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The study of population dynamics in hippocampal place cells

has emerged as one of the most powerful tools for

understanding the encoding, storage and retrieval of

declarative memory. Recent work has laid out the contours of

an attractor-based hippocampal population code for memory

in recurrent circuits of the hippocampus. The code is based on

inputs from a topographically organized, path-integration-

dependent spatial map that lies upstream in the medial

entorhinal cortex. The recurrent networks of the hippocampal

formation enable these spatial inputs to be synthesized with

nonspatial event-related information.
Addresses

Centre for the Biology of Memory, Norwegian University of Science

and Technology, NO-7489 Trondheim, Norway

Corresponding author: Moser, Edvard I (edvard.moser@ntnu.no)
Current Opinion in Neurobiology 2005, 15:738–746

This review comes from a themed issue on

Neurobiology of behaviour

Edited by Nicola S Clayton and Rene Hen

Available online 2nd November 2005

0959-4388/$ – see front matter

# 2005 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.conb.2005.10.002

Introduction
It is generally accepted that the hippocampus has a

fundamental role in the fast encoding of some types of

associative long-term memory [1]. Attempts to under-

stand the algorithms by which information is processed in

hippocampal neurons began in the late 1950s and early

1960s [2,3], only a few years after the mnemonic functions

of the hippocampus had been uncovered [4]. For a long

time, these physiological studies were motivated more by

the structural simplicity of this area of cortex than by its

potential role in the formation of memory; however, an

important milestone was reached when it was reported in

the early 1970s that neurons in the hippocampus have

strong and reliable behavioural correlates of firing [5,6].

By far, their most striking correlate was found to be the

tendency to fire if, and only if, the subject is in a particular

place in its environment [5,7,8].

Since their discovery, these ‘place cells’ have provided an

important window into the representation of the physical

world as discharge patterns of single hippocampal neu-

rons. With the more recent invention of techniques for
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large-scale recordings in neuronal ensembles [9,10], place

cells have emerged as one of the most powerful tools for

studying hippocampal population dynamics during dis-

tinct mnemonic operations.

In this review, we show how hippocampal place cells have

been recently used as a model system to advance our

understanding of how location and memory are repre-

sented and computed by the collective activity of cell

populations in well-defined neural architectures of the

hippocampal formation.

A spatial map outside the hippocampus
For more than three decades, place cells have been

considered to be the key elements of a neural map of

the spatial environment [5,7,11,12]. The confined spatial

nature of the place cell discharge renders it one of the

most striking behavioural correlates among cortical neu-

rons, but accumulating evidence has suggested that the

functions of place cells extend well beyond a specific role

in mapping the physical space [13,14]. Place cells have

been shown to respond to various nonspatial sensory

inputs [13], and to alternate between multiple represen-

tations in the same location [15–22], reflecting both

salient physical properties of the place [15,16] and events

associated with the place, either at present [17,18] or in

the past [19–22,23��,24��]. These and several other obser-

vations have implied that the hippocampus has a broad

role in the encoding of context-specific or episodic mem-

ories in which spatial location is a crucial but non-exclu-

sive part of what is stored in the hippocampus.

The multiplicity of hippocampal representations has

introduced the possibility that the metric calculation of

current position occurs outside the hippocampus [25].

One of the strongest pieces of evidence suggesting that

this calculation has a hippocampal location was the appar-

ent contrast between the low spatial information of neural

activity in some areas of the entorhinal cortex and the

high spatial information in downstream hippocampal

place cells [20,26,27]. This contrast suggested, at the

time it was discovered, that the location-specific signal

is computed internally in the hippocampal circuitry.

Recently, it has become clear that the spatial information

carried by neural activity in the entorhinal cortex has been

underestimated, largely because the entorhinal cell popu-

lation was undersampled.

