Object Recognition

An essential part of the behaviour of animals and
people is their ability to recognise objects, animals,
and people that are important to their survival.
People are able to recognise large numbers of other
people, the letters of the alphabet, familiar
buildings, and so on. Animals may need to
recognise landmarks, suitable prey, potential mates
or predators, and to behave in the appropriate way
to each category.

If we assume that the information available to a
person or animal is a static two-dimensional image
on the retina, a problem immediately arises in
explaining visual recognition. Take the example of
a person recognising letters of the alphabet: the
problem is that an infinite number of possible
retinal images can correspond to a particular letter,

depending on how the letter is written, how large it
18, the angle at which it is seen, and so on (Fig. 9.1).
Yet somehow we recognise all these patterns of
light as corresponding to the same letter. Or
consider the problem of recognising a friend’s face:
the image of the face on the retina will depend on
the lighting conditions and the distance, angle, and
facial expression. Again, all these images are
classified together, even though some (such as a
full-face and a profile view) are quite dissimilar
and more like the same views of different faces than
they are like each other (Fig. 9.2).
These are both illustrations of the problem of
stimulus equivalence; if the stimulus controlling
"“Behaviour is a pattern of light, or image, on the
retina, then an infinite number of images are

All these different shapes are
classified as the letter A.
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FIGURE 9.2

(@)

(b) (©)

(a) and (b) show two different views of the same person, Patrick Green. View (b) is in many ways more like picture (c), which is
of a different person, than it is like view (a). Photographs by Sam Grainger.

equivalent in their effects, and different from other
sets of images. Many influential treatments of
object recognition assume that all the images
corresponding to a particular thing, whether letter
of the alphabet or face, have something in common.
The problem is to find just what this is and how this
thing in common is detected. It is this problem that
we will be considering in this chapter.

SIMPLE MECHANISMS OF RECOGNITION

Many animals, particularly simpler ones such as
insects and fish, solve the stimulus equivalence
problem by detecting something relatively simple

that all images corresponding to a particular object f
_hm:wwg good example is the

three-spined stickleback. Males of this species
build nests and defend them against other males by

performing threat displays. A stickleback must
therefore be able to recognise rival males and
discriminate them from other fish and from objects
drifting by. The retinal images of rival males will
obviously vary greatly, depending on the other
fish’s distance, angle, and posture, and it seems that
classifying these images separately from those of
other fish will need elaborate criteria.

In fact, as Tinbergen (1951) discovered, the
stickleback manages successfully with quite
simple mechanisms of recognition. Tinbergen
observed the strength of sticklebacks’ aggressive
responses to a range of models and found that they
would readily attack a crude model of another fish,
provided it had the red belly colour characteristic
of male sticklebacks. Indeed, a crude model with a
red belly elicited more attack than an accurate one
without (Fig. 9.3).

A feature of an object or animal—such as the
red belly of a stickleback—that elicits a response
from an animal is called a key or sign stimulus, and
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FIGURE 9.3
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An accurate model of a
stickleback without a red
belly (top) is less effective as
a stimulus to elicit
aggression from a male
stickleback than any of the
cruder models below.
Adapted from Tinbergen
{(1951).

RED

it greatly simplifies the problem of recognition. As
long as red objects and fish with red markings are
rare in the stickleback’s environment, it can use the
key stimulus to recognise rivals and does not need
to use information about another fish’s detailed
structure and colouration.

The stickleback’s recognition of a rival male
does depend on more than just the presence of a
patch of red of a certain size in the retinal image,
as Tinbergen also found that a model with a red
patch on its back was attacked less than one with
an identical red patch on its belly, and that a model
in the “head-down” posture of an aggressive fish
was attacked more than one in a horizontal posture.
Even so, the presence of this distinctive feature
allows a much simpler means of recognition to be
effective than would otherwise be the case.

Many other examples are known of key stimuli
being important in the recognition by animals of
other members of their species, and we will
mention two other examples from Tinbergen’s
work. One is the recognition of female grayling
butterflies by males. Tinbergen found that males

would fly towards crude paper models moving
overhead and that their response was not affected
by the colour or shape of the model. The key
stimulus turned out to be the pattern of movement
of the model: males would fly towards it if it
imitated the flickering and up-and-down
movements of a butterfly, but not if it moved in a
smooth way. Although butterflies do waste time
chasing other males, or butterflies of the wrong
species, this simple mechanism of recognition does
prevent responses to other kinds of insect.

Another example is the recognition by nestling
thrushes and blackbirds of their parents. When the
parents bring food to the nest, the young birds turn
towards them and gape, opening their mouths wide
to be fed. Tinbergen found that gaping is elicited
by a moving dark silhouette above the birds’ eye
level, of any shape and size. Presumably this
simple mechanism of recognition is adequate
because the chances of anything other than a parent
resembling the key stimulus are low.

Key stimuli may also be important in the
recognition of prey. Toads feed by snapping at
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insects flying past them, capturing them with their
long sticky tongues, and Ewert (1974) found that
they recognise insects by fairly simple criteria, as
they will snap at small cardboard squares.
Although Ewert’s experiments used moving
targets, toads will also snap at stationary models
(Roth & Wiggers, 1983). Although toads are
selective for the size and speed of movement of
model prey, these results show clearly that they are
not able to recognise insects on the basis of finer
details of their appearance.

Thus for some animals the problem of
recognising significant objects may be reduced to
the problem of detecting localised key stimuli or
features that in the natural world are unambiguous
cues to appropriate action. Such local features may
be quite simple—it is easy to see how a “redness”
detector might function in the stickleback, and not
too difficult to conjecture how this might be
coupled with a rather crude configurational
analysis to explain observed preferences for the
location of the red patch and the posture of the
model. However, such mechanisms are also
relatively inflexible, and depend for their success
on the predictability of the natural environment.
When a scientist introduces a red dummy fish, a
paper butterfly, or pieces of cardboard into an
animal’s surroundings, the assumptions about the
properties of mates or prey on which the perceptual
mechanism relies are violated.

Other animals, especially primates, have more
flexibility in their perception and action and are
able to recognise and discriminate on the basis of
more complex and subtle criteria. In these cases, as
in human perception, the problem of how stimulus
equivalence is achieved is a difficult one, as we will
see in the remainder of this chapter.

evidence in more detail in Chapter 16. On the
whole, however, it is through a process of learning
that we come to classify certain configurations as
equivalent and distinct from others. The human
infant learns to recognise the faces of its parents
irrespective of angle, expression, or lighting. A
mother will still be “mummy” to her child after she
has curled her hair, and a father will still be “daddy”
if he hasn’t shaved for a few days. Later, the child
will learn to distinguish teachers and friends from
strangers, family pets from strays, and the long
process of formal education enables most to
decipher the intricacies of written language. What
kinds of internal representations allow for the
recognition of complex configurations, and what
kinds of processes operate on the retinal image to
allow access to these internal representations?
These have been the questions posed in the study
of human pattern and object recognition.

Much early work on pattern recognition focused
on the problem of recognising alphanumeric
patterns. There is good reason for such work, as
researchers in computer science have had the
applied aim of making computers able to recognise
such patterns so that they might, for example,
achieve automatic sorting of letters with
hand-written postal codes. The emphasis on
alphanumerics was unfortunate in other ways,
because the problem of stimulus equivalence is
rather different for alphanumerics than for objects.
Letters must be recognised despite changes in their
form, but they are only two-dimensional patterns,
so that other problems in object recognition are
minimised. Nevertheless, the area of alphanumeric
recognition is worth discussing briefly because it
serves to introduce certain theoretical approaches
to the broader area of object recognition.

