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During development, detection for many percepts matures gradually. This provides a natural system in which to investigate the neural
mechanisms underlying performance differences: those aspects of neural activity that mature in conjunction with behavioral perfor-
mance are more likely to subserve detection. In principle, the limitations on performance could be attributable to either immature
sensory encoding mechanisms or an immature decoding of an already-mature sensory representation. To evaluate these alternatives in
awake gerbil auditory cortex, we measured neural detection of sinusoidally amplitude-modulated (sAM) stimuli, for which behavioral
detection thresholds display a prolonged maturation. A comparison of single-unit responses in juveniles and adults revealed that
encoding of static tones was adultlike in juveniles, but responses to sSAM depth were immature. Since perceptual performance may reflect
the activity of an animal’s most sensitive neurons, we analyzed the d prime curves of single neurons and found an equivalent percentage
with highly sensitive thresholds in juvenile and adult animals. In contrast, perceptual performance may reflect the pooling of information
from neurons with a range of sensitivities. We evaluated a pooling model that assumes convergence of a population of inputs at a
downstream target neuron and found poorer sAM detection thresholds for juveniles. Thus, if SAM detection is based on the most sensitive
neurons, then immature behavioral performance is best explained by an immature decoding mechanism. However, if sSAM detection is
based on a population response, then immature detection thresholds are more likely caused by an inadequate sensory representation.

Introduction

The relationship between perception and neural encoding is well
studied in adult animals, but seldom during development when
perceptual abilities are most dynamic. In humans, auditory per-
ceptual skills mature well into the teenage years. For example,
detection thresholds for sinusoidally amplitude-modulated
(sAM) sounds reach maturity during the first decade (Hall and
Grose, 1994; Banai et al., 2007), and a similar trajectory is re-
ported for gerbils: the average initial SAM detection threshold for
adults is ~31% modulation depth (MD) compared with ~45%
for juveniles at postnatal day 30 (P30) to P38 (Sarro and Sanes,
2010). This developmental difference is not correlated with be-
havioral measures commonly associated with attention (e.g.,
false alarm rate), suggesting that the sensory encoding mecha-
nisms could display a similar developmental trajectory. The goal
of this study was to exploit developmental changes to evaluate
candidate sSAM encoding mechanisms. Thus, we obtained audi-
tory cortex (ACx) spiking responses to sAM stimuli in awake
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juvenile and adult gerbils and applied neurometric analyses to
determine which aspects of neural maturation parallel the devel-
opmental improvement in perception.

One reason to focus on sAM processing is its relevance to
animal communication (Rosen, 1992; Shannon et al., 1995; Singh
and Theunissen, 2003). For example, MDs (i.e., the magnitude of
periodic increase and decrease in sound amplitude) aslow as 10%
are found in speech fricatives (Pincas and Jackson, 2006), and
MD variations influence comprehension (Krause and Braida,
2004). Although behavioral sAM thresholds are quite low, neural
responses are typically evoked at 100% MD (Zwicker, 1952; Vi-
emeister, 1979; Salvi et al., 1982; Kohlrausch et al., 2000; Kelly et
al., 2006). Whereas neural responses to shallow MDs have been
characterized recently in adults (Middlebrooks, 2008; Malone et
al., 2010), we have a poor understanding of their development.

We focused our analysis on ACx because it integrates brain-
stem and thalamic inputs and serves as the primary sensory rep-
resentation to decoding centers (Budinger et al., 2000, 2006; Kaas
and Hackett, 2000). Furthermore, temporal discrimination is ac-
companied by activation of left ACx and is impaired by ACx
ablation or inactivation (Elliott and Trahiotis, 1972; Ohl et al.,
1999). Additionally, although many studies have characterized the
maturation of ACx processing (Eggermont, 1991; Bonham et al.,
2004; Pienkowski and Harrison, 2005; Razak and Fuzessery, 2007b;
Brown and Harrison, 2010), all used anesthetized preparations,
yielding data that might differ significantly from awake recordings,
especially in ACx (Gaese and Ostwald, 2001; Wang et al., 2005).

To evaluate neural encoding, we transformed the sAM-
evoked spike trains into a form that could be compared directly
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with measures of behavioral performance in juvenile and adult
gerbils. Well tuned sensory neurons are typically evaluated with
optimal stimuli to determine whether their responses correlate
with perception. This approach does not consider those cells that
are active but not well tuned. Population coding schemes posit
that all active neurons contribute to perception, whereas the
lower envelope principle posits that animals can rely on their
most sensitive neurons and that less sensitive neurons will not
interfere with the percept (Parker and Newsome, 1998). Our re-
sults show that the best ACx neurons at each age are equivalently
sensitive, indicating that the lower envelope principle is not suf-
ficient to explain behavioral differences. In contrast, a population
analysis that sums tuned and untuned neurons is sufficient to
explain the maturation of SAM detection thresholds observed in
behaving gerbils.

Materials and Methods

All procedures relating to the maintenance and use of animals in this
study were approved by the University Animal Welfare Committee at
New York University. A total of 13 adult (P60—-P73, six males and seven
females) and 12 juvenile (P29-P40, seven males and five females) Mon-
golian gerbils (Meriones unguiculatus) were used in this study.

Surgical preparation and chronic recordings

Gerbils were premedicated with ketoprophen (1.5 mg/kg, i.n.) and dexa-
methasone (0.35 mg/kg, i.p.) and hydrated with normosol (1.5 ml, s.c.).
The animals were anesthetized with isoflurane, maintained by monitor-
ing withdrawal reflexes and respiration rate. Animals were held in a
stereotaxic apparatus. Several (six to eight) small bone screws were at-
tached around the perimeter of the skull. A small headpost was posi-
tioned along the midline and secured with dental acrylic. A silver ground
wire was secured in a small hole drilled into the posterior contralateral
skull. A craniotomy was made over the left temporal cortex caudal to the
bregma suture using stereotaxic coordinates (Thomas et al., 1993), and
the dura was left intact. A thin well of dental acrylic was built along the
perimeter of the craniotomy, and the enclosure was covered with silicone
oil to maintain moisture and prevent surface edema. The craniotomized
area was covered with a disposable cap of silicone elastomer (Sammons
Preston Rolyan). The entire skull was covered with dental acrylic to form
a headcap.