Spatial representations in the entorhinal cortex are now

known to follow a strict, two-dimensional anatomical

topography. First, the extent of spatial modulation varies

between the two main subdivisions of the structure: the
www.sciencedirect.com
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lateral and the medial entorhinal cortex [28��]. Neurons

have stable and sharply delineated firing fields in the

medial subdivision, but seem to completely lack spatial

modulation in the lateral subdivision. Second, in the

medial entorhinal cortex, firing fields become gradually

sharper and more concentrated along a ventromedial-to-

dorsolateral axis [29��]. In the ventromedial-to-intermedi-

ate bands, where the early recordings were made

[20,26,27], firing fields are broad and dispersed. Towards

the dorsolateral end, however, firing fields get smaller and

more confined. The dorsolateral band contains most of

the projection neurons from the medial entorhinal cortex

to the well-defined place cells of the dorsal hippocampus.

The collective activity of a dozen of neurons in the

dorsolateral medial entorhinal cortex is sufficient to

reconstruct the current position of a rat with an error of

only a few centimetres [29��], suggesting that neurons in

this area map precisely the spatial environment of the rat.

The localized firing of these neurons can be maintained

without a functional hippocampus. Thus, the key features

of the map are probably not mere reflections of hippo-

campal output. The fact that the dorsolateral band serves

as a convergence site for head-direction output from the

dorsal presubiculum [30], and visuospatial and move-
Figure 1

Tessellating firing fields of grid cells in the medial entorhinal cortex. Firing ra

respectively) that were recorded during running in a square enclosure. (a) T

(red dots); (b) rate map; (c) spatial autocorrelation for the rate map in (b). M

rate. In (c), the scale is from blue (r=�1) through green (r=0) to red (r=1.0). S

scale in the autocorrelation diagrams is half of that of the original maps, wit

spaced by a distance similar to the width of the enclosure. The distributions

the dorsal border of the medial entorhinal cortex; the top cell was most dor
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ment-related output from the postrhinal cortex [31] also

supports the notion that the position vector is computed,

at least partly, in the medial entorhinal cortex itself.

The main difference between place-responsive cells in

the hippocampus and those in the entorhinal cortex is

perhaps that neurons in the latter area do not signal

individual places. Instead, each place-modulated cell in

the entorhinal cortex has several regularly spaced firing

fields. Together, the multiple fields of a neuron form a

tessellating triangular grid that spans the whole extent of

the environment [32��] (Figure 1). Neighbouring cells

have grids with similar spacing and orientation, but the

grids scale up gradually from the dorsolateral towards the

ventromedial end of the medial entorhinal cortex

[29��,32��]. Grids of neighbouring cells are displaced

relative to one another: in other words, their phases are

distributed. An implication of this structural organization

is that the representation of the environment is repeated

over and over across the surface of the topographical map,

but at a range of scales and orientations. This repetitive

modular arrangement is reminiscent of the columnar

organization of many sensory areas of the neocortex

[33,34].
te distributions are shown for two cells (top and bottom rows,

rajectory of the rat (black line) with superimposed spike locations

aps in (b) and (c) are colour-coded. In (b), blue is 0 Hz, red is peak

cale bar indicates size of recording enclosure. Note that the distance

h points along the perimeter showing correlations between positions

were recorded from cells located at different distances from

sal. Modified, with permission, from [32��].
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How does this network of grid cells contribute to naviga-

tion? Navigation probably relies on a large parahippocam-

pal network of head-direction cells [35], grid cells, and

cells with conjunctive firing properties [36�]. Nonethe-

less, grid cells are unique in that their firing rate expresses

information about position (grid vertices), direction (grid

orientation) and distance (number of grid cycles) [32��].
Whether neurons in the entorhinal cortex or elsewhere

can read and synthesize this information remains to be

determined. Presumably, the computation of exact loca-

tion would require a mechanism for integration over time

(e.g. see [37]), as well as across differently tuned spatial

modules (e.g. see [38]). The persistence of grid-like firing

after the removal or displacement of extrinsic sensory

input [32��] probably indicates that path integration is a

primary mechanism for generating a continuously

updated metric representation of the spatial environment

[11,12]. In addition, the grids might be aligned with

landmarks specific to individual environments [32��].
The proposed role of path integration is consistent with

recent studies showing that severe impairments in short-

distance navigation and homing behaviour occur after

lesions in areas including the dorsolateral band of the

medial entorhinal cortex [39,40].