MORE COMPLEX RECOGNITION PROCESSES

TEMPLATE MATCHING

We may speculate that at least some behaviour in
humans may be under the control of key stimuli.
For example, it has been shown (e.g. Goren, Sarty,
& Wu, 1975) that human neonates show innate
following of face-like patterns, and we discuss this

The simplest account that we could offer of how
we recognise alphanumeric characters would be
that of femplate matching. For each letter or
numeral known by the perceiver there would be a
template stored in long-term memory. Incoming
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patterns would be matched against the set of
templates, and if there were sufficient overlap
between a novel pattern and a template then the
pattern would be categorised as belonging to the
class captured by that template. Within such a
framework, slight changes in the size or angle of
patterns could be taken care of by an initial process
of standardisation and normalisation. For example,
all patterns could be rotated so that their major axes
(as discovered by other processing operations)
were aligned vertically, with the height of the major
axis scaled to unity (see Fig. 9.4). In addition, some
pre-processing or ‘“cleaning up” of the image
would be necessary. Both humans and other
animals (Sutherland, 1973) cope very well with
broken or wobbly lines in the patterns they
recognise.

Such a template-matching scheme could work
provided that such normalising procedures were
sufficient to render the resulting patterns
unambiguous. Unfortunately this is almost
impossible to achieve, even in the simple world of
alphanumerics. An “R” could match an “A”

template better than its own, and vice versa (see
Fig. 9.5). The bar that distinguishes a “Q” from an
“O” may be located in a variety of places (see Fig.
9.6). Atthe very least we would need more than one
template for each letter and numeral, and it
becomes difficult to see how children could learn
letters and numbers in such a scheme.
Template-matching schemes also fail to account
readily for the facts of animal discrimination.
Sutherland and Williams (1969) showed that rats
trained to discriminate an irregular from a regular
chequerboard pattern readily transferred this
learning to new examples of random and regular
patterns (see Fig. 9.7). As Sutherland (1973) points
out, the configuration in Fig. 9.7d should match
better with a “template” for pattern 9.7a than for b,
but it is treated by the rats as though it were more
like b than a. It is also difficult to see how a
template-matching model could possibly be
applied to the more general area of object
recognition, where the problem of stimulus
equivalence is  magnified. However, a
template-matching process can operate

\
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Before matching to a
template, a pattern could be
standardised in terms of its
orientation and size. This
could be done by finding the

FIGURE 9.5

: “A',\,/'fwh tlo . major axis of the figure,
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scaling its size to some
standard.
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The bold figures show

possible templates for an A
(lefty and an R (right). The
dashed figures show how an
R (left) and an A (right} could
| match another letter’s
template better than their
own.
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FIGURE 9.6

What distinguishes the Qs
from the Os? Not the precise
form of the circle, nor the
precise location or
orientation of the bar.
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successfully if the form of the characters it must
recognise can be constrained. Thus the computer
that recognises account numbers on the bottom of
cheques matches these to stored templates. The
character set has been constrained, however, so that
the numerals have constant form, and in addition
are made as dissimilar to one another as possible to
avoid any chance of confusion. The characters that
humans recognise are not constrained in this way.

FIGURE 9.7

Rats trained to respond in
one way to pattern (a), and
another way to pattern (b},
later treat pattern (c) in the

same way as (a), and pattern
(d) in the same way as (b).
This is not consistent with a
template-matching model
(Sutherland & Williams,
1969). Reprinted with
permission from the author
and the Experimental
Psychology Society.
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FEATURE ANALYSIS

When we consider how it is that we know the
difference betweenan Aand an R, ora Q and an O,
it seems that there are certain critical features that
distinguish one from another. The bar that cuts the
circular body of a Q is essential to distinguish it
from an O, whereas the precise form of the circle
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is less crucial. Perhaps a model in which
WS were detected would be
more successful than one based on templates.

Feature analysis models of recognition were
popular with psychologists and computer scientists
during the 1960s while physiologists such as Hubel
and Wiesel were postulating “feature detectors” in
the visual cortex of cats and monkeys (see Chapter
3). Perhaps the most influential model for
psychology was Selfridge’s (1959) Pandemonium
system, originally devised as a computer program
to recognise Morse Code signals, but popularised
as a model of alphanumeric recognition by Neisser
(1967), and Lindsay and Norman (1972). An
illustration of a Pandemonium system is shown in
Fig. 9.8.

The system consists of a number of different
classes of “demon”. The most important of these
for our purposes are the feature demons and the
cognitive demons. Feature demons respond

selectively when particular local configurations
(right angles, vertical lines, etc.) are presented. The
cognitive demons, which represent particular
letters, look for particular combinations of features
from the feature demons. Thus the cognitive
demon representing the letter H might look for two
vertical and one horizontal lines, plus four right
angles. The more of their features are present, the’
louder will the cognitive demons “shout” to the
highest level, the decision demon, who selects the
letter corresponding to that represented by the
cognitive demon who is shouting the loudest. Thus
in this system individual characters are represented
as sets of critical features, and the processing of any
image proceeds in a hierarchical fashion through
levels of increasing abstraction. It is this kind of
model that Barlow (1972) and others used to
interpret the properties of simple cells in the visual
cortex (see Ch.3, p.54). Simple cells were thought
to be acting as the feature demons in the

FIGURE 9.8
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A Pandemonium system for
classifying letters. Each of
the feature demons
responds selectively to a
different feature in the image,
and signals the number of
features present to the
cognitive demons. Each of
the cognitive demons
represents a different letter,
and “shrieks” louder the
more of its features are
present. (Extra features
inhibit the responses of
cognitive demons.) The
decision demon selects the
letter that is being shouted
the loudest. Liberally
adapted from Selfridge
(1959) and Lindsay and
Norman (1972).
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Pandemonium system, passing information on to
cells that would supposedly respond to
increasingly abstract properties. Such hypothetical
cells were dubbed “Grandmother cells” or “Yellow
Volkswagen detectors” to express the abstract
nature of the stimuli exciting them.

A Pandemonium system can learn to give
different weights to different features according to
how well these features discriminate between
different patterns, and in the next chapter we will
consider a number of pattern recognition systems
that learn in a similar way, by altering the weights
between stimulus and response connections. A
system of the Pandemonium type can in principle
accommodate certain kinds of contextual effect.
These are a ubiquitous feature of human pattern
recognition, and Fig. 9.9 shows one example of
how context affects the recognition of letters. The
same shape can be seen as H or as A depending on
the surrounding letters. Within a Pandemonium
system we might allow higher-level demons to
“arouse” those at lower levels that correspond to
particularly likely patterns, so that they would need
less sensory evidence to make them shout
sufficiently loudly to win over the decision demon.
Humphreys and Bruce (1989) give more details of
a range of context effects in human pattern and
object recognition.

However, as a general model for human pattern
and object recognition the Pandemonium system is
unsatisfactory. Ultimately it rests on a description
of patterns in terms of a set of features, which are
themselves like mini-templates. One of the reasons
that Pandemonium was so popular was that it
seemed consistent with the neurophysiology of the
visual cortex; but we have already seen that single

TAE CAT

The same shape may be seen as an H in one context and
an Ain another (from a demonstration by Selfridge).

cells cannot be thought of as “feature detectors”
(see Ch.3, p.54). Although this may not matter for
a purely psychological or computational theory of
recognition, there are other problems. Feature-list
descriptions fail to capture overall structural
relations that are captured, but too rigidly, by more
global templates. Thus the Pandemonium system
depicted in Fig. 9.8 would confuse an F with T and
a T with L , confusions that humans typically do
not make. In addition, the Pandemonium system,
in classifying patterns, discards all information that
distinguishes different instances of the same
pattern. The output of the decision demon would
be the same irrespective of the particular version of
the letter A shown. We need a way of talking about
recognition that allows us to describe the
differences between patterns as well as being able
to classify together those that are instances of the
same type. We need to preserve such differences so
that other kinds of classifications can be made. We
recognise people’s hand-writing, for example, by
the particular shapes of the letters they produce.
Thus we need a representational format that
captures aspects of structure essential for the
classification of an item but preserves at some other
level structural differences between different
instances of the same class.