Animals were placed in a soundproof chamber (Industrial Acoustics
Company), and the head was stabilized using the headpost. During
chronic recording sessions, animals stood comfortably on a platform and
were free to move their limbs while the head position remained fixed. If
an animal exhibited heightened anxiety or restlessness, medetomidine (a
relaxant that acts on 2-adrenoceptors) was administered intranasally at
the beginning of the recording session at a dosage of one to three drops
(0.1-0.3 mg/kg) and supplemented as necessary. Gerbils trained to de-
tect amplitude modulation in our laboratory are able to perform the task
after medetomidine administration (D. H. Sanes, unpublished observa-
tions). An additional analysis showed that key neural response properties
(firing rate, minimum first-spike latency, and phase-locking cutoff fre-
quency for sSAM tones) remained stable with time elapsed after medeto-
midine administration (47-200 min) (Ter-Mikaelian et al., 2007).
Because medetomidine did not produce an observable effect on neuronal
activity, the results for cells recorded with and without medetomidine are
presented together.

Electophysiological recordings

The silicone elastomer cap was removed at the beginning of each session,
and a fresh cap was applied at the end. The dura was covered with saline
during recording to maintain moisture. Platinum-plated tungsten elec-
trodes (1.5-2.5 M€); MicroProbe) were advanced ventrally through the
craniotomy with an electrode tip angle of 14° lateral to vertical to isolate
neurons in primary ACx. Single-unit recording procedures were identi-
cal to those described previously (Ter-Mikaelian et al., 2007). The pro-
portion of recorded cells for the two age groups and their corresponding
best frequencies are shown in Figure 1.
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Acoustic stimulation

The system used for stimulus generation and sound delivery (MALab;
Kaiser Instruments) as well as the calibration procedure have been de-
scribed previously (Malone and Semple, 2001). Calibrated acoustic stim-
uli were presented to each ear through an electrostatic speaker coupled to
a custom-made ear insert. All stimuli were presented monaurally to the
right ear except in cases in which a monaural stimulus failed to elicit
reliable responses, in which case a binaural stimulus was used. Sound
pressure level (SPL) is expressed relative to 20 wPa.

Each neuron was assessed with a battery of stimulus protocols de-
signed to determine its response properties for static and modulated
sounds. Typically, the approximate frequency range over which the neu-
ron was responsive was obtained with an iso-intensity function at 10-30
dB above threshold (threshold criteria are described below). This was
followed by a rate-level function (RLF) at the estimated best frequency
(BF). The RLF was measured at increments of 5 dB SPL, using 200-ms-
duration tone pips delivered at the BF of the unit. The pips were shaped
with a 5 ms cosine-ramped rise/fall time and presented for at least 10
trials, with a 1 s intertrial interval.

SAM tones (2 s duration with 10 ms rise/fall) were presented at BF and
at the SPL that produced the strongest response that was synchronized to
the stimulus envelope (often the same as the best SPL for tone stimula-
tion). Modulation transfer functions (MTFs) were obtained by present-
ing 5 or 10 trials of multiple modulation frequencies at 100% MD with an
intertrial interval of 1 s. Modulation frequencies were typically 0.5, 1, 2, 5,
10, 20, 50, and 100 Hz. An unmodulated tone at the same frequency and
SPL and of the same duration as the sSAM tones was included in the
stimulus sequence as a control. For a subset of cells, MTFs were instead
obtained using two trials of 10 s SAM tones with a 10 ms rise time and an
intertrial interval of 2 s. The best modulation frequency (BMF) was de-
termined from the MTF as the modulation frequency eliciting the highest
response strength (i.e., the product of firing rate and vector strength).
Additional functions were measured at BMF, since by eliciting the stron-
gest sSAM-evoked response it provided the greatest number of spikes for
analysis. Modulation depth functions (MDFs) were obtained by present-
ing 10 trials of multiple MDs at BF and BMF with an intertrial interval of
1 s. The following MDs were typically presented to each ACx neuron: 5,
10, 20, 50, 70, 80, and 100% MD.

Data analysis

RLFs and sAM responses. Spike times were stored and viewed as raster
plots or peristimulus time histograms (PSTHs). Minimum first-spike
latency was determined at BF and at the SPL that produced the earliest
response by selecting the first peak in the PSTH to a 200 ms tone
(binned by 10 ms) as the region of interest (ROI). The corresponding
raster plot was used to determine the mean onset time of the first spike
over =10 trials.

Maximum firing rates to tones were calculated over a time window
equal to the stimulus duration, at the sound level that elicited the highest
firing rate. Threshold, dynamic range, and monotonicity were deter-
mined from the RLF. Threshold was defined as the decibel (dB) SPL level
below which there was at least a 20% increase in firing rate, stepping up
from one dB SPL level to the next. Dynamic range was defined as the
range between the dB SPL levels where each cell responded at 10 and 90%
of its maximum firing rate, calculated by interpolation. Age differences
for each of these were assessed with £ tests. Nonmonotonic neurons were
defined as those whose firing rates at the highest dB SPL tested dropped
below 50% of their maximum firing rate. Age differences for monoto-
nicity were assessed using the x test.

Responses to SAM tones were analyzed using three measures: phase-
locking to the modulation period (vector strength), firing rate, and
power at the modulation frequency (referred to hereafter simply as
power). The ROI excluded the first modulation period to ensure that the
response to the modulation was examined without contamination by the
onset response (Liang et al., 2002). First, vector strength (Goldberg and
Brown, 1969) was calculated by treating every spike as a unit vector in a
polar coordinate system, where the angle was the instantaneous phase
and the mean phase of the response was the direction of the sum of those
vectors, normalized to the firing rate. Vector strength (the length of that
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mean vector) depends on how tightly the spikes cluster about that one
point in the stimulus cycle, varying between zero (e.g., a flat period
histogram) and one (all spikes at one phase), and is thus a measure of
tight phase-locking. Vector strength was used to construct a temporal
MTF (tMTF) (supplemental Fig. 2 A, B, bottom left, available at www.
jneurosci.org as supplemental material) and temporal MDF (supple-
mental Fig. 1A,B, bottom left, available at www.jneurosci.org as
supplemental material). A modified Rayleigh statistic, z = 2n X V§ 2
where 1 is the number of spikes in the ROI and VS is vector strength, was
used to determine the level of significant phase-locking (Liang et al.,
2002). Vector strength values corresponding to a modified Rayleigh mea-
sure of 13.8 were considered statistically significant ata p < 0.001 confi-
dence level.

Next, the average firing rate over the entire ROI was determined for
each modulation frequency and used to construct a rate MTF (rMTF)
(supplemental Fig. 2 A, B, bottom middle, available at www.jneurosci.org
as supplemental material) and rate MDF (supplemental Fig. 1A, B, bot-
tom middle, available at www.jneurosci.org as supplemental material).
Firing rate responses to each MD or modulation frequency (MF) were
considered significant if they elicited a rate different from that elicited by
the lowest tested depth (5% MD) or an unmodulated tone (0% MD),
respectively, using a paired ¢ test ( p < 0.05). Neural rate-based depth
detection threshold was defined as the lowest significant MD.