Attractor networks in the hippocampus
Although important elements of the spatial map have

moved out of the hippocampus, place cells are receiving

increasing attention as a tool for understanding the

dynamics of cell populations during memory processes
Figure 2

Cell assemblies with attractor dynamics. (a) Patterns that are ambiguous co

the same time, diverge from similar interfering patterns (pattern separation).

illusion of an ambiguous object. The perceived image fluctuates between tw

middle (white). (b) Attractor networks are thought to induce sharp transition

input pattern [46]. (c) Each multidimensional attractor can span a state spac

assembly (shown as different shades of gray within each attractor). This pro

reference frame without switching to an independently activated cell popula
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(e.g. [10]). A key issue is how the brain identifies con-

sistent patterns among never-identical physical inputs at

the same time that it successfully prevents interference

between patterns with common elements. Recent studies

suggest that the solution might be based on attractor

dynamics in recurrent networks of the hippocampus.

Attractor networks with modifiable synaptic weights

represent powerful models of the storage and retrieval

of associative memory [41]. An attractor network has one

or several preferred positions or volumes in state space

such that when the system is started from any other

location, it will evolve until it arrives at one of the

attractors and will then stay there in the absence of

new inputs[42,43] (Figure 2). In this type of network,

stored memories can be recalled from degraded versions

of the original input stimuli (pattern completion), while at

the same time the retrieved pattern stays separate from

other, more dissimilar memories in the same network

(pattern separation). The extensive recurrent circuitry of

the hippocampus represents an ideal neural architecture

for attractor dynamics [41,44–47], but direct experimental

evidence for attractor functions in the hippocampus has

remained scarce.

Place cells have several properties that suggest that

the network performs pattern completion and pattern

separation, such as, respectively, the persistent spatial

firing of place cells after the removal of significant subsets

of the original input [48–50] and the tendency of place
nverge to a matching familiar pattern (pattern completion) and, at

The nonlinear nature of this process can be illustrated by a visual

o familiar images (blue or pink) instead of stabilizing in the

s between network states during progressive changes in the

e with large differences in relative firing rates within the cell

perty allows different conditions to be integrated into a constant

tion [24��].
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cells to show complete ‘remapping’ after only minor

changes in the sensory input [15–22]. These nonlinea-

rities, however, could merely reflect a disproportionally

strong influence of the particular stimuli that are common

to, or distinguished among, the conditions. In a recent

study, Wills et al. [51��] resolved this ambiguity by

assessing completion and separation in CA1 during sys-

tematic and quantifiable transformation of the very same

input stimuli. They showed that morphing the recording

environment from one familiar shape to another led to a

sharp transition in the hippocampal network state near

the middle of their sequence when the intermediate

shapes were presented in a scrambled order. Their study

provides perhaps the strongest experimental evidence

so far for the expression of attractor states in the hippo-

campus.

Although hippocampal cell ensembles show some of the

key features of an attractor network, the anatomical

location of the attractors remains to be established. Para-

doxically, the experimental evidence in favour of the

attractor network has been obtained almost exclusively

from CA1, which generally lacks the associative connec-

tions needed to form dynamic ensembles [52]. Attractor

dynamics in CA1 is usually thought to reflect autoasso-

ciative processes in the recurrent CA3 network located

one synapse upstream [41,44–47], but this assumption has

not been proved. Recent work has provided experimental

evidence for both pattern separation and pattern comple-

tion in CA3 [53�]. Place cells in this subfield orthogonalize
overlapping experiences more completely than do place

cells in CA1 [54��,55��], and ensembles in CA3 respond

more coherently to changes in the external input than do

those in CA1 [55��,56��].

