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Abstract
In the companion paper (Ripamonti

et al., 2004), we present data that
measure the effect of surface slant on
perceived lightness.  Observers are
neither perfectly lightness constant
nor luminance matchers, and there is
considerable individual variation in
performance.  This paper develops a
parametric model that accounts for how
each observer’s lightness matches vary
as a function of surface slant. The
model is derived from consideration of
an inverse optics calculation that
could achieve constancy.  The inverse
optics calculation begins with
parameters that describe the
illumination geometry.  If these
parameters match those of the physical
scene, the calculation achieves
constancy.  Deviations in the model’s
parameters from those of the scene
predict deviations from constancy.  We
used numerical search to fit the model
to each observers data.  The model
accounts for the diverse range of
results seen in the experimental data
in a unified manner, and examination
of its parameters allows

interpretation of the data that goes
beyond what is possible with the raw
data alone.  In particular, the model
allows calculation of a constancy
index that takes on a value of 0 for
luminance matching and 1 for perfect
constancy.  Across our experiments,
the average constancy index was 0.57.

Introduction
In the companion paper (Ripamonti

et al., 2004), we present
psychophysical data that measure how
perceived surface lightness varies
with scene geometry.  In particular,
we measured the effect of surface
slant.  The data indicate that
observers take geometry into account
when they judge surface lightness, but
that there are large individual
differences.  This paper develops a
quantitative model of our data.  The
model is derived from an analysis of
the physics of image formation and of
the computations that the visual
system would have to perform to
achieve lightness constancy.  The
model allows for failures of lightness
constancy by supposing that observers
do not perfectly estimate the lighting
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geometry.  Individual variation is
accounted for within the model by
parameters that describe each
observer’s representation of that
geometry.

Figure 1 replots experimental data
for three observers (HWK, EEP, and
FGS) from Ripamonti et al. (2004).
Observers matched the lightness of a
standard object to a palette of
lightness samples, as a function of
the slant of the standard object.  The
data consist of the normalized
relative match reflectance at each
slant.  If the observer had been
perfectly lightness constant, the data
would fall along a horizontal line,
indicated in the plot by the red
dashed line.  If the observer were
making matches by equating the
reflected luminance from the standard
and palette sample, the data would
fall along the blue dashed curves
shown in the figure.  The complete
data set demonstrates reliable
individual differences ranging from
luminance matches (e.g. HWK) to
approximations of constancy (e.g.
FGS). Most of the observers, though,
showed intermediate performance (e.g.
EEP).

Figure 1 about here

Figure 1.  Normalized relative matches, replotted from
Ripamonti et al. (2004).  Data are for Observer HWK (Paint
instructions), Observer EEP (Neutral instructions), and
Observer FGS (Neutral instructions). See companion paper for
experimental details.

Given that observers are neither
perfectly lightness constant nor
luminance matchers, our goal is to
develop a parametric model that can
account for how each observer’s
matches vary as a function of slant.
Establishing such a model offers
several advantages.  First, individual
variability may be interpreted in
terms of variation in model
parameters, rather than in terms of
the raw data.  Second, once a
parametric model is established, one
can study how variations in the scene
affects the model parameters (c.f.
Krantz, 1968; Brainard & Wandell,
1992)). Ultimately, the goal is to
develop a theory that allows

prediction of lightness matches across
a wide range of scene geometries.

A number of broad approaches have
been used to guide the formulation of
quantitative models of context
effects.  Helmholtz (Helmholtz, 1896)
suggested that perception should be
conceived of as a constructed
representation of physical reality,
with the goal of the construction
being to produce stable
representations of object properties.
The modern instantiation of this idea
is often referred to as the
computational approach to
understanding vision (Marr, 1982;
Landy & Movshon, 1991).  Under this
view, perception is difficult because
multiple scene configurations can lead
to the same retinal image.  In the
case of lightness constancy, the
ambiguity arises because illuminant
intensity and surface reflectance can
trade off to leave the intensity of
reflected light unchanged.