STRUCTURAL DESCRIPTIONS

A general and flexible representational format for
human pattern and object recognition is provided
by the language of structural descriptions.
Structural descriptions doTiot constitute a theory of
how recognition is achieved, they simply provide
the right type of representation with which to
construct such a theory. A structural descriptioni
Consists of a_set of propositions (which are
e — T

_symbolic, but not linguistic, although we describe

them in Words) about a particular configuration.

. . ™ f“v_.——’—q\—/_\-,
Such propositions describe the nature of the
components of a configuration and make explicit
the structural arrangements of these parts. Thus a
structural description of a letter T might look like
Fig. 9.10a.
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t  FIGURE 9.10
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() A structural description for
a letter T. The description
indicates that there are two
partis parts to the letter. One part is
a vertical line, the other a
horizontal line. The vertical
line supports and bisects the
horizontal line. (b) A model
for a letter T. This is like the
description at {a), but the
essential aspects of the

must be

horizontal line

(b) description are specified. For

somethingtobe aT, a
vertical line must support,
and must bisect, a horizontal
line, but the relative lengths
are not important. (c) Shapes
that would be classified as Ts
by the model. (d) Shapes
that would fail to be classified
asTs.

Using the language of structural descriptions it
is possible to construct “models” for particular con-'
cepts and categories against which any incoming,
instance can be matched. Such models capture
obligatory features of the structure but may be less
particular about other details. Thus the “model” for
aletter T might look like Fig. 9.10b. It is essential
that a horizontal line is supported by a vertical line,
and that this support occurs about half way along
the horizontal line. But the lengths of the two lines
are less important. Figure 9.10c shows examples
that would be classified as letter Ts by this model,
and 9.10d shows those that would fail.

Structural descriptions are also easier to apply
to object recognition than templates or feature
representations. A picture of an object can be
described by a series of structural descriptions at
increasing levels of abstraction from the original
intensity distribution. There are thus a number of
possible “domains” of description (Sutherland,
1973).

Take for example the two drawings shown in
Fig. 9.11. These drawings can be described within
a number of distinct domains, which can broadly
be grouped together as being either “two-

dimensional” or “three-dimensional”. The 2-D
descriptions describe the picture or image present,
and this image can be described in increasingly
abstract or global terms. It may be described as a
collection of points of different brightnesses, as a
collection of lines, or as a group of regions. These
different levels of description are reminiscent of
the different stages of elaboration of the primal
sketch, through the aggregation of small edge
segments up to larger contours or aggregated
texture regions (see Chapters 5 and 6). Whatever
the level of description in the 2-D domain, whether
points, lines, or regions, the representations
established for these two pictures would look very
different. It is within the domain of 3-D description
that the equivalence of these two pictures can be
established. 3-D descriptions are couched in terms
of surfaces, bodies, and objects. The two piciures
shown in Fig, 9.11 are equivalent only at the level
vantage point.

~~TRe description above again illustrates the
thrust of Marr’s term “2'5-D” sketch for the
representation of surfaces, from the point of view
of the observer. Marr’s 2Y5-D sketch falls
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FIGURE 9.11

These two forms are quite
different in terms of their
two-dimensional description.
They are equivalent only in
the three-dimensional
domain.

L

somewhere in between the 2-D and 3-D groups of
descriptions in Sutherland’s scheme.

Thus two different projections of the same
object will have different structural descriptions in
the picture domain, but will be i t in the
@(see Fig. 9.11). Provided that
structural descriptions are established at all levels
simultaneously, we can capture both the
equivalences between different views of the same
object and their differences. Our problem now is to
consider how structural descriptions at the 3-D
level can be constructed, stored, and matched, and
to examine the extent to which the construction of
3-D representations can proceed in a “bottom-up”
fashion.

Winston (1975) provided an early illustration of
the use of structural descriptions in object
recognition to show how object concepts might be

learned by giving examples. His program learns to
recognise simple toy block structures such as those
illustrated in Fig. 9.12, which contains examples of
an “arch”, a “pedestal”, and a “house”.

The computer program is presented with
examples of each, as well as “near-misses”, in order
to build up models for each concept. The procedure
for a pedestal might go as follows. First, the
program would be presented with an example of a
pedestal (Fig. 9.13a) to which it would assign the
structural description shown in Fig. 9.14a. Thus a
pedestal is described as having two parts, with one
part being a “brick” and the other part being a
“board”, with the former supporting the latter. Then
the program would be presented with the sequence
of “near misses” shown in Fig. 9.13b—e. For Fig.
9.13b, the description would again show two parts,
with one a brick and the other a board, but the

FIGURE 9.12
Three of the toy block
structures learned by
Winston’s program. Adapted House
from Winston (1973) with his
permission.

Pedestal Arch
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T

(a) Pedestal
{c) Near miss

(e) Near miss

{d) Near miss

A pedestal training

{b) Near miss

sequence. Adapted from
Winston (1973) with his
permission.

relationship between these is now different. The
board is beside the brick, and the program was told
that this is not a pedestal. By comparing this
description of the near-miss with that of the
structure labelled pedestal, the program can
construct a model for a pedestal in which the
support relation is made obligatory. For something
to be a pedestal one part must be supported by the
other. The other examples in the training sequence
(Fig. 9.13c—e) further constrain the eventual model
for a pedestal (Fig. 9.14b). The eventual model

74

l‘\‘
———- |
is-a

must-be-
supported-by

shows that for something to be a pedestal, an
upright brick must support a lying board.

Our choice of a pedestal to illustrate this process
of learning a structural model from examples was
deliberate. The pedestal is like a three-dimensional
letter T {see Fig. 9.10), and the structural
description for a pedestal is very similar to that
described for a T, except that the parts of the
pedestal are themselves three-dimensional objects
like a brick and a board, instead of the horizontal
and vertical lines in the letter T. Thus, this kind of

(a) A description of the
pedestal in Fig. 9.13a. (b) A
model for a pedestal built up
after training on a sequence
of pedestals and
near-misses. Adapted from

must-have-
posture

(b) Winston (1973) with his

permission.
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representation can be used for two-dimensional
written characters, or three-dimensional objects.

To return to Winston’s program, a process
similar to that used for the pedestal can be used to
derive a model for a house (Fig. 9.12). Here the
eventual model would specify that a brick must
support a wedge (the roof). As for the pedestal, both
the support relations and the nature of the objects
are quite tightly specified. However, in the case of
an arch (Fig. 9.12) there is more flexibility.
Although the upright structures in the arch model
must be bricks and must not touch each other, the
structure they support can be a brick, or a wedge,
or maybe even any object at all. An arch is still an
arch whatever the shape at the top.

Winston’s program is here operating in the
object domain. It can accept any projection of a
brick or wedge and label these accordingly.
However, the structural descriptions for brick and
wedge must themselves be specified at a different
level of the program. At an even lower level, the
line drawing that serves as input must be parsed
into separate objects using the procedures
described in Chapter 6. The initial stages of the
program make use of programs like Guzman’s (see
Ch.6, p.120) to group regions of the picture
together.

The problems with Winston’s system are buried
within these low-level programs that furnish the
descriptions on which the learning program
operates. As we noted in Chapter 6, scene analysis
programs of the kind developed by Guzman,
Clowes, and Waltz work by making use of the
constraints inherent in the kinds of scene they
describe. But the constraints of the mini-world of
matt prismatic solids are not the constraints of the
natural world. Although something similar to
Winston’s learning program might provide a theory
of visual object classification, we need a better way
of furnishing structural descriptions for such
procedures to operate on—one that is not restricted
to an artificial world.

