25 ml) reward 

relative to that opposite the response field. B. Population firing rate (N=52) during 5 blocks 

of inspection game trials in which the cost of inspection ranged form 0.1 – 0.9. Inset. 

Average choice behavior associated with the 5 waveforms in B. 

Figure 8. Correlations between individual LIP activity and block conditions. A. The firing 

rate of an individual LIP neuron and the cost of inspection during inspection game trials. The 

small data points represent firing rates on single trials and the large data points represent the 

average firing rate (+/- SEM) for each block. The black lines represent the least squares 

linear regressions fit to these data. The same plots were made for the instructed task (not 

shown) in which the abscissa was replaced with the relative magnitude of rewards for the 

large and small rewarded blocks. B. Histograms of correlation coefficients for the population 

obtained from the analyses in A. Filled bars represent neurons with statistically significant 

correlations (Fischer’s r to z test, p<0.05) for inspection game (gray) and instructed (black) 
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trials. Solid vertical lines represent the average correlation coefficients for inspection game 

(gray) and instructed (black) trials. Those average correlations that differ significantly from 

zero (dashed lines) are denoted with an asterisk (t-test, p<0.01). 

Figure 9. Correlation between LIP firing rates and an estimate of the relative desirability of 

choices. A. Trial-by-trial correlations between firing rate and an estimate of relative 

desirability for each of the 6 epochs. Only inspection game trials in which the movement was 

directed into the response field were included in this analysis and, thus, the sensory inputs 

and motor responses were largely identical for each trial. Statistically significant least 

squares linear regressions (black lines) are denoted with an asterisk (p < 0.05, Fisher’s r to z 

test). B. Regression analysis for the population of neurons (N = 48) for the 6 epochs during 

the inspection game trials. The average slopes of the regression lines of firing rates versus 

five behavioral parameters are shown. Because the range of the abscissa varies greatly 

between different parameters, a comparison of the absolute value of the slopes for each of 

these parameters can be misleading. However, those values that differed significantly from 

zero are denoted by an asterisk (p<0.01) and this statistic is not influenced by the range of 

abscissa values. 

Figure 10. Controls for inspection game trials. In all cases, data is shown only for trials in 

which saccades were directed into neuronal response fields during blocks in which the costs 

of inspection were fixed at 0.5. A. Relative versus absolute subjective desirability. For both 

blocks of trials, the risky target was located in the neuron’s response field. In one block of 

trials, the standard reward magnitudes were used (gray) and, in the other block, reward 

magnitudes associated with both targets were doubled (black). This manipulation changed  

the absolute subjective desirability of the option in the response field while the relative 
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subjective desirability of the target in the response field remained unchanged. N=22. B. 

Switched location of certain and risky targets. Changing the target in the response field from 

the risky (black) to certain (gray) option changed both the probability and magnitude of 

reward associated with the option in the response field while the relative subjective 

desirability of the target in the response field remained unchanged. N=24.  