Given the ambiguity of the retinal
image about the physical configuration
of the scene, what we see must depend
not only on the image but also on the
rules the visual system employs to
choose one configuration as that
perceived.  Although this general
notion is well accepted, different
authors choose to formulate the nature
of these rules in a variety of ways,
with some focusing on constraints
imposed by known mechanisms (e.g.
Stiles, 1967; Cornsweet, 1970) and
others on constraints imposed by the
statistical structure of the
environment (e.g. Gregory, 1968; Marr,
1982; Landy & Movshon, 1991; Wandell,
1995; Geisler & Kersten, 2002; Purves
& Lotto, 2003).  In our view, the
modeling agenda is less to decide
amongst these broad conceptions but
rather to adopt one of them and use it
to provide a quantitative account of a
wide range of data.  Here we adopt the
basic computational approach and use
it to develop a model of our data.
Our model is essentially identical to
that formulated recently by Boyaci et
al. (2003) to account for their
measurements of the effect of surface
slant on perceived lightness.
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The starting point is the idea is
that the visual system attempts to
parse the retinal image and recover
the physical characteristics of the
scene, so that perceived lightness
would be closely correlated with
object surface reflectance.  In this
approach, lightness constancy is found
when the visual system is able to do
this accurately, while deviations from
constancy indicate inaccuracies in the
calculation.  In previous work, we
have elaborated equivalent illuminant
models of observer performance for
tasks where surface mode or surface
color was judged (Speigle & Brainard,
1996; Brainard, Brunt, & Speigle,
1997;  see also Brainard, Wandell, &
Chichilnisky, 1993; Maloney & Yang,
2001; Boyaci et al., 2003).  In such
models, the observer is assumed to be
correctly performing a constancy
computation, with the one exception
that their estimate of the illuminant
deviates from the actual illuminant.
Thus in these models, the
parameterization of the observer’s
illuminant estimate determines the
range of performance that may be
explained, with the detailed
calculation then following from an
analysis of the physics of image
formation.

Equivalent Illuminant Model

Overview
Our model is derived from
consideration of an inverse optics
calculation that could achieve
constancy.  The inverse optics
calculation begins with parameters
that describe the illumination
geometry.  If these parameters match
those of the physical scene, the
calculation achieves constancy.
Deviations in the model’s parameters
from those of the scene predict
deviations from constancy. In the next
sections we describe the physical
model of illumination and how this
model can be incorporated into an
inverse optics calculation to achieve
constancy.  We then show how the
formal development leads to a

parametric model of observer
performance.

Physical Model
Consider a Lambertian flat matte

standard object1 that is illuminated
by a point2 directional light source.
The standard object is oriented at a
slant N with respect to a reference
axis (x-axis in Figure 2). The light
source is located at a distance d
from the standard surface. The light
source azimuth is indicated by D and
the light source declination (with
respect to the z-axis) by D.

The luminance Li, N
of the light

reflected from the standard surface i
depends on its surface reflectance ri,
its slant N, and the intensity of the
incident light E:

Li, N
= riE . (1)

When the light arrives only directly
from the source, we can write

E = ED (2)

where

  
ED =

ID sin D[cos( D − N )]

d2 . (3)

Here ID represents the luminous
intensity of the light source.
Equation 3 applies when
−90° ≤ ( D − N ) ≤ 90°.  For a purely
directional source and ( D − N ) outside
of this range, ED = 0.

Figure 2 about here

Figure 2.  Reference system centered on the standard object.
The standard object is oriented so that its surface normal forms
an angle N  with respect to the x-axis. The light source is
located at a distance d  from this point, the light source
azimuth (with respect to the x-axis) is D , and the light source
declination (with respect to the z-axis) is D .

In real scenes, light from a source
arrives both directly and after
reflection off other objects.  For
this reason, the incident light E can
be described more accurately as a
compound quantity made of the
contribution of directional light ED

and some diffuse light EA.  The term
EA provides an approximate description
of the light reflected off other
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objects in the scene.  We rewrite
Equation 2 as

E = ED + EA  (4)

and Equation 1 becomes

  
Li, N

= ri
ID sin D[cos( D − N )]

d2 + EA
 
  

 
  . (5)

The luminance of the standard surface
Li, N

 reaches its maximum value when

D − N = 0 and its minimum for
−90° ≤ ( D − N ) ≤ 90°. In the latter case
only the ambient light EA illuminates
the standard surface.

It is thus useful to simplify
Equation 5 by factoring out a
multiplicative scale factor  that is
independent of N:

Li, N
= (cos( D − N ) + FA ) . (6)

In this expression = ri

ID sin D

d 2  and FA

is given by
  
FA =

d2 EA

ID sin D
.