To do this, we must return to consider the
fundamental problem of object recognition. To
recap, the projection of an object’s shape on the
retina depends on the vantage point of the viewer.
Thus, if we relied on a viewer-centred coordinate
system for describing the object (one in the picture

domain, to use Sutherland’s terminology),
descriptions would have to be stored for a number
of different vantage points. Later in this chapter and
in the next one we will consider some recent
theories of recognition that do involve the storage
of discrete viewpoints, an approach that is now
gaining considerable empirical and computational
support, at least for certain kinds of recognition
task.

However, if we can describe the object with
reference to an object-centred coordinate system,
(i.e. build a structural description in the “object”
domain) then it would be possible to reduce the
number of object models stored, ideally to only a
single one per distinguishable object. This was
what Winston attempted to do with an artificial
world.

The problem is then to find a way of describing
the object within its own coordinate system
without confining the discussion to an artificial
world, and/or using knowledge of an
object-specific kind. If one has to rely at the outset
on object-specific knowledge then we would have
to know what an object was before we could
recognise it—an obvious paradox. However, it
seems likely that knowledge of some constraints is
essential to parse objects—the question is, how
specific are these?

MARR AND NISHIHARA'S THEORY OF
OBJECT RECOGNITION

Marr and Nishihara (1978) outlined the
foundations for one possible solution to this
problem. An object must be described within a
frame of reference that is based on the shape itself.
To do this, we must be able to set up a canonical
coordinate frame (a coordinate frame that is
determined by the shape itself) for the shape before
the shape has been described.

The appropriate set of descriptive elements
(primitives) for describing a shape will depend in
part on the level of detail that the shape description
is to capture. The fingers of a human hand are not
expressed in a system that uses primitives the size
of arms and legs. To get around this problem, Marr
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and Nishihara suggest that we need a modular
organisation of shape descriptions with different-
sized primitives used at different levels. This
allows a description at a “high” level to be stable
over changes in fine detail, but sensitivity to these
changes to be available at other levels.

First we need to define an axis for the
representation of a shape. Shapes that are elongated
“or have a natural axis of symmetry are casier to
describe, and Marr and Nishihara restrict their
discussion to the class of such objects that can be
described as a set of one or more generalised cones.
A generalised cone is the surface created by
moving a cross-section of constant shape but
variable size along an axis (see Fig. 9.15). The
cross-section can get fatter or thinner provided that
its shape is preserved. The class of generalised
cones includes “geometric” forms like a pyramid
or sphere, as well as natural forms like arms and
legs (roughly). Objects whose shape is achieved by
growth are often describable by one or more
generalised cones, and so we can talk about object
recognition in the natural world, rather than an
artificial one. In the discussion that follows we will

FIGURE 9.15

AXIS

Sample of
cross sections

One example of a generalised cone. The shape is created
by moving a cross-section of constant shape but variable
size along an axis.

generally be talking about the recognition of shapes
composed of more than one generalised cone, so
that there will be more than one axis in the
representation. For example, a human figure can be
described as a set of generalised cones
corresponding to the trunk, head, arms, and legs.
Each of these component generalised cones has its
own axis, and together these form the component
axes for a representation of a human.

A description that uses axis-based primitives is
like a stick figure. Stick figures capture the relative
lengths and dispositions of the axes that form the
components of the entire structure. The relative
thicknesses of these components (e.g. the human
trunk is thicker than a leg) could also be included
in the representation, although for simplicity we
will omit this detail here. Information captured by
such a description might be very useful for
recognition as stick figures are inherently modular.
We can use a single stick to represent a whole leg,
or three smaller sticks to represent the upper and
lower limb segments and the foot. At a still finer
level, we can capture the details of toes with a set
of much smaliler sticks. At each level of description
we can construct a 3-D model where each 3-D
model specifies:

1. A single-model axis. This provides coarse
information about the size and orientation of
the overall shape described.

2. The arrangements and lengths of the major
component axes.

3. Pointers to the 3-D models for the shape
components associated with these component
axes.

This leads to a hierarchy of 3-D models
(illustrated in Fig. 9.16), each with its own
coordinate system.

The first “box™ in Fig. 9.16 shows the single-
model axis for a human body with the relative
dispositions of the component axes (corresponding
to head, body, legs, and arms). The axis that
corresponds to the arm forms the major axis for the
“arm model” (next box in the figure), in which the
component axes of upper arm and forearm are
shown, and so on through to the details of the
fingers of a human hand. Such a hierarchy of 3-D
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FIGURE 9.16

A hierarchy of 3-D models.
Each box shows the major

Human

axis for the figure of interest
on the left, and its
component axes to the right.
From Marr and Nishihara
(1978). Reprinted with
permission of The Royal
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models is called a 3-D model description.
Recognition is thought to be achieved when a
match is established between a 3-D model
description derived from an image, and one of the
stored catalogue of 3-D model descriptions
corresponding to known objects. These may in turn
be organised hierarchically, in terms of the
specificity of their descriptions (see Fig. 9.17).
Thus a human figure can be matched to the general
model for a biped, or the more specific model for
a human. Ape and human are distinguished by the
relative lengths of the component axes in the model
description for a biped.

At this point we should note that there is some
limited evidence for the psychological validity of
axis-based  representations. For  example,
Humphreys (1984) asked subjects to decide
whether or not two presented objects were the same
shape (both elongated triangles or both
parallelograms). Humphreys found that when
subjects did not know exactly where the second
shape would appear relative to the first, judgements
were faster if the orientations of the major axis of
the shape was preserved, suggesting that this aspect
of the shape played a role in the comparison
process. Although such results lend some support
to Marr and Nishihara’s theory, axis-based
descriptions do not seem to be constructed when
the position of the second shape is known in
advance (Humphreys, 1984), nor is there evidence
that axis-based descriptions are used for all
elongated shapes (e.g. Quinlan & Humphreys,

1993). However, although the evidence for the
primary role of axis-based representations is
limited, it is also the case that these studies have
explored the perception of 2-D shapes rather than
the 3-D objects addressed in Marr and Nishihara’s
theory. Humphrey and Jolicoeur (1993) reported
that the identification of line drawings was
markedly disrupted when the objects were depicted
with their main axis oriented directly towards the
viewer so that the main axis appeared
foreshortened. This disruptive effect of
foreshortening occurred even though the main
components of the objects were salient at all
viewing angles. Lawson and Humphreys (1996)
used a matching task with line drawings of objects
rotated in depth. With relatively long intervals
between the stimuli there was little effect of the
angle between consecutive objects until the
to-be-matched stimulus had its main axis
foreshortened. These studies lend some support to
Marr’s theory that object recognition would be
disrupted if the major axes of elongation of the
object is not visible.

How could such 3-D meodel descriptions be
derived prior to accessing the catalogue? The
problem is to derive the axes from an image without
knowing what object it is that the image represents.
A possible solution is provided by Marr’s (1977)
demonstration that we can make use of the
occluding contours of an image to find the axis of
a generalised cone, provided the axis is not too
foreshortened. The only assumption needed is that
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A catalogue of 3-D model

descriptions at different
levels of specificity. Redrawn
B from Marr and Nishihara
evlinder (1978) with permission of
id The Royal Society.
T D
limb quadruped biped bird
cow %
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these contours come from a shape that is comprised
of generalised cones.

We have already seen, in Chapter 6, how Marr’s
early visual processing program derived contour
information from an image without knowing what
shape it is looking for. Occluding contours in an
image are those that show the silhouette of the
object (see the outline of the head of the bear in Fig.
6.28, or the donkey in Fig. 9.20). As Marr points
out, silhouettes are infinitely ambiguous, and yet
we interpret them in a particular way (1982, p.219):

Somewhere, buried in the perceptual
machinery that can interpret silhouettes as
three-dimensional shape, there must lie some
source of additional information that
constrains us to see silhouettes as we do.
Probably ... these constraints are general
rather than particular and do not require a
priori knowledge of the viewed shapes.

