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Visual neuroscientists seek to answer two
related questions. First, what does the visual
system do? Second, how does it do it?
While an answer to the second question
is a description based on anatomy and
biophysics, an answer to the first question
is a description of computations performed
on images. Important steps in providing this
description were made with the publication
of two classical studies on primary visual
cortex by Movshon et al. (1978a,b). These
studies have not aged in their readability,
and do not require an interpretive key to
be enjoyed by the contemporary reader. As
an introduction, however, this Perspectives
article briefly reviews the state of the art
at the time of their appearance, their
main findings, and their influence on three
decades of subsequent investigations.

The 1960s brought important advances
in the understanding of the computations
performed by the retina. An influential view
emerged that described retinal ganglion cells
as linear filters, i.e. as processes that compute
a weighted sum of the intensities in the
stimulus, with weights given by the receptive
field (Enroth-Cugell & Robson, 1966). This
simple ‘linear model’ applied to the majority
of ganglion cells in the cat retina (those of the
X type, corresponding to P cells in primates).
It was quite powerful, as it promised to
predict the responses of X ganglion cells to
arbitrary stimuli, on the basis of the simple
knowledge of the receptive field.

This purely linear view was complemented
by the discovery that another kind of
ganglion cells, those of Y type (which
correspond to M cells in primates), perform
non-linear operations, suggesting that they
sum the distorted output of subunits
that in turn have linear receptive fields
(Enroth-Cugell & Robson, 1966; Hochstein
& Shapley, 1976). This arrangement confers
position invariance: for stimuli of high
spatial frequency, Y cells respond equally

regardless of position within the receptive
field.

These advances suggested new ways of
looking at simple and complex cells in
primary visual cortex. Hubel & Wiesel
(1962) had defined simple cells as having
distinct antagonistic regions in their
receptive fields, and had suggested that
knowing those regions, one could predict
‘the responses to any shape of stimulus,
stationary or moving’. They had defined
complex cells as any cell that was not
simple, and had reported that complex
cells achieved position invariance within
their receptive field: they would respond to
a stimulus of the appropriate orientation
regardless of position within the receptive
field. These attributes of simple and complex
cells resembled those of X and Y ganglion
cells. Some authors proposed that the
correspondence could be anatomical, i.e.
that it reflected predominance of X inputs to
simple cells and of Y inputs to complex cells
(Stone, 1972; Movshon, 1975), a suggestion
that was not later confirmed. More generally,
however, the linear and non-linear models
and the stimulation procedures that had
been so useful to analyse X and Y cells
(Enroth-Cugell & Robson, 1966; Hochstein
& Shapley, 1976) constituted promising
starting points for a concise and precise
characterization of simple and complex
cells.

In addition to the breakthroughs in
retinal physiology, another force was
pushing towards the use of quantitative
engineering techniques in primary visual
cortex: such techniques were proving
successful to study human perception. In
particular, the University of Cambridge –
where Movshon, Thompson and Tolhurst
operated – was a hotbed of research
into the relations between single neuron
responses and perceptual phenomena.
These phenomena were investigated with
rigorous psychophysical measures, and
described with quantitative models based
on image filtering (Graham, 1989; Wandell,
1995). Much of this research rested on the
concept of ‘channels’, which are linear filters.
Simple cells in the cortex seemed to be good
candidates for such a role. Did they exhibit
linear summation? The time had come to
apply the power of linear systems analysis
and related techniques to primary visual
cortex.

In their first article, Movshon et al.
(1978a) applied linear systems analysis to
the responses of simple cells. They measured
responses of simple cells to gratings and bars,
and asked if such responses were consistent
with the output of a linear receptive field
(Fig. 1A).

Much as Enroth-Cugell & Robson (1966)
had done for X retinal cells, they asked if
the responses to drifting sinusoidal stimuli
were sinusoidal, as one would expect from a
linear filter. The results supported this view,
provided that the responses were rectified
by the spike threshold, which shows only the
part of the responses that lie above threshold
(Fig. 1A).

The authors then asked how the responses
depended on the spatial phase of a
standing grating whose contrast oscillated
sinusoidally in time. This test had been
applied to X and Y retinal cells by
Hochstein & Shapley (1976). Here the
linear model was put to a quantitative
test, and the fit was good, provided again
that the output of the receptive field
was passed through a rectification stage
that thresholded it (Fig. 1A). Movshon,
Thompson and Tolhurst were even able to
suggest how high the threshold should be
relative to rest. They expressed this threshold
in the units of firing rate responses,
spikes s−1. For example, for the cell in
their Fig. 4, the estimated threshold was
8 spikes s−1 (if the receptive field were to
output 12 spikes s−1, the neuron would
output 4 spikes s−1).