The third measure, power, accounts for both temporal and rate infor-
mation but does not depend on phase-locked responses and is thus an
indicator of how well the spike pattern matches the shape of the sSAM
envelope. Power was measured by a discrete Fourier transform of spike
times using a multitaper process (CHRONUX Toolbox; Cold Spring
Harbor). This analysis provides the magnitude of the spiking response at
the modulation frequency of the sAM stimulus (Kleinfeld et al., 2002),
measured as power (spikes per square seconds per hertz). This mea-
sure was used to construct a power MTF (supplemental Fig. 2A, B,
bottom right, available at www.jneurosci.org as supplemental mate-
rial) and power MDF (supplemental Fig. 1 A, B, bottom right, available
at www.jneurosci.org as supplemental material). Power responses to
each MD were considered significant if the mean at that depth exceeded
the confidence interval of the lowest depth tested. To determine signifi-
cant frequency, the comparison for each MF was an unmodulated tone
binned to match that MF. Neural power-based depth detection threshold
was defined as the lowest significant MD. For each measure, age-
differences for MTFs or MDFs were assessed with ANCOVAs.

Thresholds were defined as the lowest significant MD (see above for
significance) and were computed separately for vector strength, firing
rate, and power. The criteria for two of the neurometrics included only
“sAM-monotonic” neurons, using criteria similar to those from previous
studies (Nelson and Carney, 2007). Neurons were classified as sSAM-
monotonic either when the MDF contained two consecutive significant
MDs and the response to a fully modulated sAM (100% MD) was also
significant or when only the 100% MD value achieved significance; this
was required to be true based on all three measures (vector strength,
firing rate, and power).

For each neuron, tMTFs, rMTFs, and power MTFs were classified
based on their sAM MF filter characteristics into one of five categories:
low-pass, bandpass, all-pass, high-pass, and band-reject. These were
based on a 70% change criterion (across the range of MFs tested, 0.5-100
Hz) in the response above or below the cell’s BMF (resulting in an
excitatory peak in the MTF) or worst modulation frequency (eliciting
the strongest response suppression surrounded by excitatory regions)
(Nelson and Carney, 2007).

Neurometrics. Four neurometrics were applied to predict behavioral
detection. First, to convert individual neural depth detection into a mea-
sure comparable with behavioral detection, d prime (d') curves for each
cell were calculated separately for vector strength, firing rate, and power.
Mean z-scores across trials were calculated for each cell at each depth
level. For every depth level, d’ was then calculated as d' = z(MD,;,) —
z(MD,,,,), where MD,, . is the lowest depth tested (5%). Therefore, this is
awithin-cell neurometric, in that the detection ability of each neuron was
compared with its own baseline. Threshold for detection of the signal was

J. Neurosci., November 17,2010 - 30(46):15509—15520 * 15511

defined as d’ = 1. This is equivalent to 67% correct performance when
chance is 50%, a criterion that is often used in psychophysical studies.

Second, a population neurometric was constructed from detection
thresholds (described above) to reveal the proportion of neurons with
responses above threshold across MD. This is a within-cell neurometric,
in that the detection ability of each neuron was compared with its own
baseline. Curves were created based either on all neurons or on only
sAM-monotonic neurons (see above). Thresholds based separately on
vector strength, firing rate, and power were used to create separate cu-
mulative histograms. For those cells where no depth produced a response
above threshold, threshold was considered to be 110%, and the resulting
curves thus did not reach 100% (the limit of a cumulative distribution).
This is relevant only for the curves including all neurons, since SAM-
monotonic neurons, by definition, have defined thresholds. As this neuro-
metric is constrained by the limits of a cumulative distribution (0-100%), it
is likely to deviate in detail from psychometric curves.

Third, a spike-distance metric (Victor and Purpura, 1997) was applied
to determine how well spike trains elicited by each depth could be distin-
guished from baseline [i.e., spike trains elicited by the lowest depth tested
(5% MD)]. Like the first two, this is a within-cell neurometric, in that the
detection ability of each neuron was compared with its own baseline.
This metric reveals the time scale at which detection of SAM is maximal,
as it compares spike trains at time scales ranging from 1 to 1000 ms.
Dis-similarity between two spike trains is measured as the minimum cost
of transforming one spike train into another through several simple op-
erations. The addition of a single spike and the deletion of a single spike
each have a cost of 1. In addition, a spike can be shifted in time by an
amount dt for a cost of gd. The parameter g has units of time ~', and the
quantity 1/q is a measure of the temporal resolution of the metric. To
measure neural detection for each neuron, distances were calculated be-
tween spike trains to determine whether each was closer to baseline or to
other spike trains elicited by the same depth. The percentage of correctly
classified spike trains was used as the measure of detection, where chance
equals 50%.

Fourth, a pooling neurometric was applied that assumes a neural ar-
chitecture of a single downstream neuron that receives input from all
cells (Britten et al., 1992; Shadlen et al., 1996). To measure detection,
activity elicited by a baseline stimulus was compared with that elicited by
each depth, and a winner-takes-all strategy chose the event with maxi-
mum likelihood. Unlike the first three, this is an across-cell neurometric,
as each neuron did not serve as its own baseline. The neurometric was
applied separately for the three measures (vector strength, firing rate, and
power). For each age group, cells were chosen with replacement from the
entire pool of sampled neurons, up to the desired pool size (where the
maximal pool size was the number of recorded cells). Rather than sam-
pling the same observed responses repeatedly on each trial, we used the
Fano factor p as a measure of neuronal variability to simulate responses
drawn from distributions whose mean and variance matched those of the
empirical measurements. Thus, for each MD and for baseline (5% MD),
the response for each cell was jittered using X = x + (\/xp * r), where x
is the mean response magnitude, p is the Fano factor, and r is a small
random number. Jittered responses were summed, the summed response
magnitudes for baseline versus each MD were compared, and a larger
value for the higher MD was considered correct detection. This was
repeated 20 times (drawing a random subset for each trial), with each
comparison equivalent to a single trial, and performance was measured
as average correct detection across trials. The neurometric was run 100
times and depicted as mean = SD, as its performance was quite variable
when using only 20 trials (a value chosen to reflect the collected neural
data). Our implementation of this model assumes independence
across cells, as we were limited by recording from single neurons. As
neuronal intercorrelation can diminish the beneficial effect of pool-
ing on performance (Britten et al., 1992), our assumption of indepen-
dence could predict lower thresholds than if correlations were taken
into account. However, this effect is minimal with smaller pool sizes
on the scale of those used in this study, and for the low (~0.07)
amount of correlation described in ACx (Zohary et al., 1994; Aver-
beck and Lee, 2004; Eggermont, 2006).
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Figure 1.  ACxresponses to unmodulated tones were mature in juveniles by all measures except first-spike latency. All comparisons were between adult and juvenile groups and measured in
response to 200 ms tone pips, unless noted otherwise. A, The distribution of the neuron’s BF. B, The maximal firing rate (max FR) elicited by 200 ms (left) or 2 s (right) tone pips at BF. C, Several
measures indicating the response to 200 ms tone pips at BF at various sound levels. There were no age differences in the 10 -90% dynamic range across sound level, the threshold sound level (thr
dB), the firing rate at threshold (thr FR), or the proportion of monotonic (M) to nonmonotonic (NM) cells. D, First-spike latency in response to 200 ms tones at BF was significantly slower in juveniles