Physical Model Fit
How well does the physical model

describe the illumination in our
apparatus.?  We measured the luminance
of our standard objects under all
experimental slants, and averaged
these over standard object
reflectance.  Figure 3 (solid circles)
shows the resulting luminances from
each experiment of the companion paper
(Ripamonti et al., 2004) plotted
versus the standard object slant.  For
each experiment, the measurements are
normalized to a value of 1 at N = 0°.
We denote the normalized luminances by

L
N

norm.  The solid curves in Figure 3
denote the best fit of Equation 6 to
the measurements, where D, FA and 
were treated as a free parameters and
chosen to minimize the mean squared
error between model predictions and
measured normalized luminances.

Figure 3 about here

Figure 3. The green symbols represent the relative normalised
luminance measured for standard objects used in (Ripamonti
et al., 2004) and the colored curves illustrate the fit of the
model described in the text. Top panel corresponds to the light
source set-up used in Experiments 1 and 2, middle panel to
Experiment 3 light source on the left, bottom panel for
Experiment 3 light source on the right.

The fitting procedure returns two
estimated parameters of interest: the
azimuth D of the light source and the
amount FA of ambient illumination.
(The scalar  simply normalizes the
predictions in accordance with the
normalization of the measurements.)
We can represent these parameters in a
polar plot, as shown in Figure 4.  The
azimuthal position of the plotted
points represents D, while the radius
v at which the points are plotted is
a function of FA:

  
v =

1
FA + 1

. (7)

If the light incident on the standard
is entirely directional then the
radius of the plotted point will be 1.
In the case where the light incident
is entirely ambient, the radius will
be 0.

Figure 4 about here

Figure 4. Light source position estimates of the physical model.
Green lines represent the light source azimuth as measured in
the apparatus. In Experiments 1, 2 and 3 -light source on the
left- the actual azimuth was D =  -36°. In Experiment 3 -light
source on the right- the actual azimuth was D = 23°. The red
symbol represents light source azimuth estimated by the model
for Experiments 1 and 2 ( D =  -25°). For the light source on
the left, in Experiment 3, the model estimate is indicated in
blue ( D =  -30°); for the light source on the right in purple
( D  = 25°).  The radius of the plotted points provides
information about the relative contributions of directional and
ambient illumination to the light incident on the standard object
through Equation 7.  The radius of the outer circle in the plot is
1.  The parameter values obtained for FA  are FA =0.18
(Experiments 1 and 2), FA =0.43 (Experiment 3 left), and
FA =0.43 (Experiment 3 right).

The physical model provides a good
fit to the dependence of the measured
luminances on standard object slant.
It should be noted, however, that the
recovered azimuth of the directional
light source differs from our direct
measurement of this azimuth. The most
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likely source of this discrepancy is
that the ambient light arising from
reflections off the chamber walls has
some directional dependence.  This
dependence is absorbed into the
model’s estimate of D.

Equivalent Illuminant Model
Suppose an observer has full

knowledge of the illumination and
scene geometry and wishes to estimate
the reflectance of the standard
surface from its luminance.  From
Equation 6 we obtain the estimate

˜ r i, N
=

Li, N

(cos( D − N )+ FA )
. (8)

We use a tilde to denote perceptual
analogs of physical quantities.

To the extent that the physical
model accurately predicts the
luminance of the reflected light,
Equation 8 predicts that the
observer’s estimates of reflectance
will be correct and thus Equation 8
predicts lightness constancy.  To
elaborate Equation 8 into a parametric
model that allows failures of
constancy, we replace the parameters
that describe the illuminant with
perceptual estimates of these
parameters:

˜ r i, N
=

Li, N

(cos( ˜ 
D − N )+ ˜ F A )

(9)

where ˜ 
D and ˜ F A are perceptual analogs

of D and FA.  Note that the
dependence of ˜ r i, N

 on slant in
Equation 9 is independent of ri.

Equation 9 predicts an observer’s
reflectance estimates as a function of
surface slant, given the parameters ˜ 

D

and ˜ F A of the observer’s equivalent
illuminant.  These parameters describe
the illuminant configuration that the
observer uses in his or her inverse
optics computation.