These observations, however, do not necessarily imply

that the processes originate in CA3. For example, a

marked architectural feature of the dentate gyrus is the

divergence of cortical input onto a granule cell population

with many more neurons than the input layer. This

feature is a potentially effective construction for decorr-

elating incoming signals from the neocortex [44,57],

which, together with the sparse firing of the granule cells

[58,59�] and their low number of synapses with CA3

neurons, raises the possibility that pattern separation

begins in the dentate gyrus [41,60]. Moreover, attractor

dynamics is probably a general property of cortical net-

works that contributes to several higher cognitive func-

tions including perception and categorization [61–63].

Nonlinear response patterns in the neocortex could influ-

ence hippocampal place cells both through the trisynaptic

circuit and through direct connections with the hippo-

campal subfields [64]. The relative contribution of hip-

pocampal and parahippocampal subdivisions [53�,65�]
might be resolved by simultaneous recording from con-

nected areas during conditions that favour completion or

separation.
www.sciencedirect.com
Attractor networks and episodic memory
Several studies have indicated that the hippocampus is a

key structure involved in the storage of sequentially

organized episodic information [1,66,67]. Neuronal net-

work models that allow quantitative estimates of the

amount of stored information suggest that the recurrent

networks of the hippocampus might have an enormous

storage capacity [68], enabling them potentially to repre-

sent a very large number of event memories. The exten-

sive number of hippocampal representations makes

retrieval vulnerable to interference. Attractor-based net-

works might solve this problem, as they could allow

events to be recalled from moderately distorted input

stimuli without being confounded by other representa-

tions with similar elements.

If hippocampal networks consisted exclusively of discrete

attractors, however, the ensembles would probably fail to

encode in full the continuous stream of information that is

characteristic of an episode. The network might not be

able to maintain a unified representation of the flow of

experience if it fluctuated between pre-formed states

whenever the input was intermediate in relation to any

set of previously stored conditions. Several observations

suggest, however, that place cells can assimilate gradual

or moderate input changes into pre-existing representa-

tions. Dislocation or replacement of a salient part of the

environment might alter firing in nearby place fields,

whereas the representation of the rest of the environment

remains unaltered [69–71,72��]. Moreover, when one

familiar environment is morphed gradually into another,

stable states can be attained along the whole continuum

between two pre-established representations [24��]. This

ability to represent continua might enable hippocampal

networks to encode and to retrieve consecutive inputs as

uninterrupted, distinguishable episodes.

If hippocampal networks contain both continuous [24��]
and discontinuous [51��] representations, do these repre-

sentations mediate different types of information? A

recent study suggests that the hippocampus contains at

least two independent coding schemes: one for locations,

and one for the stimuli and events associated with each

location [73��] (Figure 3). Pyramidal cells were recorded

from the hippocampus while rats were tested either in the

same box at two different locations or in two different

boxes at the same location. In the former condition, the

distributions of firing location and firing rate in CA3 cells

were independent. In the latter condition, however, only

the rate distribution varied. This dissociation suggests

that, at the initial stage of hippocampal processing, the

location and rate of firing convey independent types of

information (spatial and nonspatial information, respec-

tively). A different, dual coding scheme, based on a

dissociation of theta phase and rate, has been proposed

for location and movement information in individual CA1

cells [74,75]. It is possible that the rate distribution is
Current Opinion in Neurobiology 2005, 15:738–746
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Figure 3

Independent codes for spatial and episodic information in hippocampal place cells. Spikes (red dots) were recorded from pyramidal cells in