Let us examine the assumptions that Marr
suggests allow us to interpret silhouettes so
consistently:

1. Each line of sight from the viewer to the object
should graze the object’s surface at exactly one
point. Thus each point on a silhouette arises
from one point on the surface being viewed. We
can define the contour generator as the set of
points on a surface that projects to the boundary
of a silhouette (see Fig. 9.18).

2. Nearby points on the contour in an image arise
from nearby points on the contour generator on
the viewed object.

3. All the points on the contour generator lie in a
single plane (see Fig. 9.19).

This third is the strongest assumption, but is
necessary in order to distinguish convex and
concave segments in the interpetation process. If
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FIGURE 9.18

An object, its silhouette and
its contour. The set of points
that projects to the contour
{the contour generator) is
shown. For this figure, all
three assumptions (see text)
hold for alf distant viewing
positions in any one plane.
Adapted from Marr (1977)
and Marr (1982) with
permission of The Royal
Society.

OBSERVER

Subset of
“all distant viewing
positions in any one plane”

OBJECT SILHOUETTE CONTOUR

e &

CONTOUR GENERATOR
(Set of points which
project to contour)

this assumption is violated, then the wrong
conclusion might be reached. For example, the
occluding contour in the image of a cube, viewed
corner on, is hexagonal (see Fig. 9.19). Because we
assume the contour generator is planar, we could
interpret such a silhouette wrongly. In the absence
of any other information from internal lines or
motion, we might interpret the contour as
belonging to a spindle shape like one of those

FIGURE 9.19

drawn, or simply as a flat hexagon. In fact, the
points on the cube that gave rise to this contour do
not lie in a single plane. It is this assumption of a
planar contour generator that may lead us
(wrongly!) to interpret the moving silhouette of
someone’s hands as the head of a duck, or an
alligator, while playing shadow games.

Marr has shown that if a surface is smooth, and
all the above assumptions hold for all distant

OBJECT

A cube viewed corner on
gives rise to the silhouette

and contour shown. The INTERPRE?;.SE,\']E a c a
contour generator OF THIS CONTOUR
(a-b-c-d-e-f) is not planar.
This silhouette might be seen f d f
simply as a hexagon, or 5 3

interpreted as one of the
spindle shapes shown.

SILHOUETTE CONTOUR




9. OBJECTRECOGNITION 221

viewing positions in any one plane (see Fig. 9.18),
then the viewed surface is a generalised cone. Thus
shape can be derived from occluding contours
provided the shape is a generalised cone, or a set of|
such cones.

Vatan (cited by Marr, 1982) has written a
program to derive the axes from such a contour.
Figure 9.20 shows how his program derives the
component axes from an image of a toy donkey.
The initial outline was formed by aggregating
descriptions from the raw primal sketch, in the
same way as for the teddy bear’s head (Ch.6,
p.125). From this initial outline, convex and
concave segments are labelled and used to divide
the “donkey” into smaller sections. The axis is
derived for each of these sections separately, and
then these component axes are related together to
form a “stick™ representation for the entire figure.

Now these axes derived from occluding
contours are viewer-centred. They depend on the

image, which in turn depends on the vantage point.
We must transform them to object-centred axes,
and Marr and Nishihara (1978) suggested an
additional stage to achieve this by making use of
the “image-space processor”. The image-space
processor operates on the viewer-centred axes and
translates them to object-centred coordinates, so
that the relationships between the different axes in
the figure are specified in three, instead of two
dimensions. Use may be made of information from
stereopsis, texture, and shading to achieve this, but
it may also be necessary to use preliminary matches
with stored 3-D-model description to improve the
analysis of the image. Thus, for recognition, Marr
does envisage that there is a continuous interplay
between the derivation of an object’s description
and the process of recognition itself (1982, p.321):

We view recognition as a gradual process
that proceeds from the general to the specific

(a)
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(a) An outline of a toy
donkey. (b) Convex (+) and
concave (-} sections are
labelled. (c) Strong
segmentation points are
found. (d) The outline is
divided into a set of smaller

(c)
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segments making use of the
points found at (c) and rules
for connecting these to other
points on the contour. (e)
The component axis is found
for each segment. (f) The
axes are related to one
another (thin lines). Redrawn

(e}

from Marr and Nishihara
(1978) with permission of

The Royal Society.
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and that overlaps with, guides, and
constrains the derivation of a description
from the image.

In summary then, Marr and Nishihara outlined
a scheme in which an object-centred
representation, consisting of an axis-based
structural description, could be established from an
image and used to access a stored catalogue of 3-D-
model descriptions in order for recognition to be
achieved. Once an initial match has been
established, use may then be made of
downward-flowing information to refine the
analysis of the image. These ideas of Marr’s were
speculative; only a few isolated details of these
derivation and recognition processes have been
specified sufficiently clearly to implement them;
and the system itself rests on a number of
assumptions and observations about the perception
of stick figures and silhouettes that have arather ad
hoc flavour. Nevertheless, in the years since Marr
and Nishihara’s (1978) theory, there have been a
number of developments of these basic ideas.

BEYOND GENERALISED CONES

An important step in the development of Marr and
Nishihara’s theory was the suggestion that
complex occluding contours formed from objects

comprising several generalised cones are
Chapter 6, we described the work of Hoff: and
Richards (1984) who have illustrated the
importance of such concavities in segmenting
contours to reveal parts for recognition, and
thereby have supported one aspect of Marr and
Nishihara’s theory. However, Hoffman and
Richards’ scheme is independent of the nature of
the “parts” within the image. It will work if these
are generalised cones, but it will work too if they
are quite different kinds of shapes. Since Marr and
Nishihara’s theory of recognition was formulated,
a number of authors have suggested extensions to
their basic approach, to encompass a wider range
of shapes among the component parts.

For example, Pentland (1986a) proposed a more
flexible system of volumetric representation than
can be achieved with generalised cones. Pentland
suggests that most complex natural shapes are
comprised W and that
these might be the componeiits that we
recover when analysing images of natural objects.
Superquadrics include simple shapes such as
spheres and wedges, and all kinds of deformations
on these shapes that preserve their smoothly
varying form and that do not introduce concavities.
Figure 9.21 shows a scene constructed with
superquadric components. Pentland’s theory is an
interesting development for computer vision and
graphics, but no evidence has been offered for its
psychological plausibility.

In contrast, Biederman (1987a) has offered a
theory of human object recognition that is clearly
related to early ideas of Marr and others, although
with some key differences, and which he supports
with evidence from a variety of psychological
experiments.

In Biederman’s theory, complex objects are
described as spatial arrangements of basic
component parts. These parts come from a
restricted set of basic shapes such as wedges and
cylinders. Biederman calls these shape primitives

FIGURE 9.21

A scene comprised of superquadrics. Reproduced from
Pentland (1987) with permission.
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“geons” (a short-hand for the phrase_geometric
%ns) suggesting an analogy with words, which are
also  constructed from  combinations  of
primitives—phonemes. Like Marr and Nishihara,
Biederman suggests that the first stage of object
description involves the segmentation of the

occluding contour at regions of sharp concavity.