Our data analysis procedure
aggregates observer matches over
standard object reflectance to produce
relative normalized matches r 

N

norm.
The relative normalized matches
describe the overall dependence of

observer matches on slant.  To link
Equation 8 with the data, we assume
that the normalized relative matches
obtained in our experiment (see
Appendix of Ripamonti et al., 2004)
are proportional to the computed ˜ r i, N

,
leading to the model prediction

r 
N

norm =
L

N

norm

(cos( ˜ 
D − N )+ ˜ F A )

(10)

where  is a constant of
proportionality that is determined as
part of the model fitting procedure.
In Equation 10 we have substituted

L
N

norm for Li, N
 since the contribution of

surface reflectance ri can be absorbed
into .

Equation 10 provides a parametric
description of how our measurements of
perceived lightness should depend on
slant.  By fitting the model to the
measured data, we can evaluate how
well the model is able to describe
performance, and whether it can
capture the individual differences we
observe.  In fitting the model, the
two parameters of interest are ˜ 

D and
˜ F A, while the parameter  simply
accounts for the normalization of the
data.

In generating the model
predictions, values for N and L

N

norm

are taken as veridical physical
values.  It would be possible to
develop a model where these were also
treated as perceptual quantities and
thus fit to the data.  Without
constraints on how ˜ 

N and ˜ L 
N

norm are
related to their physical
counterparts, however, allowing these
as parameters would lead to excessive
degrees of freedom in the model.  In
our slant matching experiment,
observer’s perception of slant was
close to veridical and thus using the
physical values of N seems justified.
We do not have independent
measurements of how the visual system
registers luminance.
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Model Fit

Fitting the model
For each observer, we used

numerical search to fit the model to
the data.  The search procedure found
the equivalent illuminant parameters
˜ 

D and ˜ F A and the scaling parameter 
that provided the best fit to the
data.  The best fit was determined as
follows.  For each of the three
sessions k = 1,2,3 we found the
normalized relative matches for that
session, r k, N

norm.  We then found the
parameters that minimized the mean
squared error between the model’s
prediction and these r k, N

norm.  The
reason for computing the individual
session matches and fitting to these,
rather than fitting directly to the
aggregate r 

N

norm is that the former
procedure allows us to compare the
model’s fit to that obtained by
fitting the session data at each slant
to its own mean.

Model Fit
Model fit results are illustrated

in the left hand columns of Figures 5
to 10. The dot symbols (green for
Neutral instructions and purple for
Paint Instructions) are observers’
normalized relative matches and the
orange curve in each panel shows the
best fit of our model. We also show
the predictions for luminance and
constancy matches as, respectively, a
blue or red dashed line.  The right
hand columns of Figures 5 to 10 show
the model’s ˜ 

D and ˜ F A for each
observer, using the same polar format
introduced in Figure 4.

Figure 5 about here

 Figure 5. Model fit to observers’ relative normalized matches.
In the left column the green dots represent observers’ relative
normalized matches as a function of slant for Experiment 1.
Error bars indicate 90% confidence intervals. The orange curve
is the model’s best fit for that observer. The blue dashed curve
represents predictions for luminance matches and the red
dashed line for constancy matches. The right column shows
the equivalent illuminant parameters (green symbols) in the
same polar format introduced in Figure 4.  The polar plot also
shows the illuminant parameters obtained by fitting the
physical model to the measured luminances (red symbols).
The numbers at the top left of each square are the constancy
index (CI) for the observer.  Observers are listed in increasing
order of CI.

Figure 6 about here

Figure 6. Model fit to observers’ relative normalized matches
for Experiment 2.  Same format as Figure 5, except that
observer data and parameters are shown in purple.

Figure 7 about here

Figure 7. Model fit to observers’ relative normalized matches
for Experiment 3 (light on the left, Neutral instructions). Same
format as Figure 5.

Figure 8 about here

Figure 8. Model fit to observers’ relative normalized matches
for Experiment 3 (light on the right, Neutral instructions). Same
format as Figure 5.  Note that the observer order differs from
Figure 7 as the ordering of the observers in terms of CI was
not the same for left and right light positions.

Figure 9 about here

Figure 9. Model fit to observers’ relative normalized matches
for Experiment 3 (light on the left, Paint instructions). Same
format as Figure 6.

Figure 10 about here

Figure 10. Model fit to observers’ relative normalized matches
for Experiment 3 (light on the right, Paint instructions). Same
format as Figure 6.  Note that the observer order differs from
Figure 9 as the ordering of the observers in terms of CI was
not the same for left and right light positions.