CA3 of a rat that was running in a square box. Grey lines indicate the path of the rat. (a) Place fields were tested after the recording room

but not the local cues were changed, (b) or after the local cues but not the recording room were changed. Three cells are shown for each

condition. When the room changed (a), the distributions of firing rate and firing position were completely orthogonalized, suggesting that the

population vector spanned statistically independent vector subspaces (shown at the bottom as a switch between attractors 1 and 2). When

only the cue configuration was changed (b), there was a substantial change in firing rates but no change in firing location, suggesting that the

population vector spanned the same subspace (shown at the bottom as different states of the same attractor). This marked dissociation

suggests that the hippocampus contains one code for locations and another for the stimuli and events that are associated with these

locations. The exact conditions for inducing selective rate remapping, as in (b), remain to be determined, but the phenomenon can apparently

account for remapping in several previous studies in which cues or tasks were altered without a change in test location [17–22,88].

Modified, with permission, from [73��].
always continuous, allowing various nonspatial stimuli

and events to be encoded as integrated sequences, but

that the network sometimes recruits independent attrac-

tors when the background contexts (e.g. the rooms) are

clearly different and separated.

On a shorter timescale, the encoding of sequences might

be also reflected in the temporal order of spike activity in

the hippocampal cell assembly. Recent data suggest that

place cell ensembles fire in reliable sequences across
Current Opinion in Neurobiology 2005, 15:738–746
repeated instances of the same running event, and that

the order of firing within simultaneously recorded place

cells might differentiate between episodes indepen-

dently of changes in average firing rate (M Shapiro, J

Ferbinteanu, personal communication; G Dragoi, G Buz-

saki, personal communication; [10]). Spike sequences are

also preserved from behavioural trials to subsequent sleep

trials [76,77]. Thus, hippocampal cell assemblies can

apparently retain sequential information. The underlying

mechanism, however, remains to be worked out; most
www.sciencedirect.com
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probably, sequences are segmented spatially by cell

assemblies (G Dragoi, G Buzsaki, personal communica-

tion) and temporally by network oscillations [78,79]. As a

consequence of the tendency of place cells to discharge at

progressively earlier points in the hippocampal theta

cycle as the rat traverses the field of a cell place [80],

the sequence of firing in a set of place cells is reflected on

a compressed timescale within each individual theta cycle

[81]. This mechanism orders the spiking of sequentially

active neurons within the time range of spike-dependent

plasticity [82] and thus might link past, present and future

events serially even when sequences are longer than a

single cycle of the theta oscillation.

Network oscillations also permit different types of infor-

mation to be processed concurrently by the same neurons

without interference, either by applying different fre-

quency ranges for different types of information [78] or

by interleaving different information sources across

domains of the oscillatory cycle [83,84��]. Lastly, they
provide an efficient mechanism for synchronizing hippo-

campal discharge with neural activity in the output areas

of the hippocampal formation [85,86�].

Conclusions
The past two years have witnessed radical advances in our

understanding of place cells and their function in spatial

representation, navigation and memory. We are seeing

the outline of a modularly organized network in the

parahippocampal cortices, which might contain many of

the algorithms for place computation that were previously

thought to be located in the hippocampus. At the same

time, the neural underpinnings of recent memory are

being disclosed in the hippocampus, much as a result

of closer interactions between computational modelling

and experimental approaches.

But key questions remain unanswered. For example,

what is the function of the dentate gyrus? Why has the

hippocampus differentiated into CA3 and CA1? When is

CA1 influenced by CA3 and when is it not? How do

network oscillations contribute to information coding and

plasticity in these subfields? What are the computational

modules of the entorhinal cortex? How do the various

parahippocampal and hippocampal modules interact? Are

these modules and their algorithms pre-wired or

dynamic? How are entorhinal grids generated? And

how are entorhinal grids converted to place fields in

the hippocampus?

As these questions are being addressed in the next few

years, it will be useful to remember that the small

neuronal circuits of the honey bee are sufficient to gen-

erate map-like neural representations [87], which sug-

gests that, although spatial computations are essential

algorithms of the network, the mammalian hippocampal

and parahippocampal cortices might do a lot more.
www.sciencedirect.com
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