Finally, the authors asked a key question:
was the selectivity of simple cells pre-
dictable on the basis of the receptive field
alone, as had been suggested by Hubel and
Wiesel, and as would be expected of a
linear filter? To test this hypothesis, they
turned again to the approach that had
demonstrated the linearity of X retinal cells
(Enroth-Cugell & Robson, 1966). First, they
measured responses to drifting gratings of
various spatial frequencies (Fig. 2A). Then,
they measured responses to bars flashed at
various positions, thus estimating the profile
of the receptive field (Fig. 2B, histograms).
According to the linear hypothesis, the
first data set could be used to predict
the second one. This was indeed the case
for the cells (Fig. 2B, curve): just as pre-
dicted by the linear model, the selectivity
of simple cells for spatial frequency could be
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Figure 1. The models of simple and complex cells proposed by Movshon,
Thompson and Tolhurst (Movshon et al. 1978a,b)
A, linear model of simple cells. The first stage is linear filtering, i.e. aweighted sum
of the image intensities, with weights given by the receptive field. The second
stage isrectification: only the part of the responses that is larger than a threshold is
seen in the firing rate response.B, subunit model of complex cells. The first stage is
linear filtering by a number of receptive fields such asthose of simple cells (here we
show four of them with spatial phases offset by 90 deg). The subsequent stages
involve rectification, and then summation.

predicted on the basis of the receptive field
profile.

For all its success in explaining responses
of simple cells, the linear model (Fig. 1A)
could not possibly work for complex cells.
Complex cells are insensitive to the precise
position of a bar within the receptive field,
and respond both to the onset and to the
offset of the bar. Neither of these properties
could arise from a single linear receptive
field. Hubel & Wiesel (1962) had therefore
described complex cells as summing the
output of a number of simple cells with
similar orientation preference but different
receptive field profiles.

Borrowing from the subunit model
proposed for Y ganglion cells by Hochstein
& Shapley (1976), such a description could
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Figure 2. Linearity of spatial summation in simple cells the experiment in Fig. 9 of the first 1978 article
by Movshon, Thompson and Tolhurst (Movshon et al. 1978a)
Responses were simulated from a model simple cell with a linear spatial receptive field that summates strongly
distorted thalamic inputs (Carandini et al. 2002). A, spatial frequency tuning of the simple cell. The ordinate marks
the amplitude of the sinusoidal modulation caused by drifting sinusoidal gratings, whose spatial frequency is plotted
on the abscissa. B, profile of the receptive field of the simple cell. The histogram shows the firing rate elicited by
flashing bars in various spatial positions across the receptive field. Negative responses indicate responses elicited
when withdrawing the bar. The curve shows the prediction based on linearity, obtained by Fourier transform of
the data in A.

be made quantitative by postulating a
number of linear receptive fields orientated
in space (subunits), whose outputs are
rectified by threshold, and integrated into
a single response (Fig. 1B). In their second
article, Movshon et al. (1978b) went on to
propose such a subunit model for complex
cells (Fig. 1B), and to justify each of its
components. They started by performing
the same three measures that they had
performed in simple cells.

First, the authors studied the modulation
in firing rate caused by drifting sinusoidal
gratings. Complex cells responded
phasically only at the lowest spatial
frequencies, but as soon as the frequency
approached the optimal, the responses
became constant in time. This was

consistent with a subunit model (Fig. 1B).
Each of the subunits would respond with
a sinusoid, but the rectified sinusoids
would be offset in time, and therefore they
would sum to an approximately constant
value.

Second, they asked how complex cell
responses depended on the spatial phase of a
standing grating whose contrast reversed in
time. Just as for Y ganglion cells (Hochstein
& Shapley, 1976), the cells did not care
for spatial phase, giving two responses for
each cycle of the stimulus (once for each
sign of contrast). These results again were
consistent with the subunit model (Fig. 1B):
each subunit would give positive responses
only once in each cycle, and only at specific
spatial phases, but the sum of the positive
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subunit responses would rise twice in each
cycle, irrespective of spatial phase.

Third, they asked whether the selectivity of
complex cells was predictable on the basis of
the receptive field alone. The answer was a
resounding no: as predicted by the subunit
model (Fig. 1B), receptive fields of complex
cells don’t have strong distinct subregions,
so it is not possible to predict their selectivity
from a receptive field profile.

While all these results seemed consistent
with a subunit model (Fig. 1B), a key
attribute of that model remained to be
verified: are the receptive fields of the sub-
units really linear? To test this hypothesis,
the authors devised an elegant experiment,
in which they measured the interaction of
dark and light bars in different positions of
the receptive field.