“Thi§ divides thé contour into a number of parts,
which can then be matched against representations
of the primitive object shapes (geons). The nature
and arrangements of the geons found can then be
matched with structural models of objects. The
representation of each known object is a structural
model of the components from which it is
constructed, their relative sizes, orientations, place

of attachment, and so forth (see Fig. 9.22). Where},

members of the same basic object category (e.g.
piano) may have quite different shapes (e.g. grand
piano vs upright piano) then more than one
structural model would be stored for the object.
The main point of departure of Biederman’s
theory from Marr and Nishihara’s is the suggestion
that geons are defineg/by__pLgerties that are
_invariant over different views. According to this
theory, itis not necggga?y- to make use of occluding
contours to recover an axis-based
three-dimensional shape description Instead, each
different kind of geon has its own “key” features in
the 2-D prlmal sketch level representatlon Thus in
'''' object
recogmtlon can be achieved dlrectly from the 2-D
(prlmaI sketch) Tevel represenmed

to construct an "éxphcn representation of of 3D

_g]_a_%e ‘Biederman argues that thér/e~a number 6f

FIGURE 9.22

“nonaccidental” properties of edges in images that
can be used as reliable cues to related properties of
edges in the world (cf. Kanade, 1981; Lowe, 1987).
The “nonaccidental” principle is an assumption
that when a certain regularity is present in an
image, this is assumed to reflect a true regularity in
the world, rather than an “accidental” consequence
of a particular viewpoint. We can illustrate this with
the example of a straight line in an image. This will
usually result from an extended straight edge in the
world, but it could result from other *“accidental”
consequences of viewpoint; for example, a bicycle
wheel viewed end-on will give rise to a straight line
image, even though it is actually curved. The
nonaccidental assumption would lead to the wrong
answer in this case, but will usually be correct, and
the general assumption is required in order to
constrain the interpretation of essentially
ambiguous image data. The nonaccidentalness
assumption leads to assertions such as that curved
lines in images result from curved edges in the
world, parallel edges in an image derive from
parallel edges in the world, symmetry in the image
signals symmetry in the world, and so forth.
Nonaccidental properties include collinearity,
curvilinearity, —symmetry, parallelism, and
cotermination (see Fig 9.23).

A geon is identified by a particular set of
defining features (such as parallel edges) that can
be accessed via these nonaccidental properties.
Biederman suggests that the assumption of
nonaccidental properties could explain a number of
illusions such as the Ames chair (see Ch.4, p.71),
and “impossible” objects,(where, for example, the

i
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B A<z bt

A selection of the volumetric
primitives called “geons”
(left-hand panel) are used to
specify objects in the right-
hand panel. The refations
between the geons are
important, as shown by the
difference between a pail
and a cup. Reproduced from

Biederman (1987b) with
permission © 1987 IEEE.
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Nonaccidental differences
between a brick and a
cylinder. From Biederman
(1987a). Copyright © 1987

by the American
Psychological Association.
Reprinted with permission.
Three Inner
parallel
edges

Brick

¥ vertex 1hree
outer

arrow
vertices

Cylinder

Two tangent Y vertices
(occluding edge tangent
at vertex to discontin-
uous edge)

Curved edges

Two parallel
edges

cotermination assumption is violated. Biederman
also provides new evidence for the importance of
concavities in defining the part structures of objects
(cf. Hoffman & Richards, 1984). Biederman
(1987a) describes experiments in which objects
were presented with regions of contour
deleted—either at places where there were
concavities in the occluding contour that should
help define the parts structure, or from segments
between these concavities. Contour deletion had a
far greater detrimental effect on recognition when
information about concavities was removed than
when this was preserved. Biederman and Ju (1988)
also produced evidence that supported the proposal
that it is edge properties, rather than surface or
texture properties, that are used to classify objects
into basic categories. In Biederman and Ju’s
experiments object recognition was affected rather
little by whether or not appropriate or inappropriate
colour was added to line-drawn objects in a
recognition test, suggesting that the recognition
processes ignore such surface properties.
Biederman has also performed a series of
empirical studies that appear to support the geon
theory of object recognition. When a picture of an
object is presented twice for naming, the naming
latency on the second occurrence is much faster
than on the first. This speeding up of responses
from ome presentation to the next is known as
repetition priming. Biederman and Cooper (1991)
“investigated Fiow repetition priming is affected by
a change in the way a line drawing of an object is

depicted. The amount of priming obtained is
reduced when the repeated presentation stiows a-

YRR T T e T — T
different exemplar of the category that would
access a distinct structural model (e.g. an upright

piano Tollowed by a grand piano), compared with
the amount of priming shown when the same
exemplar is repeated (e.g. another picture of an
upright piano). This difference gives a measure of
“visual” priming at the level of the structural model
itself over and above additional “conceptual”
priming that might occur as a result of re-accessing
the same object meaning or category label.
Biederman and Cooper (1991) showed that the
magnitude of this visual priming of object
identification was unaffected if the second view of
the same object exemplar showed the same object
components, represented by complementary but
nonoverlapping image edge features. However,
visual priming was reduced if the depicted
components (geons) themselves were changed
from first to second presentation (when different
volumetric parts of the same object exemplar are
shown on the two occasions). (See Fig. 9.24.)
Further experiments have shown that priming is
invariant over other changes that alter the image
but preserve its components, such as size, location,
and moderate changes in viewpoint. In contrast,
these same manipulations do affect memory for
line-drawn pictures (Biederman & Cooper, 1992;
Cooper, Schacter, Ballesteros, & Moore, 1992;
Humphrey & Khan, 1992), suggesting that varia-
tions in object components that are irrelevant for
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FIGURE 9.24

Complementary image 2

Complementary image 1

-

Complementary image |

Complementary image 2

=

Examples of materials used
in Biederman and Cooper's
(1991) experiment. The top
panel shows two

~ f complementary images of a
/ \ Y piano, created by deleting
( \ = —_ = alternate segments of
\ \ — ) - \\X 5 —_ contour in each image. The
\ = \ J amount of visual priming
N - | ¥ — )
J ! \_\ ! obtained when one member

of this pair was followed by
the other was as great as
when identical images were
repeated. The bottom panel
shows two complementary
images produced by deleting
alternate geon components.
The amount of priming
obtained when one member
of such a pair was followed
by the other was much
reduced and attributed to
conceptual rather than visual
processes. Adapted from
Biederman and Cooper
(1991) with permission of the
author.

identity may be processed and maintained by other
parts of the visual system, perhaps those to do with
in the visual field does not affect its identity, but
will affect how an observer reacts to it (e.g. if
reaching out to grasp it, or ducking to avoid being
hit by it).

Cooper and Biederman (1993; see also
Biederman, 1995) furnished other evidence
supporting the geon theory. In one study, people
were asked to decide whether two objects shown
successively were the same or different in name.
When objects shared the same name (e.g. both were
wine goblets), the two exemplars could differ in
terms of the geon shown (e.g. the bowl of the goblet
could have rounded or straight sides) or they could
differ in a way that did not involve any change in
non-accidental properties and hence geons (e.g. the
bowl of the goblet could be stretched in the second
view compared with the first) (see Fig. 9.25). They

found that matching was slowed more (and became

more error-prone) by a cilfall_rrlge/in#gggn\than by
_ other metric changes that leftThe geons uncm

suggesting thatitis the categorisation of the shape
parts, rather than holistic or metric properties of
“shape, that determines ease of matching.

VIEWPOINT-DEPENDENT RECOGNITION

The theories of object recognition we have
discussed here emphasise the recognition of
objects irrespective of viewpoint. In fact, there is
evidence that not all views of objects are equally
easy to recognise. Palmer, Rosch, and Chase
(1981) described how each of the different objects
they examined appears to have a “canonical”
viewpoint, which is often, though not always,
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FIGURE 9.25

Examples of the
geon-changed (VIC change)
and metric-changed shapes
used by Cooper and
Biederman (1993). Object-
name matches were
disrupted more by a change
of geon than by a metric
change even when the
metric change was 50%
greater (see far-right column)
than the amount of metric
change that was rated as
subjectively equal to the
geon change. Reprinted by
permission of the author.
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something like a three-quarters view. People asked
to imagine such objects report imaging them in
their canonical views, and people asked which
view they would choose to photograph, or which
view of an object is “best”, select canonical views.
Importantly, Palmer, Rosch, and Chase also found
that these canonical views could be named more
quickly than other views, suggesting that such
views play a privileged role in object recognition.
The advantage of canonical viewpoint could
quite easily be accommodated by the theories
discussed earlier, even though these stress the
recognition of objects independent of viewpoint.
Marr and Nishihara (1978) emphasise that certain
viewpoints will conceal important major axes that
are needed to derive a shape description. For
example, a top view of a bucket conceals the axis
of elongation, which is probably crucial to its
description. For Biederman, certain views may
conceal the nonaccidental properties that define the
“geons”, and other views may reveal them better.