than in adults. Al error bars indicate SEM. A, Adult; J, juvenile.

Results

Responses to unmodulated tones

To establish a developmental baseline for responses to sSAM stim-
uli in juvenile and adult animals, we assessed ACx responses to
pure tones. We recorded single units in ACx from 13 adult (P60—
P73) and 12 juvenile (P29-P40) awake gerbils. The BF was deter-
mined manually, and RLFs were collected using 200 ms tone pips
at BF for 55 adult and 62 juvenile neurons. The distribution of
BFs was the same for both age groups (¢,,5 = 1.15; p = 0.25)
(Fig. 1A), indicating that we sampled from a similar distribution
of cells across the ACx tonotopic axis. By several measures, re-
sponse properties to 200 ms tone pips were mature by P30. Im-
portantly, the maximum firing rate was equivalent across age
groups, both to a 200 ms tone pip and to a 2 s tone pip (200 ms
tone: t(,;5) = 1.30, p = 0.20; 2 s tone: t = 0.60, p = 0.55) (Fig. 1B),
indicating that P30 and adult neurons were equally excitable in
response to a static stimulus. This was not the case for firing rate
responses to modulated stimuli (see below). As shown in Figure
1C, there were no age differences in the neurons’ dynamic range
(t(115) = 0.88; p = 0.38), threshold (¢,,5, = 1.40; p = 0.17), or
firing rate at threshold (¢,,5y = 1.57; p = 0.12) or in the ratio of
monotonic to nonmonotonic functions (x> = 2.37; p = 0.12).
However, juvenile neurons had longer latencies to first spike than
did adult neurons (adult, 50.4 * 2.0 ms; juvenile, 69.2 * 1.9 ms;
t1s) = 6.75; p < 0.0001) (Fig. 1 D), suggesting that responses to
dynamic time-varying stimuli such as sSAM would differ across
this age range.

Responses to sAM tones: MDFs

The first goal of the study was to evaluate whether sAM depth
encoding mechanisms change during the course of development.
Since sAM depth detection in gerbils improves late in develop-
ment (Sarro and Sanes, 2010), we asked whether there was an
age-dependent improvement in MD sensitivity in ACx neurons.
Responses to sAM tones at varying MDs were obtained at each
neuron’s BF and BMF. Responses were quantified based on firing
rate, vector strength, and power at the sAM modulation fre-
quency. The firing rate ignores temporal properties, whereas vec-
tor strength measures phase-locking to the MF (e.g., high values
signify discharge at a particular phase of the modulation cycle).
Vector strength is normalized by the amount of firing, to avoid
spuriously high values for cells with very low firing rates (e.g.,
when one or two spikes occur at one phase of the response).
Power provides the magnitude of the spiking response at the MF
independent of phase. Thus, power incorporates both firing rate
(response magnitude) and firing pattern information and is well
suited to quantify the neural responses that reflect the shape of
the sAM envelope.

An example cell is shown in supplemental Figure 1A (avail-
able at www.jneurosci.org as supplemental material): the MDF
depicted was taken at the BMF, which was 2 Hz. The left column
depicts raster plots of responses to ten 2 s SAM tones (followed by
1 s silence) across MDs increasing from 5% to 100% sAM depth;
the right column shows corresponding modulation period histo-
grams (MPHs). In this cell, a visible response to the sAM enve-



Rosen et al. @ Development of AM Coding in Auditory Cortex

>
o

J. Neurosci., November 17,2010 - 30(46):15509—15520 + 15513

lation only. This is attributable to sev-

adult juvenile 0.6 - MDF means eral (approximately four) neurons that
M 5% - 4 had short response latencies to the sSAM
*g) b/é/&ﬁ)'/ envelope; such neurons were not seen
Loa // in the juvenile population (data not
S 10% g 2 shown). The qualitative impression that
‘g ¥ adult cells were more sensitive to SAM
>024¢ depth was quantified for the entire pop-
20% " ‘ ulation of recorded neurons. Figure
C s 2 B-D displays the mean values for each
® - of the three measures. Consistent with
% 40% 3 o age differences seen in the MTFs (sup-
o . .
o % 61 @ plemental Fig. 2B, available at www.
£ © I jneurosci.org as supplemental material),
< 50% 2 44 phase-locking responses (vector strength)
g £ b4 were mature, whereas firing rate and
) power responses were lower than adult
0% D . levels (Yector strength: F(, ;) = 0.93, p =
}T 0.33; firing rate: F, ;) = 3.90, p = 0.04.8;
& 20 4 power: F, ;, = 10.21, p = 0.001) (Fig.
. é’_ 15 2B). Thus, for measures that include re-
80% g sponse magnitude, the population of
é 10 4 adult cells was more sensitive to MD.
1
3 51
m 100% 2 p=.001 Neurometric analyses indicate age
a o : : . . .
g 360 0 360 0 50 100 differences in encoding sAM depth

sAM period (deg)

Figure 2.

paralleling the age differences seen in MTFs. ns, Not significant.

lope first emerged at 20% MD and became more prominent with
sAM depth. This is reflected in the summary measures (supple-
mental Fig. 1 A, bottom, available at www.jneurosci.org as sup-
plemental material): vector strength first showed a significant
phase-locking at 20% MD; firing rate first increased at 20% MD
but was not significantly greater than baseline (5% MD) until
40% MD; power at MF was significantly greater than baseline
(5% MD) at 20% MD. The MDF of a non-sAM monotonic re-
sponder is depicted in supplemental Figure 1B (available at
www.jneurosci.org as supplemental material; taken at the BMF, 2
Hz). There was significant phase-locking only at 40 and 50% MD,
indicating a nonmonotonic depth response based on vector
strength. Neither firing rate nor power differed from baseline
(5% MD) at any depth. Responses of the same two neurons to
variations in sSAM modulation frequency are shown in supple-
mental Figure 2 (available at www.jneurosci.org as supplemental
material); population responses to sSAM frequency across age,
including categorization based on frequency filter characteristics,
are in supplemental Figure 3 (available at www.jneurosci.org as
supplemental material).

