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Neural integrator

Let’s start with a simple leaky neural integrator:


(1)


.	 (2)


The value v is the membrane potential, x is the input, y is the output firing rate (and also the 
recurrent drive), τ is the intrinsic membrane time-constant, and λ is (for now) a constant (0 < 
λ < 1). The values of v,  x, and y are time-varying, i.e., v(t), but I’m leaving that out as well to 
make the notation simpler. Eq. 1 is a first-order, linear differential equation. It’s a simplified ver-
sion of the membrane equation in which I’m assuming that the resting potential is 0 and that 
the synaptic inputs x and y act as current injections (rather than conductance changes). Eq. 2 
assumes that the output firing rate y is equal to the underlying membrane potential v. We can 
of course add a proportionality constant to convert from mV to spikes/sec, but I’m leaving that 
out to keep it simple. 


This simple form in Eq. 1 is problematic because it allows negative firing rates (the value of 
y could be positive or negative depending on the input). To fix that, we use a complementary 
pair of neurons (analogous to ON- and OFF-center retinal ganglion cells) that receive comple-
mentary copies of the input, x and -x, and in which the firing rates are a halfwave-rectified copy 
of the underlying membrane potential fluctuations (optionally again with scale factor to convert 
from mV to spikes/sec):


,	 (3)


where


.	 (4)


A leaky neural integrator is a shift-invariant, linear system. In signal processing terms, it 
acts as a recursive low-pass filter with an exponential impulse response function. Fig. 1 plots 
the responses y to a step input z, for each of several values of the modulator λ. The value of 
the modulator λ changes the effective time constant. We can see this by rewriting either Eq. 1 
(or equivalently Eq. 3) and simplifying:


(5)


τ
dv
dt
= −v+λx+ (1−λ)y

y = v

τ
dv
dt
= −v+λx+ (1−λ) y+ − y−( )

y+ = ⎢⎣v ⎥⎦=max(v,0)

y− = −v⎢⎣ ⎥⎦=max(−v,0)

y = y+ + y−

v = y+ − y−

τ
dv
dt
= λ x − v( )
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i.e.,


 such that  .	 (6)


The value of τ is the intrinsic time-constant and τʹ is the effective time-constant. If the input 
drive x is constant over time, then the responses y exhibit an exponential time course with 
steady state y = x, and time constant τʹx. If λ is large (close to 1) then the responses follow the 
input such that the response increases rapidly when the input is turned on, and the responses 
decrease rapidly when the input is turned off. If λ is small (close to 0) then the responses ex-
hibit sustained activity after the input is turned off.


Sustained activity


We can get the best of both worlds by allowing the value of the modulator λ to vary over 
time (Fig. 2). In this example, the value of λ was equal to 1 until just before the input was about 
to be turn off (i.e., for t < 1000) and λ was equal to 0 after the input turned off. The responses 
followed the input for t < 1000 because λ was large (=1, corresponding to a short effective time 

ʹτ
dv
dt
= −v+ x ʹτ =

τ
λ

2

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.2

0.4

0.6

0.8

1

Time (msec)
R

es
po

ns
e 

(y
)

In
pu

t d
riv

e 
(x

)

Figure 1. Leaky neural integrator. Top 
panel, time-course of input. Bottom-panel, 
response time-courses for various values 
of the modulator λ.

Figure 2. Sustained activity. Top panel, 
time-course of input drive. Bottom-panel, 
response time-course. λ = 1 for t < 1000 
and λ = 1 for t  ≥ 1000.
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constant). The value of λ then switched to be small (=0, corresponding to a long effective time 
constant) before the input turned off, so the output responses exhibited sustained activity 
(Fig. 2). 


Neural oscillator

A generalization of this includes a network with more than 1 neuron such that the output 

response of each neuron depends on a weighted sum of all the other neurons:


	 (7)


.	 (8)


We use boldface lowercase letters to represent vectors and boldface uppercase to denote ma-
trices. The variables (v, y, ŷ, x) are each functions of time. The time-varying output responses 
are represented by a vector y = (y1, y2,…, yj,…, yN) where the subscript j indexes different neu-
rons in the network. The time-varying inputs are represented by another vector x = (x1, x2,…, 
xj,…, xM). The recurrent drive ŷj to each neuron is a weighted sum of the outputs, and the 
weights are given by the recurrent weight matrix W. We can use the same trick as above to 
ensure non-negative firing rates. A simple example corresponds to when the recurrent weight 
matrix W is the identity matrix. For that special case, you have a collection of independent 
neural integrators, each with their own input, but all with the same effective time constant.