Biederman and Gerhardstein (1993) conducted
a series of experiments using the repetition-
priming method to investigate whether object
recognition was invariant across viewpoint. In their
experiments they examined how priming was
affected by a change in orientation of the object
from the view experienced in the first phase. They
found that, provided different viewpoints revealed
the same geon components, the amount of
repetition priming was affected very little by an
angular change of up to 135° between its first and
second presentation. If successive viewpoints
revealed different geons then the amount of
priming was affected more greatly.

Other experiments, however, seem to reveal a
much greater dependence on viewpoint than do_
Biederman’s. For example, Biilthoff and Edelman
(1992; also Edelman and Biilthoff, 1992) showed
that when people were asked to try to recognise
rather complex unfamiliar shapes they showed
very poor abilities to-recognise them in novel
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'viewpoints, even when they had been studied under
conditions that ought to have promoted the
“formation Uf*me
“description. There is some dispute about whether
such-effects—of viewpoint-dependence arise only
when objects are drawn from a very restricted set
within which there are no distinguishing “geons”
(see Biederman & Gerhardstein, 1993; and Tarr
and Biilthoff, 1995, for discussion). However,
effects of viewpoint-dependence have also been

found with the kinds of familiar obJect categories

studle(‘iATyﬁlfiéderman "For example, Tawson,
Humphreys, and Watson @59&) reported
experiments in which subjects were required to
identify an object from a series of briefly presented
pictures. Priming effects were strongly influenced
by the visual similarity of successive v1ews' aresult
that should not be expected if each recogmsable
view contacts a viewpoint-independent description
(see also Lawson & Humphreys, 1996).

A number of authors therefore suggest that our
usual ability to recognise objects across a range of
viewpoints arises as a result of our experiencing
and storing different viewpoints separately, rather
than through the recognition of Viewpoint-
invariant features (Biederman) or the storage of a
viewpoint-invariant model (Biederman, Marr). If
discrete viewpoints are stored, recognition of novel
views may be achieved by alignment of a novel
limage with one of those stored (e.g. see Biilthoff &
Edelman, 1992; Tarr, 1995; Tarr & Pinker, 1989;
Ullman, 1989). Theories of viewpoint-dependent
recognition of objects are developing rapidly (e.g.
see Edelman, 1995). However, it is important to
note that object recognition is but one of the tasks

accomplished by vision. an be

achieved directly from 2-D features, as Biedermarn

suggests, or through storing a number of
Viewpoint-specific_exemplars (Tarr & Biilthoff;
1995) or “@fototypes” (Edelman, 1995), this does
not imply that 3-D Mwe not
constructed to guide other actions, such as picking
up the object. Different kinds of representation are
needed for different kinds of visual task, and even
within the task of object recognition it is possible
that flexible representational systems are used
depending on task demands (see Tarr, 1995, for a
discussion).

Whatever the resolution of the rather intense
debate about the mechanism by which
viewpoint-invariance is achieved, the theories of
Marr and Nishihara, and Biederman are all rather
limited in scope, because they can only account for
the recognition asic gategories of object from

ifferent configurations of parts. Humans can

‘recognise much more subtle distinctions within

classes of objects that share a similar configuration.
We can recognise our individual dogs and houses,
not just tell a dog from a horse or a house from a
church. This ability to recognise objects from
within a basic object category is at its most
developed when we come to consider recognition
of the human face.

DISCRIMINATING WITHIN CATEGORIES
OF OBJECTS: THE CASE OF
FACE RECOGNITION

Human faces must all be similar in overall
configuration because of the other functions of
signalling (e.g. expressions) and sensing (e.g.
seeing) that they subserve (see Chapter 16).
Individual identity must be stamped on this basic
configuration. What do we know about the basic
form of the representations used to tell one
individual face from another?

In contrast to basic-level object recognition,
face recognition is not very successful if based on
simple “edge” features alone, and seems to require
information about surface characteristics such as
the pigmentation and/or the texture of skin and hair.
One example arises from an experiment by Davies,
Ellis, and Shepherd (1978), who showed that
famous faces were very poorly recognised from
outline drawings that traced the features of faces.

Bruce et al. (1992a) replicated this observation
in an evaluation of Pearson and Robinson’s (1985)
algorithm for sketching images of faces (see Ch.5,
p.88). They found that famous faces were quite
difficult to recognise when presented as sketches
made using Pearson and Robinson’s (1985) “valley
detecting” algorithm alone, but that the addition of
the component that blacks in areas that were dark
in the original photograph (see Fig 5.11) restored
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recognition of these computer-generated sketches
to a level comparable to that obtained with the
original photographs.

Moreover, Bruce et al. (1994) showed that
repetition priming of faces was considerably
reduced if there was a change in the image
characteristics between the first and second
presentation of faces. Priming was reduced if faces
were initially seen as photographic images, and
then tested as sketches produced by the Pearson
and Robinson (1985) algorithm, or vice versa,
compared with the amount of priming produced
when the format of the images remained constant
between the prime and test phases of the
experiment. The viewpoint, expression, and face
features remain the same between the photographic
and sketch versions—what varies is the details of
the grey levels across the image. This sensitivity to
image format in face priming is in apparent contrast
to basic-level object recognition, where Biederman
and Cooper (1991) found that priming was
insensitive to changes in the image features.

Another observation is difficult to explain if
edge features form the basis of the representational
primitives used for face recognition. Faces are
extremely difficult to recognise from photographic
negatives (e.g. Phillips, 1972), although a negative
of a face preserves the spatial layout of edges from
the original image. Bruce and Langton (1994) were
able to show that this impairment of face

_ recognition did not occur when three-dimensional
e e -

“strface_shapes_of faces were negated (see Fig.
9.26). This finding suggeststhat the critical factor

in the negation effect is the reversal of the relative

brightness of pigmented areas such as hair and -

skin, which are absent from such surface shapes.

-~ These studies of the identification of line-drawn
and negated faces suggest that the surface
properties of skin and textured areas such as
hair—in particular their relative lightness and
darkness—play an important role in face
recognition. This need not imply that faces are
represented in a radically different way from other
objects, as object recognition also seems more
dependent on surface properties when the task of
discriminating within categories becomes more
difficult. For example, Price and Humphreys
(1989) showed that when objects to be recognised

were drawn from structurally similar categories
(such as animals or vegetables), there was a greater
advantage in recognising them if they were
coloured appropriately rather than inappropriately.

So, one contrast between face recognition (and,
perhaps,  within-category recognition more
generally) and the recognition of basic object types
is the extent to which representations preserve

“Information urface properties. Moreover, a

further difference seems o arise in the extent to
which different kinds of object discrimination
involve decomposing the object shapes into parts,
or analysing them more holistically.

The theories of Marr and Nishihara, and
Biederman, which we have discussed at length in
this chapter, emphasise the decomposition of
object shapes into discrete parts, followed by the
identification of these parts and their spatial
relationships. In contrast to the evidence for a
part-based representational scheme for objects,
face representation seems to be more “holistic”, or
at least the relationships between parts (their
configuration) seems to be more important in the
coding of faces than in that of most objects.