With only a few exceptions, the
equivalent illuminant model captures
the wide range of performance
exhibited by individual observers in
our experiment. To evaluate the
quality of the fit, we can compare the
mean squared error for the equivalent
illuminant model to the variability in
the data.  To make this comparison, we
fit the r k, N

norm at each session and
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slant by their own means.  This
provides a lower bound on the squared
error that could be obtained by any
model.  For comparison, we also
compute the error obtained by fitting
the r k, N

norm with the luminance matching
and constancy matching predictions.
Figure 11 shows the fit errors
(averaged over all experiments and
observers) when the data are fit by
their own mean, by the equivalent
illuminant model, and by the
predictions of luminance and constancy
matching.  We see that the error from
the equivalent illuminant model is
only slightly greater than the error
based on predicting with the mean, and
considerably smaller than the error
obtained with either luminance
matching or constancy predictions.

Figure 11 about here

Figure 11. Mean squared errors obtained when the matching
data for each slant, session and observer is fitted by: a) its own
mean b) the equivalent illuminant model, c) the luminance
match prediction, and d) the lightness constancy prediction.

Using the Model
The equivalent illuminant allows

interpretation of the large individual
differences observed in our
experiments.  In the context of the
model, these differences are revealed
as variation in the equivalent
illuminant model parameters ˜ 

D and ˜ F A,
rather than as a qualitative
difference in the manner in which
observers perform the matching task.
In the polar plots we see that for
each condition, the equivalent
illuminant model parameters are in the
vicinity of the corresponding physical
model parameters, but with some
scatter.  Observers whose data
resembles luminance matching have
parameters that plot close to the
origin, while those whose data
resemble constancy matching have
parameters that plot close to those of
the physical model.  Given the general
difficulty of inverse optics problems,
it is perhaps not surprising that
individual observers would vary in
this regard.

Various patterns in the data shown
by many observers, particularly the
sharp drop in match for N = 60° when
the light is on the left and the non-
monotonic nature of the matches with
increasing slant, require no special
explanation in the context of the
equivalent illuminant model.  Both of
these patterns are predicted by the
model for reasonable values of the
parameters.  Indeed, striking to us
was the richness of the model’s
predictions for relatively small
changes in parameter values.

A question of interest in
Experiment 3 was whether observers are
sensitive to the actual position of
the light source.  That they are is
indicated by comparing the parameter
˜ 

D across changes in the physical
position of the light source.  The
average value of ˜ 

D when the light
source was on the left in Experiment 3
was -35°, compared to 16° when it was
on the right.  The shift in equivalent
illuminant azimuth of 51° is
comparable to the corresponding shift
in the physical model parameter (55°),
indicating that observers’ demonstrate
considerable sensitivity to the light
source position.

Constancy Index
In previous studies, it has proved

useful to develop a constancy index
(CI) that provides a rough measure of
the degree of constancy indicated by
the data (e.g. Brainard & Wandell,
1991; Arend, Reeves, Schirillo, &
Goldstein, 1991; Brainard et al.,
1997; Brainard, 1998; Kraft &
Brainard, 1999; Delahunt & Brainard,
2004).  Such an abstraction from the
data often enables examination of
broad patterns that are difficult to
examine in the raw data.  We use our
model fit to develop such an index for
our data.  Let the vector

v =
vsin D

vcos D

 

 
 

 

 
 (12)

be a function of the physical model’s
parameters D and FA, with the scalar
v computed from FA using Equation 7



Bloj et al. 8

above.  Let the vector ˜ v  be the
analogous vector computed from the
equivalent illuminant model parameters
˜ 

D and ˜ F A.  Then we define our
constancy index as

C I = 1-

v − ˜ v  

v 
. (13)

Intuitively, this index takes on a
value of 1 when the equivalent
illuminant model parameters match the
physical model parameters and a value
near 0 when the equivalent illuminant
model parameter ˜ F A is very large.
This latter case corresponds to where
the model predicts luminance matching.

We have computed this CI for each
observer/condition, and the resulting
values are indicated on the top left
of each polar plot in Figures 5-10.
Generally, the indices are in accord
with a visual assessment of where the
data lie with respect to the luminance
matching and constancy predictions,
although there are some exceptions.
This is not surprising given that a
single number cannot describe all
aspects of the data.