We quantified and compared population responses to sSAM
depth for juvenile and adult neurons. MPHs were generated for
each depth, then summed across cells and normalized to create
pooled MPHs for both groups (Fig. 2A) (n = 69 adult cells, n =
67 juvenile cells). Qualitatively, the temporal pattern of discharge
followed the period envelope of the sSAM for both groups, and the
magnitude of the response increased along with sSAM depth.
However, a visible envelope response emerged at a shallower MD
in adult cells than in juvenile cells (Fig. 2 A, arrow). At 100% MD,
the temporal pattern showed an early peak in the adult popu-

sAM depth (%)

Summary of MDFs for adult and juvenile neurons. A, Population MPHs across the range of tested MDs show a
periodicity response emerging clearly at 10% MD in adults (red arrow), but not until 20% or higher in juveniles. B—D, MDF means
based on the summary measures firing rate and power were immature in juveniles but were mature based on vector strength,

A major goal of the study was to com-
pare neural sensitivity with behavioral
sensitivity. Therefore, we transformed
the sAM-evoked spike trains into a form
that could be compared directly to the be-
havioral metric applied to developing ger-
bils (Sarro and Sanes, 2010). In the
following sections, we apply four neurometrics, each with differ-
ent assumptions about neural processing. The first neurometric
examines the detection ability of individual neurons, using the
same metric that is typically used to describe behavioral detection
(d"). The second neurometric uses only those cells with good
detection ability (i.e., sSAM-monotonic cells). The third neuro-
metric relies on the detection sensitivity within individual cells
but identifies the temporal integration period that most effec-
tively detects sSAM. The fourth neurometric pools across all cells
and is therefore sensitive to the ability of the population to detect
sAM depth but is insensitive to the variation within single cells.
For these analyses, only those cells in which responses were ob-
tained to 5-100% MD are presented (n = 63 adult cells, n = 67
juvenile cells).

Within-cell d’ neurometric

The lower envelope principle states that the limits of psychophys-
ical performance are determined by the most sensitive neurons.
That is, an animal’s behavioral detection threshold should be
reflected in its best neural sensitivity, and only a subset of neurons
must have detection thresholds as low as behavioral thresholds
(Parker and Newsome, 1998). To compare best neurons across
age groups, we therefore examined the detection properties of
each neuron. Individual neuron performance was translated into
a metric that is comparable with perceptual detection measures,
d’, which quantifies the detectability of a signal in the presence of
uncertainty and is used routinely in behavioral detection and
discrimination tasks. We computed d" curves for each neuron’s
sAM depth function, for each of the three measures (vector
strength, firing rate, and power; see Materials and Methods). To
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do so, the response for each MD was com- A
pared with the control response [i.e., to
the smallest MD presented (5% MD)].
Here we define d’ = 1 as threshold for
detection of the signal. This is equivalent
to 67% correct performance when chance
is 50%, a criterion that is often used in
psychophysical studies.

Individual d" curves computed from

adultd’ P, (n=63) B
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reached threshold for any MD are shown
in gray. Figure 3A suggests that there are a
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similar number of neurons with sensitive
thresholds (<30% depth; vertical dashed
line) for adult and juvenile animals (thick
lines; 53% adult vs 43% juvenile cells),
and the most sensitive neural thresholds
were equivalent in juveniles and adults.
Figure 3B verifies that the distribution of
power thresholds does not differ across
age groups, and the same was true for
vector strength and firing rate (vector
strength: #,5) = 0.1, p = 0.94; firing rate:
103y = 1.0, p = 0.34; power: t;o;) = 0.3,
p = 0.73). For comparison to the neural
thresholds, the behavioral SAM detection
thresholds (at d’ = 1) from Sarro and Sanes (2010) are replotted
above the bars in Figure 3B. Although adult behavioral thresholds
are lower than juveniles by ~15% MD, neither age group per-
forms as well as its best neurons. Therefore, based on responses in
ACx, the lower envelope principle does not explain the observed
behavioral difference across age.

There are certain caveats associated with this comparison of
neural and behavioral data. The behavioral thresholds to sAM
depth were obtained using a broadband noise carrier, whereas the
neural thresholds were obtained using a tone carrier at each cell’s
BF. Had we characterized neurons with a noise carrier, the liter-
ature suggests that the population of neurons would have dis-
played greater sensitivity to sAM (Eggermont, 1994). Had the
behavioral thresholds been obtained with a tone carrier, animals
would probably have displayed poorer sensitivity to sAM depth
(Strickland and Viemeister, 1997). Therefore, this comparison is
likely to underestimate the difference between neural and behav-
ioral thresholds. A second caution is that the neural thresholds
were obtained in untrained, passively listening animals, whereas
the behavioral thresholds represent mean performance for each
animal after several days of experience (Sarro and Sanes, 2010).
As the stimulus selectivity of ACx neurons are known to be influ-
enced during performance of a previously trained task (Fritz et
al., 2003), the responses of cells in untrained animals may not
reflect trained behavior appropriately across development.

Figure 3.

Within-cell threshold-based neurometric

We next assessed the population activity at each age under the
constraints of three assumptions. The first assumption is an ex-
tension of the lower envelope principle: if the limits of behavioral
detection are set by the thresholds of the most sensitive cells, then

40 60 80 100 0 50 100
sAM depth (%) threshold (% sAM depth)

Neural d’-based MD thresholds do not differ across age. 4, Individual neural d” curves calculated from power at the
modulation frequency (P,;) are truncated by displaying only that portion that crossed threshold (horizontal dashed line) until the
peakd” value was attained. All curves are truncated atd” = 4.0. Neurons whose curves never reached threshold are in gray. Across
age, there were equivalent numbers of cells with sensitive thresholds: cells with thresholds <<30%MD (vertical dashed line) are
shown with thick lines. B, The distribution of power-based d” thresholds do not differ across age ( p = 0.94), and there are cells
with equally low thresholds in both age groups, indicating that the lower envelope principle at the level of ACx cannot account for
perceptual age differences in MD threshold. Gray bars indicate cells that never reached threshold. Behavioral sAM depth detection
thresholds [extrapolated and replotted from Sarro and Sanes (2010), their Fig. 54] are overlaid as open circles with mean perfor-
mance indicated by the dark vertical lines. Although adults have lower behavioral thresholds by ~15% MD, neither group achieves
detection thresholds as low as the best neurons.