The main observation favouring the holistic
processing of faces is that it seems to be difficult
or impossible to encode a particular part, or
“feature”, of an upright face without some
influence from other, more distant features. It is not
just that the spatial arrangement of face features is
important—after all, we have seen that the spatial
arrangement of geons is crucial for the definition
of an object. For faces, it seems either that the
internal description of the parts themselves is
influenced by that of other parts, or that parts are
not made explicit in the description that mediates
face identification. For example, Young, Hellawell,
and Hay (1987) took pictures of famous faces and
divided them horizontally across the centre. They
showed that subjects were able to identify these
halves in isolation. When halves of different faces
were recombined, however, it became extremely
difficult for subjects to name the people who..
contributed to the composites if these were
aligned—new (and unfamiliar) faces seemed to:
emerge from the combination of the top half of, say,
Margaret Thatcher’s face and the bottom half of,
say, Princess Diana’s. However, when the




9. OBJECTRECOGNITION 229

Examples of the surface images used by Bruce and Langton (1994) to explore effects of negation in the absence of surface
pigmentation. Positive (left) and negative (right) versions are shown of two of the different viewpoints used in the experiments.
Reprinted from Bruce and Langton (1994). © 1994 Pion Ltd. Used by permission.

ycomposite faces were presented upside down,
\iubjects’ abilities to identify the halves improved.
Further evidence for the specific use of
nondecomposed  facial properties in face
identification has been obtained by Tanaka and
Farah (1993). They asked subjects to learn the
identities of individuals constructed from
Mac-a-Mug, an electronic “kit” of face features,
available for the Macintosh computer. After
learning the faces, subjects were asked questions
such as “Which is Larry’s nose?”, where they had
to choose the nose that went with the face they had
learned to identify as Larry (see Fig. 9.27). Subjects
were much better at making this judgement when
the noses were shown in the context of the whole

face, then when presented in isolation. However,
this advantage for presentations of the whole face
was not shown when identities had initially been
learned for scrambled faces, upside-down faces, or
houses (in the latter case, questions about
windows, doors, etc. replaced those about face
features such as the nose). These results suggest
that memory for intact, upright faces is not based
on a tepresentation in which parts are made
explicit, in contrast to memory for jumbled or
inverted faces. Note, though, that the results do not
necessitate the view that facial representations are
nondecomposed; the results are also consistent
with the idea that memory representations for faces
are based on emergent, configural descriptions in
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Examples of isolated part,
intact face, and scrambled
face test items used by
Tanaka and Farah (1993).
Subjects in these
experiments were better able
to distinguish the correct
version of a feature (such as
Larry’s nose) when it
appeared in the context of
the whole face {(centre) than
on its own {top row) or in a
scrambled face (bottom row).
Reproduced from Tanaka
and Farah (1993) with
permission of the authors
and the Experimental
Psychology Society.

FIGURE 9.27

.

which parsed features are no longer represented
independently (Bruce & Humphreys, 1994).

This evidence suggests that, even if face
identification does involve part-decomposition,
there may be a difference in the relative importance

of parts versus their configuration, in the
representation of basic kinds of objects versus
faces. One theory suggests that the relative
emphasis on configural and/or holistic processing
of faces emerges as a function of expertise with this
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object class (e.g. see Carey, 1992), and is
orientation-specific. Upside-down faces, which are
very difficult to recognise, seem to induce a more
parts-based analysis compared with upright faces
(see also Bartlett & Searcy, 1993; Rhodes, Brake,
& Atkinson, 1993; Young et al., 1987). Diamond
and Carey (1986) showed that people who were
dog experts also showed dramatic effects of
inversion of dog pictures, comparable to the effects
of inverting faces, and suggested that the special
“configural” mode of processing faces was
komething that might emerge with expertise within
any class of objects sharing the same basic-level
«configuration. On this argument, face recognition

"is “special” only in so far as it is a task of
within-category recognition at which we are all
highly expert, and face recognition can be used to
exemplify the more general process of
within-category object recognition. (For further
discussion and evidence about whether or not face
recognition involves specific mechanisms or
neural networks not shared with other objects, see
Bruce & Humphreys, 1994).

Of course, in Biederman’s terms, objects
sharing the same overall configuration must share
the same geon structural description, and thus some
other way of discriminating that which is based on
holistic and/or surface properties must be invoked.

However, even within the domain of basic level
object recognition, some workers have produced
evidence seeming to favour more holistic over
part-based object description schemes. Cave and
Kosslyn (1993) showed that the identification of
objects was severely disrupted by the scrambling
of the spatial arrangement of the overall shape, a
result that would be expected on a part-based as
well as a holistic coding scheme. However, they
also found that it mattered rather little how the
objects were divided into parts. Dividing objects in
ways that coincided with natural part boundaries

i.e. ways that kept geons intact) produced little
dvantage over dividing them in ways that did not
aintain natural part boundaries. It was only when
exposure durations were extremely short that there
was an advantage for the natural over the unnatural
part divisions. Cave and Kosslyn suggest that

people can use parts sych as s the building
\blocks for recognition but that they do not need\to_

\do 50/One problem with Cave and Kosslyn’s study,

however, is that naturally parsed geons may serve
as “objects” for perceptual identification in their
own right, which may then compete for
identification, thereby disadvantaging the
identification of the compound objects. Objects
divided in other ways (not into natural parts) would
not suffer such competition.

FRACTALS

A further class of objects that are not readily
characterised in the simple, part-based way
envisaged by Marr and Nishihara, Biederman, and
others include naturally rough, crumpled, or
branching objects such as trees and clouds, and
many textures such as rocky or sandy terrain. Some
such “rough” patterns can be described as having
a fractal structure (Mandelbrot, 1982). Fractals are
patterns that have a fractional dimensionality. For
example, a plane is two-dimensional whereas a
cube is three-dimensional. A fractal pattern of
dimension 2.1 would be almost smooth, like a
plane, but with a slightly bumpy surface. As the
fractal dimension increased towards 3, the surface
would become increasingly craggy. Fractal
patterns also have a recursive structure—they look
the same at different scales. Figure 9.28 shows
some examples of fractal patterns. Pentland
(1986b) showed that human perception of the
“roughness™ of a surface was highly correlated
with its fractal dimension as this ranged between 2
and 3 in the way described above, but did not
compare the predictive power of fractal statistics
with that of any other variable. Cutting and Garvin
(1987) showed that ratings of the complexity of
patterns like those shown in Fig. 9.28 are well
predicted by their fractal pattern statistics, but also
found that other variables, such as the number of
sides, were equally good predictors of perceived

CQ PpICXILY.
Pentland (1986b) Jescribes how fractal-based
¢thods can be used to segment natural images

into different regions and objects (cf. Chapter 6),
and describes how objects more natural-looking
than those shown in Fig. 9.21 can be built by adding
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FIGURE 9.28 -
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Examples of fractal patterns derived from different
“generators” (left column) whose fractal dimension varies
from 1.12 to 1.75. The patterns generated along the rows
vary in terms of their depth of recursion—the extent to which
the generation process is repeated at different scales.
Reproduced from Cutting and Garvin (1987) with permission
of the Psychonomic Society, Inc.

together superquadric components using a fractal
generation process to roughen the surface.
Although this is of considerable interest as a
computer graphics application, and shows how a
asic “part-based” shape description could be
xtended so that it could apply to more natural
bjects, it remains to be seen whether the human
isual system makes use of any such system when
recognising objects.

CONCLUSIONS

In this chapter we have outlined some of the
problems posed by the recognition of objects from
retinal images, and have seen how contemporary
work in cognitive science has attempted to
overcome these problems. We are still a long way
from developing a computer program that can
recognise everyday objects with the ease that we
do, and some way off understanding how we
ourselves perform everyday tasks of natural object
recognition. The theories of recognition we have
discussed in this chapter differ in the extent to
which objects are thought to be recognised via
abstract models that are viewpoint independent, or
by the storage of particular instances or viewpoints
seen on distinct occasions. In the next chapter, we
will consider how recent connectionist models of
object recognition can give a feel for how
apparently ‘‘abstract” representations might be
built up from discrete encounters with objects in
the world.