Figure 12 summarizes the constancy
indices across all of our experiments.
The mean constancy index was 0.57,
with large individual variation.  This
mean CI quantifies, in a rough manner,
the overall degree of lightness
constancy shown by our observers.
Given the computational difficulty of
recovering lighting geometry from
images, we regard this degree of
constancy as a fairly impressive
achievement.  Across all experiments,
the mean CI for observers given
Neutral Instructions (0.56) was
essentially identical to that for
observers given Paint Instructions
(0.58), consistent with our previous
conclusion that our instructional
manipulation had little effect.

Figure 12 about here.

Figure 12.  Constancy indices.  Individual observer and mean
constancy indices are plotted for each experimental condition.
Orange filled circles, individual observer indices.  Green filled
circles, mean constancy indices.

Figure 13 plots the constancy index
for each observer when the light
source was on the right against the
corresponding index when the light was
on the left. These are only moderately
correlated (r = 0.37).  The small
positive correlation indicates that
whatever factors mediate the degree of
constancy shown by individual
observers have something in common
across the change in light source
position, but that this commonality is
not dominant.

Figure 13 about here

Figure 13. Comparison of CI for Experiment 3. CI for the
illuminant on the right side condition versus illuminant on the
left.  The correlation between CIs on the left and right was
0.37.

Discussion

Equivalent Illuminant Models
The equivalent illuminant model

presented here accounts well for the
data reported in the companion paper.
The model was derived from an analysis
of the computational problem of
lightness constancy.  The model has
two equivalent illuminant parameters,
˜ 

D and ˜ F A, that describe the lighting
geometry.  These parameters are not,
however, set by measurements of the
physical lighting geometry but are fit
to each observer’s data.  Given the
equivalent illuminant parameters, the
model predicts the lightness matches
through an inverse optics calculation.

The equivalent illuminant model
developed here is an instance of a
general class of models that connect
perception to computations that
achieve constancy.  The general
equivalent illuminant model has the
following form.  First one writes an
explicit imaging model that describes
how the image data available to the
visual system about an object’s
surface depends on scene parameters
that describe physical properties of
the illumination and object surface
(e.g. Equation 6).  The parameters
that describe the scene illumination
are taken the parameters of the
observer model (e.g. ˜ 

D and ˜ F A).
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Given these parameters, the image
model is inverted to recover the
parameters that describe the object’s
surface (e.g. Equation 10, which
obtains an estimate of object
reflectance from the reflected
luminance).  Perception of the
object’s surface properties (e.g.
lightness, color, glossiness) is then
taken to be a function of the
estimated object surface properties.

Through different choices of
parameterization of illuminant and
surface properties, equivalent
illuminant models can be developed for
a wide range of psychophysical
experiments.   The most closely
related model in the literature is
that of Boyaci et al. (Boyaci et al.,
2003), which was formulated to account
for lightness matching data as a
function of standard object slant.
This model is substantively identical
to ours.  Brainard and colleagues have
used equivalent illuminant models to
account for data on color constancy
(Brainard et al., 1997) and the
perception of luminosity for chromatic
stimuli (Speigle & Brainard, 1996).
In these applications, the illuminant
parameters describe illuminant
spectral power distributions, the
surface parameters describe surface
spectral reflectance functions, and
the imaging model relates reflected
spectra to cone photoreceptor
isomerization rates.

It is tempting to associate the
parameters ˜ 

D and ˜ F A with the
observers perceptual estimate of the
illumination geometry.  Since our
experiments do not explicitly measure
this aspect of perception, we have no
empirical basis for making the
association.  In interpreting the
parameters as observer estimates of
the illuminant, it is important to
bear in mind that they are derived
from surface lightness matching data
and thus, at present, should be
treated as illuminant estimates only
in the context of our model of surface
lightness.  It is possible that a
future explicit comparison could
tighten the link between the derived
parameters and conscious perception of

the illuminant.  Prior attempts to
make such links between implicit and
explicit illumination perception,
however, have not led to positive
results (see Rutherford, 2000).

