Influence of contrast on the pattern direction selectivity of macaque MT neurons

Romesh D. Kumbhani, Najib J. Majaj, Golbarg T. Saber, J. Anthony Movshon

Vision Sciences Society
May 10, 2009
Grating response

110 ips

Plaid response

110 ips

Component direction selective response

Pattern direction selective response
Geometric models of motion analysis

Adapted from Adelson and Movshon (1982)
Gratings

50%

25%

12.5%

Hybrid plaids

50% : 50%

50% : 25%

50% : 12.5%

All stimuli presented at optimal spatial frequency, temporal frequency, and size
Grating responses

- 90 ips: 50% contrast, 25% contrast, 12.5% contrast
- 80 ips: 50% contrast, 25% contrast, 12.5% contrast
- 120 ips: 50% contrast, 25% contrast, 12.5% contrast

Hybrid plaid responses

- 90 ips: 50:50% contrast, 50:25% contrast, 50:12.5% contrast
- 80 ips: 50:50% contrast, 50:25% contrast, 50:12.5% contrast
- 120 ips: 50:50% contrast, 50:25% contrast, 50:12.5% contrast
Grating responses

- 50% contrast
- 25% contrast
- 12.5% contrast

Hybrid plaid responses

- 50:50% contrast
- 50:25% contrast
- 50:12.5% contrast

Contrast levels: 50%, 25%, 12.5%

 speeds: 90 ips, 80 ips, 120 ips
Grating responses

- 50% contrast, 25% contrast, 12.5% contrast

Hybrid plaid responses

- 50:50% contrast, 50:25% contrast, 50:12.5% contrast
Grating responses

50% contrast, 25% contrast, 12.5% contrast

Hybrid plaid responses

50:50% contrast, 50:25% contrast, 50:12.5% contrast

90 ips, 80 ips, 120 ips
Hybrid plaid responses

50:50% contrast, 50:25% contrast, 50:12.5% contrast

Adapted from Carandini, Heeger and Movshon (1997)
Grating responses

Hybrid plaid responses

50% contrast
25% contrast
12.5% contrast

120 ips

50% : 50%

50% : 25%

50% : 12.5%
Grating responses

50% contrast
25% contrast
12.5% contrast

50% : 50%
120 ips

50% : 25%
120 ips

50% : 12.5%
120 ips

Hybrid plaid responses

Measured response
Linear/component prediction
Grating responses

50% contrast
25% contrast
12.5% contrast

120 ips

Hybrid plaid responses

Measured response
Linear/component prediction

50% : 0%
0% : 50%

120 ips

50% : 50%
50% : 25%
50% : 12.5%
Grating responses

- 50% contrast
- 25% contrast
- 12.5% contrast

Hybrid plaid responses

Measured response
Linear/component prediction

- 50% : 50%
- 50% : 25%
- 50% : 12.5%
Hybrid plaid responses

Grating responses

50% contrast
25% contrast
12.5% contrast

50% : 50%
50% : 25%
50% : 12.5%

120 ips

Measured response
Linear/component prediction
Cross-orientation suppression prediction
Response, response vectors, mean vector
Component contrasts

Preferred direction

All cells (n=73)
Population mean
Linear/component prediction
Cross-orientation suppression prediction

Δ

Veridical geometry of motion

50:50 50:25 50:12.5 50:6.25 50:3.125 50:0

0 10 20 30 40 50 60
1 c/deg, 10 Hz, 10 deg field, 10 deg eccentricity
1 c/deg, 10 Hz, 10 deg field, 10 deg eccentricy
Component contrasts

Δ Perceived direction

Population mean

HXW
RDK
RLD
PW
YES

Component contrasts:
- 50:50
- 50:25
- 50:12.5
- 50:6.25
- 50:3.125
- 50:0
Component contrasts

Δ Preferred/perceived direction

MT population mean
Psychophysical population mean

Veridical geometry of motion
Conclusions

MT responses to hybrid plaids are dominated by the higher-contrast component grating. When the contrast ratio is 4:1, little influence of the weaker grating can be detected.

The shift in preferred direction was not predicted well by geometric models (IOC) or linear predictions, but was well captured by a model incorporating cross-orientation suppression in the V1 afferent signal.

Human perception shows a qualitatively similar shift toward the direction of the higher-contrast component, but this shift takes place at higher contrast ratios than in MT neurons.
Acknowledgments

Robert L. Dotson
Yasmine El-Shamayleh
Sach Sokol
Pascal Wallisch
Helena X. Wang