A neural oscillator (Fig. 3) corresponds to the special case with two neurons that are mutu-
ally interconnected, with a particular form for the recurrent weight matrix:


 ,	 (9)


In this case there are two neurons y1 and y2 that are mutually interconnected. The value of ω 
determines the oscillation frequency. Intuitively, the responses oscillate because the recurrent 
weight matrix approximates a rotation matrix for small angles of rotation, i.e., cos(θ) ≈ 1 and 
sin(θ) ≈ θ when θ is small. If, at one instant in time, y = (1 0)t, then an instant later the responses 
will have changed akin to rotating slightly around the unit circle.


τ dv
dt

= −v + λx + (1− λ)ŷ

ŷ =Wy

Wy = 1 −2πωτ
2πωτ 1
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Figure 3. Neural oscillator. Top panel, 
time-course of input drive. Colors, input 
drive to each of the two neurons. Bottom-
panel, response time-course. Colors, re-
sponses of each of the two neurons. λ = 1 
for t < 1000 and λ = 0 for t  ≥ 1000.
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Sustained activity and stable oscillations


The dynamics of the responses depend on the recurrent weight matrix W (Fig. 4). This is 
particular important when λ = 0 (corresponding to the sustained activity in Fig. 2 and the stable 
oscillating activity in Fig. 3). If the recurrent weights are too small then the responses decay 
over time. If the weights are too big then the responses grow without bound. A simple is exam-
ple is given by a network with 3 neurons and a diagonal recurrent weight matrix:


 .	 (10)


For this case, Eqs. 7-8 simplify:


 ,	 (11)


,	 (12)


where the recurrent weights wj are the elements along the diagonal of the recurrent weight ma-
trix W. When λ = 0, this equation simplifies further:


 .	 (13)


For wj = 1, the responses are constant over time (the derivative in Eq. 13 is 0). For wj > 1, the 
response grow over time. And for wj < 1, the response decay over time.


In general, for an arbitrary recurrent weight matrix, the dynamics of the responses depend 
on the eigenvalues and eigenvectors of the recurrent weight matrix W. When the eigenvectors 
and eigenvalues of the recurrent weight matrix are composed of complex values, the respons-
es exhibit oscillations. For example, the recurrent weight matrix in the neural oscillator example 
(Fig. 3) is an anti-symmetric, 2x2 matrix (Eq. 9), with complex-valued eigenvalues and eigen-
vectors. The real-parts of the eigenvalues determine stability. In this case, the real parts of the 
eigenvalues are equal to 1 (the weight matrix was in fact scaled so that the eigenvalues had 
real parts that were equal to 1). The corresponding eigenvectors define an orthonormal coordi-
nate system (or basis) for the responses. The responses during the period of stable oscilla-
tions (when λ = 0) are determined entirely by the projection of the initial values (the responses 
just before the input was turned off) onto the eigenvectors. Eigenvectors with corresponding 
eigenvalues equal to 1 are sustained. Those with eigenvalues less than 1 decay to zero 
(smaller eigenvalues decay more quickly). Those with eigenvalues greater than 1 grow without 
bound (which is why the weight matrix was scaled so that the largest eigenvalues = 1). The 
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Figure 4. Stability of sustained activity. 
Responses when λ = 0 for 3 different val-
ues of the recurrent weight. Yellow, re-
sponses grow without bound when recur-
rent weight is greater than 0. Blue, re-
sponses decay to zero when recurrent 
weight is less than 0. Orange, responses 
are constant over time when recurrent 
weight is equal than 0. 
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imaginary part of the eigenvalues of the recurrent weight matrix (in this example equal to 2πωτ) 
determine the oscillation frequency ω.
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