Comparison with Other Models
A useful approach to modeling

context effects it to split the
problem into two parts (Krantz, 1968;
Brainard & Wandell, 1992).  The first
part is to determine the parameters
that vary across changes in context
(or across observers).  The second is
to determine what features of the
context (or observers) set the
parameter values and how they do so.
The equivalent illuminant model
presented here addresses only the
first part of the general modeling
problem.  We have identified two
parameters ˜ 

D and ˜ F A that vary with
context (e.g. light source position)
and across observer, and connected
these parameters to the experimental
measurements.  Our experiments and
analysis are mainly silent about the
second part of the general problem: we
do not address the question of what
about the experimental stimuli causes
the parameters to vary.  (The one
conclusion we draw in this regard is
that our instructional manipulation
has at most a small effect on the
parameters.)  In thinking about other
approaches to modeling lightness
constancy, it is worth keeping the two
part distinction in mind.

The retinex theory of Land and
McCann (Land & McCann, 1971) addresses
both parts of the modeling problem:
the modeling computations operate on
the directly on the retinal image and
produce predictions of lightness at
each image location.  Thus the retinex
model does not explicitly parameterize
the effect of context and separate the
parameterization from the effect of
context on the parameters.

In any case, we do not see how the
retinex model can account for our
data.  The manipulation of object
slant produces only small changes in
the projected retinal image but large
changes in perceived lightness.  Since
retinex does not account for the
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three-dimensional scene geometry, it
will have difficulty predicting our
effects(see also Gilchrist, 1980;
Gilchrist, Delman, & Jacobsen, 1983).

Indeed, any model that accounts for
lightness in terms of the contrast
between the standard and its surround
(either global or local, computed from
the two-dimensional image) will have
difficulty accounting for our results,
since this surround is essentially
constant across our slant
manipulation.  Others have emphasized
the difficulties that contrast-based
theories of lightness encounter for
spatially-rich stimuli (e.g. Gilchrist
et al., 1999; Adelson, 1999).

Purves and Lotto (2003) formulate
an “empirical” theory of perception
and in particular of lightness
perception.  Like us, they adopt the
viewpoint that the visual system
attempts to produce percepts that
represent object properties.  Rather
than proceeding via an analytic
treatment of the computational problem
of constancy, however, these authors
suggest that insight about performance
is best gained through an empirical
database that relates image properties
(e.g. luminance) to scene properties
(e.g. reflectance).  Although we have
no objection to this approach in
principle, we remain unconvinced that
it is feasible to obtain databases
sufficiently large to make
quantitative predictions for
experiments such as ours.  Such a
database would have to contain a large
number of images for surfaces of many
reflectances at many poses illuminated
by light sources in many positions.
The combinatorics do not seem
favorable.  Interposing explicit
imaging models and inverse optics
calculations between the
characterization of natural scene
statistics and predictions of human
performance, as we do, mitigates the
combinatoric explosion.

In recent work, both Gilchrist
(1999) and Adelson (1999) have
outlined approaches to lightness
perception that emphasize the second
part of the general modeling problem:
these authors stress the need to
understand how the visual system

segments the image into separate
“Frameworks” (Gilchrist) or
“Atmospheres” (Adelson) and the need
to understand what image features in
each “Framework”/”Atmosphere” affect
how the visual system transforms
surface luminance to perceived
lightness.  In this sense, these
theories are broadly complementary to
the modeling approach developed here,
which focuses on a quantitative
characterization of what parameters
vary as context is changed.

Extending the Model
The challenge for the equivalent

illuminant approach we advocate here
is to pursue experiments and theories
that predict the equivalent illuminant
to the image.  An attractive feature
of the equivalent illuminant approach
is that the model parameters are
exactly the quantities estimated by
computer vision algorithms designed to
achieve constancy.  Thus to solve the
second part of the modeling problem,
any equivalent illuminant model may be
coupled with any algorithm that
attempts to estimate its parameters
from image data.  We have begun to
explore this in our work on color
constancy, where we have coupled an
algorithm for spectral illuminant
estimation (Brainard & Freeman, 1997)
with our equivalent illuminant model
for successive color constancy
(Brainard, 1998).  In initial tests,
this general approach has led to
successful predictions across a wide
range of experimental conditions
(Brainard, Kraft, & Longère, 2003).
As computational algorithms for
estimating illumination geometry
become available, these may be used in
a similar recipe with the equivalent
illuminant model presented here.  In
the meantime it seems of interest to
explore experimentally how the
equivalent illuminant parameters vary
with more systematic changes in the
scene (e.g. light position, relative
strength of directional and ambient
illumination), as these measurements
may provide clues as to what image
features affect the parameters.
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