To understand this experiment, consider
a simplified model of complex cell that
includes only four subunits (Fig. 1B), and
imagine placing a bright bar over the central
positive region in the receptive field of the
first subunit. This subunit will give a strong
positive response, and will thus operate well
above threshold. Conversely, the third sub-
unit, which has the opposite receptive field,
will be strongly suppressed, and will operate
much below threshold. The second and
fourth subunits, in turn, will barely respond,
so they will operate (as normally) slightly
below threshold. Adding a second bar to
the stimulus therefore will mostly reveal the
receptive field properties of the first subunit.
Indeed, as shown in Fig. 8 of the original
article, the interaction profiles between bars
resemble receptive fields. If these receptive
fields of the subunits operate linearly (and if
all subunits are similar in spatial frequency
preferences), then it should be possible to
predict the spatial frequency selectivity of
the neuron based on the receptive field
profile of the subunits, just as for simple
cells (Fig. 2). The results of this experiment,
illustrated in Fig. 9 of the original article,
confirm this prediction, providing strong
support for the subunit model of complex
cells (Fig. 1B).

The results of the two articles therefore can
be summarized by two models: the linear
model of simple cells (Fig. 1A), and the
subunit model of complex cells (Fig. 1B).
These models share two key attributes: (1) all
the image processing is performed by linear
filters; (2) the non-linearities operate on the
time-varying signals that are output by the
filters.

These models have formed the basis for
much that has followed in the subsequent

three decades. There is obviously no space
here to cover this territory, for which we refer
the reader to recent reviews (e.g. Carandini
et al. 2005). What might be more useful
would be to discuss those aspects that, with
100% hindsight, could have been analysed
differently, and would arguably have led to
slightly different conclusions.

First, when comparing responses to
gratings to the profiles of the receptive field
(Fig. 2), whether for simple cells or for the
subunits of complex cells, a free scaling
factor was allowed to obtain a match. Such
a scaling factor should not be necessary
for the simple models shown in Fig. 1,
but it is necessary for actual cells, whose
responsiveness depends very much on the
local distribution of contrast. To account
for this dependence, the models were later
extended to include a divisive stage that
controls responsiveness on the basis of the
distribution of local contrast (for reviews see
Heeger, 1992; Carandini et al. 1999).

Second, the authors were perhaps wise
to concentrate on one spatial dimension,
and thus to avoid the contentious issue of
orientation selectivity. Orientation tuning
curves were not measured in this study,
arguably because rotating the stimulation
device involved placing one’s hand within
centimetres of electrocution, something that
was done only reluctantly, once for each cell
(J. A. Movshon, personal communication).
Had the authors measured 2-dimensional
receptive field profiles they could have asked
whether these profiles predicted orientation
selectivity. This issue remained open for
decades and is not entirely closed to this date
(reviewed by Ferster & Miller, 2000).

Finally, perhaps the greatest limitation
of these studies is that they concentrated
on the spatial domain, and did not test
linearity in the temporal domain. On the
one hand, as was shown in the subsequent
decades, the concept of spatial receptive field
can be fruitfully extended to 3-dimensional
space–time, to account for phenomena of
direction selectivity (in fact, the nascent
signs of such an extension can be seen
already in the second 1978 article). On
the other hand, as demonstrated later by
Tolhurst et al. (1980), in primary visual
cortex temporal summation is far from
linear: responses are much more transient
than would be expected from the frequency
selectivity curves. This non-linearity is
puzzling: how could a receptive field be
spatially linear and temporally non-linear?

It is now thought that because a cortical
cell sums inputs from a variety of spatially

displaced thalamic neurons, even if the
individual inputs are grossly distorted by
saturating and threshold non-linearities, the
overall spatial summation properties of the
neuron will remain approximately linear
(Carandini et al. 2002; Priebe & Ferster,
2006). Indeed, the simulations shown here
(Fig. 2) resulted from a model cell that
summates such strongly non-linear inputs.
This model cell passes the test of spatial
linearity devised by the 1978 papers (Fig. 2),
yet it would fail any test of temporal linearity.

If it took three decades to obtain this
realization, it is possibly because these 1978
papers made such a compelling case for
linearity, and the field took them as evidence
that every step in the visual system up
to the primary visual cortex had to be
linear. The reasoning, partly explicit in
these papers and implicit in much of the
subsequent literature, was that there could
be no non-linear stages from the cones to
the cortex because those stages would have
prevented the cortical cells from passing the
linearity tests.

These are modest limitations, and they
are evident only with three decades of
hindsight. Overall the impact of these
papers on the field was forceful and
positive. As is evident from glancing at
any recent review (e.g. Carandini et al.
2005) much of what was done to this
date to explain responses of primary
visual cortex, e.g. to explain properties
such as orientation selectivity, direction
selectivity and binocular integration, rested
on the results of these two classical
papers. Moreover, these studies succeeded
in providing a foundation for the models of
pattern perception based on psychophysical
channels (Graham, 1989). Our only hope is
that similarly powerful quantitative studies
will soon appear for areas beyond the
primary visual cortex.
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