the shape of a psychometric function for sSAM depth detection
should arise from the population of neuronal thresholds (Del-
gutte, 1995). The second assumption is that each cell is equally
weighted, as the analysis is a cumulative distribution of single-cell
thresholds across each sAM depth. The third assumption ex-
plores the possibility that in order for a neuron to contribute to
sAM depth detection, it must respond monotonically to depth.
Monotonic functions to increasing depth are observed frequently
in the auditory brainstem (Joris et al., 2004) and have served as a
criterion in a previous comparison of neuronal and psychophys-
ical detection (Nelson and Carney, 2007). The reason for exclud-
ing nonmonotonic neurons is that they do not provide a reliable
discharge characteristic as the parameter of interest is varied. This
creates a within-cell analysis, as each neuron’s response is com-
pared with its own baseline response to yield a depth detection
threshold. In ACx, the responses to sAM are quite variable across
neurons, so this approach was chosen to assess whether sAM
monotonicity within neurons was essential for MD detection. We
tested this assumption explicitly by selecting only those cells with
approximately monotonic sAM functions and comparing the re-
sult to that generated by the inclusion of all cells.

We computed MD detection thresholds for each neuron (see
Materials and Methods) and created cumulative histograms to
display population performance. The neurometric was con-
structed by including either all cells or only those cells that were
approximately monotonic to sAM depth (sAM-monotonic; see
Materials and Methods). Thresholds based on power are shown
for two example cells from juvenile animals in Figure 4 A; these
cells are representative of sAM-nonmonotonic and sAM-
monotonic neurons for both age groups. On the left is a cell that
responded vigorously to a static tone pip at BF (Fig. 4 A, top) but
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Figure 4. A within-cell neurometric based on the cumulative distribution of MD thresholds only reveals superior adult performance when sAM-nonmonotonic neurons are excluded. A, This
illustrates how thresholds are chosen for inclusion in the cumulative distribution of this neurometric. Shown here are examples of sSAM-nonmonotonic (left) and SAM-monotonic (right) neurons,
which were nonmonotonic or monotonic, respectively, based on MD. The top row contains raster plots of responses to 10 presentations of a 2 s tone pip at BF, indicating strong responses in both cells.
The middle four rows show MPHs across MD (collected at BF and BMF). The nonmonotonic neuron did not display MD-evoked responses, whereas the monotonic neuron responded more strongly
as MD increased. The bottom row depicts power across MD, with significant responses circled in red. The cell on the right, but not the cell on the left, was considered monotonic (see criteria in
Materials and Methods). Thresholds are indicated by gray and red arrows, for the nonmonotonic and monotonic cell, respectively. B, Cumulative distributions of MD detection thresholds from either
monotonic cells (left) or all cells (right). For power at the modulation frequency (P,,¢), but not for vector strength (VS) or firing rate (FR), the monotonic curve for juvenile neurons was shifted
significantly to the right compared with adult neurons. This was consistent with age differences in behavioral performance. Cumulative histograms incorporating all neurons showed no age

differences for any of the three measures. ns, Not significant.

responded poorly to a sSAM tone at BF and was nonmonotonic as
depth increased. This cell did not show significantly greater
power at 100% MD than baseline, so it was not included in the
sAM-monotonic power neurometric. On the right is a cell that
responded both to a tone pip and a sSAM tone, and was mono-
tonic with respect to MD. Its threshold was 10% MD based on
power (Fig. 4A, arrow). Across the populations, there were sim-
ilar proportions of cells with these properties for both age groups:
37% of adult and 43% of juvenile neurons were sAM-monotonic.

Figure 4B (left) shows cumulative histograms of thresholds
from sAM-monotonic cells, constructed separately for each of
the metrics. Adult curves are above juvenile for all metrics, but
only significantly so for the power metric. This analysis predicts
that juvenile animals should perform nearly as well as adults if
either vector strength or firing rate information is being used
(e.g., an ~5% rightward shift in juvenile cumulative distribu-
tion), which is not consistent with the behavioral data (Sarro and
Sanes, 2010). However, if animals make use of both temporal and
rate information, as represented by power, our results predict
that behavioral thresholds will be significantly worse for juvenile
animals (e.g., an ~15% rightward shift in juvenile cumulative
distribution). When cumulative histograms were constructed us-
ing thresholds from all cells, there were no significant age differ-
ences (Fig. 4 B, right). The age difference from this approach thus
relies on the exclusion of cells that are nonmonotonic for SAM
depth.

Within-cell integration-time neurometric
A second neurometric was used to identify the temporal integra-
tion period that best detected sAM depth. A spike-distance metric

(Victor and Purpura, 1997) quantified, for each neuron, the dis-
similarity between spike trains evoked by sAM versus spike trains
evoked by the smallest MD tested. Therefore, like the first neuro-
metric (Fig. 4), this approach is sensitive to within-cell monoto-
nicity or other variations across MD and weights each neuron
equally. For this reason, we constructed two versions of the neu-
rometric, using either all cells or a subset of SAM-monotonic cells
(see Materials and Methods).

To calculate correct detection, the distance between spike
trains elicited by sSAM versus background was compared with the
distance between the spike trains elicited by either stimulus alone.
A larger distance between stimuli than within stimuli indicated
correct detection. For each cell, we computed correct detection
for each MD compared with the lowest depth tested (5% MD).
Averages are plotted as a function of increasingly longer analysis
windows within the entire spike train, ranging from 1 to 1000 ms
(Fig. 5A). As expected, detection was better for higher MDs (e.g.,
Fig. 5A depicts 100% and 20% MD). Performance was best at
longer time scales (above about 100 ms), indicating that fine
temporal structure contributed little to spike train dissimilarity.
When all cells were included, there was no age difference in de-
tection based on this metric at any time scale. However, when
only sAM-monotonic cells were included, a clear age difference
emerged for longer time scales (Fig. 54, right). The longest time
scale (1000 ms) reflects contributions of firing rate and is thus
comparable to the firing rate measure. Time scales near the peri-
odicity of the sSAM signal (200—500 ms) are comparable to power.
Consistent with other analyses, the greatest age differences were
seen at these longer time scales. However the time scale that max-
imized detection was mature in juveniles, as maximal detection
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occurred at longer time scales in both age
groups. Thus, similar integration times

>
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erage. That is, each neuron’s response
would no longer be referenced to its own
baseline response. Rather, the sum of all
baseline responses would be the reference
for the sum of all responses at any given
depth. We therefore applied a neuromet-
ric that pools across all cells in this manner.

Across-cell pooling neurometric

The final neurometric is a pooling model that is based on a neural
architecture in which the readout of the system is a downstream
neuron receiving the inputs from all cells in the measured sample.
This convergence is computed by summing the responses of all
cells for any given MD. Thus, cells with larger response magni-
tudes will dominate the summed responses. Unlike the previous
neurometric, this approach is not sensitive to within-cell mono-
tonicity or other variations across MD. Rather it measures the
ability of the population to detect sAM depth based on conver-
gence (Britten et al., 1992; Shadlen et al., 1996).

For each MD, the jittered (see Materials and Methods) re-
sponse magnitude (based on firing rate, vector strength, or
power) across all cells was summed and compared to the summed
response magnitude at 5% MD, where a higher sum was consid-
ered a correct detection. This was repeated 20 times (drawing a
random subset for each trial), with each comparison equivalent
to a single trial, and performance was measured as average correct
detection across trials. The neurometric was run 100 times and
depicted as mean * SD, as its performance was quite variable
when using only 20 trials. Figure 6 A (bottom, pale lines in power
plot) illustrates how summed values from each depth are com-
pared with the lowest depth; each depth must be only just larger
than baseline (red dashed line) to yield a correct detection. The
summed functions approximate the mean power functions
shown in Figure 2 D. A gradual increase in power (Fig. 6 A, pale
lines) is converted by pooling into a sharp rise in detection per-
formance (Fig. 6 A, darklines). This also has the effect of reducing
the magnitude of an age difference once the response at any depth
is sufficiently above baseline (i.e., for higher MDs), as the neuro-
metric asymptotes.

scalesand when nonmonotonic neurons were excluded. 4, Mean neural detection performance is shown across time scales ranging
from 1 ms (where precise timing differentiates spike trains) to 1000 ms (where rate differentiates spike trains). Detection was
better at longer time scales, and better for larger MDs (100%) than smaller MDs (20%). An age difference emerged at longer time
scales, but only when nonmonotonic cells were excluded (right). B, Ata long time scale (1000 ms), detection across MD was better
in adults versus juveniles only when nonmonotonic cells were excluded (right).

Figure 6 A shows the performance of this neurometric for all
juvenile and adult cells, separately for each of the three measures.
For all measures, performance reached an asymptote at 40% MD,
as the summed responses were already reliably above baseline.
Below 40% MD, juvenile cells did not detect sSAM from back-
ground as well as adult cells, most clearly illustrated for firing rate
and power. With this neurometric, it is possible to ask how many
cells are necessary to yield maximal performance by including
only a subset of cells from each age group (Britten et al., 1992;
Shadlen et al., 1996). Figure 6 B shows the effect of pool size on
detection performance at 10, 20, and 30% MD. Above 10% MD,
reducing the number of cells included in the neurometric de-
creased the mean performance and increased the variability for
both age groups. At 10% MD, an age difference emerged: adult
performance improved with increasing pool size, but juvenile did
not, for firing rate and power. This pooling neurometric predicts
that adult gerbils would exhibit near-perfect detection at 10%
depth, whereas juveniles would perform significantly above
chance (Fig. 6B, solid horizontal lines) only at larger depths.
Changing pool size indicates that a pool of ~30 neurons is
sufficient for maximal detection. It also suggests that increas-
ing the pool size only improves detection for values that are
above threshold.

Discussion

This study addressed whether immature sAM detection mea-
sured behaviorally (Sarro and Sanes, 2010) can be explained by
immature ACx encoding. Our results demonstrated a significant
developmental delay of sSAM-evoked responses in ACx. Specifi-
cally, firing rate and power at the modulation frequency were
greater in adult neurons, as a function of sSAM depth or frequency
(Fig. 2 and supplemental Fig. 3, available at www.jneurosci.org as
supplemental material); in contrast, phase-locking (vector
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firing rate and power.

strength) was adult like in juveniles. Therefore, maturational im-
provements in perceptual performance could be mediated by
developmental changes to both response magnitude and period-
icity. This is consistent with the finding that SAM processing is
better characterized by a metric that mirrors the envelope shape
of the sSAM rather than one that is locked to a specific phase of the
sAM (Bernstein and Trahiotis, 2003; Malone et al., 2007).

Our premise was that those coding properties that covary with
perceptual performance across ages are more likely to support the
behavior than those that are only correlated in adulthood. Three
of four different neurometric analyses displayed an age-
dependent improvement in sAM detection thresholds when
based on firing rate or power (Figs. 4—6), consistent with behav-
ioral sSAM detection in developing gerbils (Sarro and Sanes,
2010). A longer maturational time course for firing rate is also
consistent with findings that both spontaneous and stimulus-
evoked firing are considerably smaller in young versus adult cats
(Huttenlocher, 1967; Eggermont, 1991). Since these conclusions
draw from neurometric analyses with different assumptions, we
next consider the relative merits of each.

Relevance of each neurometric analysis to

perceptual development

Frequently, performance of the best single neurons is as good as
or better than behavior (Britten et al., 1992; Hernandez et al.,
2000; Wang et al., 2007). Thus, the first neurometric allowed a
direct comparison of individual neurons with psychophysical
curves, as both are quantified using the signal detection measure,
d’. This is a within-cell comparison, rather than a population

metric, insofar as detection at each depth is referenced to the
baseline response of that neuron. The assumption is that the
limits of psychophysical performance are determined by the most
sensitive neurons (i.e., the lower envelope principle), and only a
subset of neurons must have detection thresholds as low as be-
havioral thresholds (Barlow, 1995; Parker and Newsome, 1998).
Behavioral thresholds are, in fact, between those of the best and
worst single neurons, with adult behavioral thresholds closer to
those of the best neurons (Fig. 3B). We observed no age difference
in the thresholds of the best neurons, indicating that the differ-
ence between behavioral thresholds of juveniles and adults is not
simply a consequence of the information available in the best
neurons.

One interpretation of this result is that juvenile and adult
animals do not use the sensory representation of sAM at the level
of ACx in an equivalent manner. This concept has been demon-
strated in behaving primates: somatosensory cortical responses
covary with stimulus strength, but not with trial-to-trial percep-
tual judgments, whereas frontal cortex activity correlates with the
outcome of each trial (de Lafuente and Romo, 2005). Thus, sen-
sory cortices are likely to be involved primarily with encoding
(Hernandez et al., 2000; Lemus et al., 2009a), whereas higher
cortical areas that receive inputs from sensory areas and send
outputs to motor areas are involved in perceptual decisions (Kim
and Shadlen, 1999; Lee et al., 2009; Lemus et al., 2009b). Thus, it
is possible that immature perceptual performance is attributable
to immature decoding of sensory information.

The second neurometric again made use of within-cell com-
parisons in which a significant increase in the value of a coding
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property (vector strength, firing rate, power) with respect to
baseline was accepted as the cell’s threshold. In this case, however,
a key assumption was that only neurons that respond monoton-
ically to depth could contribute reliably to sSAM detection. Neural
detection thresholds of the populations were then accumulated
to predict performance across the entire range of MDs (Fig. 4).
For the power measure, the cumulative histogram of detection
thresholds for juvenile neurons was shifted to the right compared
to adult neurons, consistent with age differences in behavioral
performance. Since there was no difference for vector strength or
firing rate, this result emphasizes the importance of encoding
stimulus envelope (Bernstein and Trahiotis, 2003; Malone et al.,
2007).

The third neurometric identified the temporal integration pe-
riod that most effectively detects sSAM (Fig. 5) and also relied on
within-cell comparisons. This metric displayed good perfor-
mance at integration times that were in accordance with firing
rate and power coding properties and agreed with the other
within-cell population neurometric by predicting threshold and
asymptotic age differences only with monotonic cells.

One concern with these analyses is the underlying assumption
that each neuron contributes equally to sAM detection. If only
the most sensitive neurons contribute, a population analysis in-
corporating less sensitive cells can decrease the signal-to-noise
ratio across neurons and wash out the contribution of the best
cells (Purushothaman and Bradley, 2005; Wang et al., 2007). This
was likely the case for the within-cell neurometrics, where no age
difference existed when all cells were included (Figs. 4, 5). Thus,
the threshold-based and integration-time analyses identified an
age difference only when restricted to cells that were reliable
depth detectors.

The above neurometric analyses each require a neural
mechanism that can selectively access reliable sAM detectors.
However, there is no evidence that such a mechanism exists.
Therefore, an alternative approach is to use a pooling neuro-
metric model that assumes a synaptically plausible downstream
decoder cell based on anatomical convergence and synaptic sum-
mation (Britten et al., 1992; Shadlen et al., 1996; Parker and New-
some, 1998). This model is more robust to noise because
summation produces unequal weighting and small responses are
dominated by larger ones (in contrast to the equal weighting of
the within-cell neurometrics). Additionally, it does not rely on
input neurons being individually well tuned, as long as the pop-
ulation activity is tuned. The pooling neurometric produced bet-
ter SAM detection for adult neurons at 10% MD, compared to
juveniles (Fig. 6), consistent with age differences in behavioral
performance. However, there was no difference at higher MDs
because detection asymptoted even though the responses of in-
dividual neurons continued to increase (Fig. 6 A, bottom, thick
dark vs thin pale lines). Nevertheless, when assessing the entire
population, a mechanism that pools across all cells matches be-
havior better than one that assumes that each cell must be an
individually effective detector.

For gerbils, sAM detection threshold varies with age and train-
ing. When practice is limited to assess developmental differences,
adult thresholds are ~30%, whereas juvenile thresholds are
~45% (Sarro and Sanes, 2010). Neurometrics that suggest im-
mature ACx encoding in juveniles (Figs. 4—6) are consistent with
the observed ~15% difference in behavioral thresholds. Since the
neural detection thresholds obtained here (=10% for adults)
(Fig. 6 A) are much better than those measured behaviorally with
little practice, it is possible that they reflect the ultimate perfor-
mance that can be achieved through perceptual learning (Wright
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and Zhang, 2009). In fact, we have observed adult thresholds
=10% with practice (M. ]. Rosen, E. C. Sarro, and Sanes, unpub-
lished observations). This value is consistent with adult SAM de-
tection thresholds in other species [human, 6-10% (Viemeister,
1979; Hall and Grose, 1994); chinchilla, ~9% (Salvi et al., 1982);
rat, ~15% (Kelly et al., 2006)].

Potential contribution of subcortical and higher

cortical factors

Our intent was to assess sensory information available to higher
decision-making regions. Therefore, we measured encoding in
ACx because it inherits and filters subcortical inputs, thus reflect-
ing developmental differences established lower in the sensory
hierarchy. Moreover, ACx provides input to areas that decode
sensory information: multisensory, premotor, and decision-
making regions of cortex (Budinger et al., 2000, 2006; Kaas and
Hackett, 2000).

It is possible that developmental differences in ACx reflect an
immature ascending pathway. For example, sSAM responses in
inferior colliculus display a prolonged period of development
(Heil et al., 1995; Thornton et al., 1999). However, a significant
descending projection from ACx to midbrain and thalamus in-
fluences encoding and plasticity at those levels (Coomes Peterson
and Schofield, 2007; Suga, 2008; Bajo et al., 2010; Nakamoto et
al., 2010). Therefore, evaluating the contribution of brainstem
coding is, itself, complicated by corticofugal modulation.

It is also possible that immature performance is influenced by
cognitive factors. Active participation in an auditory task, and the
increased attention that it leverages, can influence encoding
(Fritz et al., 2003, 2007). Attention is reported to produce modest
increases (Scott et al., 2007) or decreases (Otazu et al., 2009) in
sound-evoked ACx responses during task performance. Al-
though attention, context, motivation, and arousal are not ad-
dressed by this study, we found no developmental differences in
behavioral measures commonly correlated with attention (e.g.,
false-alarm rate and asymptotic performance) (Sarro and Sanes,
2010). Therefore, it is likely that the maturation of sensory en-
coding can be measured in awake, passively listening animals.

Comparison of sAM coding to static stimulus coding
Response properties to different stimuli (e.g., static vs modulated
envelopes) may mature at different rates because the mechanisms
that determine those properties have different maturation rates.
Our data show that responses to tones with static envelopes ma-
ture earlier than to modulated envelopes. It is known that simple
response properties such as BF and bandwidth are likely estab-
lished by ascending and intracortical excitatory connections
(Kaur et al., 2004; Metherate et al., 2005; Liu et al., 2007), whereas
responses to more complex stimuli such as frequency modula-
tions are influenced by intracortical inhibition (Zhang et al.,
2003; Razak and Fuzessery, 2007a). Although the mechanisms of
sAM tuning are not well understood, sSAM responses in ACx neu-
rons are related to sound level monotonicity (Malone et al., 2007),
which at the level of the inferior colliculus is refined by local inhibi-
tion (Sivaramakrishnan et al., 2004). Local cortical inhibitory cir-
cuits mature fairly late in development (>P24) (Gao et al., 1999;
Changetal., 2005), suggesting that the slow maturation of sSAM may
be caused by the gradual development of inhibition in ACx.
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