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1. Introduction

1.1. Nonlinear behaviors, time scales, our approach

It’s been said that the currency of the nervous system is spikes. Indeed, at some
level it is important to understand how neurons generate spikes and patterns of
spikes. What is their language and how do they convert stimuli into spike pat-
terns? Actually, these are two different questions. The first is about processing
and storing information, and a neuron’s role in a neural computation. The sec-
ond is more mechanistic, about the "how" of converting inputs into spike output.
With regard to the first, it is rare that we know what neural computation(s) a
given neuron carries out, especially since computations more typically involve
the collective interaction of many cells. However, we can, as do many cellular
neurophysiologists, approach the second question, asking from a more reduc-
tionist viewpoint what are the biophysical mechanisms that underlie spike gen-
eration and transmission. How do the properties of different ionic channels and
their distributions over the cell’s dendritic, somatic, axonal membrane determine
the neuron’s firing modes? How might the various mechanisms be modulated or
recruited if there are changes in the cell or circuitry in which it is embedded or
in the brain state or in the read-out targets? We usually imagine that the typical
time scales for action potential generation are msecs, but there are examples of
where even a brief (msecs) stimulus can evoke a long duration transient spike
pattern or where pre-conditioning can delay a spike’s onset by 100s of msecs.
Some neurons fire repetitively (tonically) for steady or slowly changing stimuli,
some fire with complex temporal patterns (e.g., bursts of spikes), but some only
respond (phasically) to the rapidly changing features of a stimulus. These behav-
iors reflect a neuron’s biophysical makeup.

In these lectures we attempt to describe how different response properties and
firing patterns arise. We seek especially to provide insight into the underlying
mathematical structure that might be common to classes of firing behaviors. In-
deed, the mathematical structure is more general and the physiological imple-
mentation could involve different biophysical components. Our approach will be
to use concepts from nonlinear dynamics, especially geometrical methods like
phase planes or phase space projections from higher dimensional systems. A
key feature of our viewpoint is to exploit time scale differences to reduce dimen-
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sionality by dissecting the dynamics using fast-slow analysis, i.e., to separately
understand the behaviors on the different time scales and then patch the behaviors
together. We will begin by dissecting the classical Hodgkin-Huxley model in this
way to distinguish the rapid upstroke and downstroke of the spike from the slower
behavior during the action potential’s depolarized plateau phase and hyperpolar-
ized recovery phase. Analogously we will segregate a burst pattern’s active and
silent phases from the transitions between these phases. Geometrically, the tra-
jectories during the slow phases are restricted to lower dimensional manifolds
and the transitions correspond to reaching folds or bifurcations and jumping to
a different manifold where slow flow resumes. Our phase plane treatments will
be highlighted in the sections that describe the rich dynamic repertoire of the
two-variable Morris-Lecar model, as its biophysical parameters are varied and
as we allow them to become slow variables, say, for the generation of bursting
behaviors.

For the most part here we will exploit the idealization of a point (i.e., electri-
cally compact) neuron, focusing on the nonlinearities of spiking dynamics, and
using biophysically minimal but plausible models. While most of our examples
are for single-cell dynamics, the qualitative mathematical structures are also ap-
plicable to network dynamics, especially in the mean-field approximations. We
work through one such example for network-generated rhythms, as seen in de-
veloping neural systems.

A take-home message that will be repeated several times is that the essentials
of neural excitability and oscillations are relatively rapid autocatalysis (a regen-
erative process) and slow negative feedback. At the level of spike generation, say
in the Hodgkin-Huxley model: autocatalysis is due to the sodium current’s rapid
voltage-gated activation while negative feedback comes from sodium inactiva-
tion and potassium current activation, both relatively slower. In a network setting
autocatalysis could be fast recurrent excitation and negative feedback might be
due to intrinsic cellular adaptation or slower synaptic inhibition or depression of
excitatory synapses.

1.2. Electrical activity of cells

Electrical activity of a cell is commonly described by the cell’s membrane po-
tential (voltage) which can vary between different parts of the cell and also with
time. The voltageV = V (x, t) satisfies the current-balance equation:

Cm
∂V

∂t
+ Iion(V ) + Icoupling =

d

4Ri

∂2V

∂x2
+ Iapp.

HereCm
∂V
∂t is current due to the membrane’s capacitive property,Iion(V ) rep-

resents the cell’s intrinsic ionic currents,Icoupling represents the inputs and in-
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Fig. 1. Modes of neuronal activity.A-B: Excitability in response to a brief current pulse (Hodgkin-
Huxley model, same as in section 2, pulse duration 1 msec).A: Pulse of amplitudeIapp = 5 µA/cm2

fails to induce a spike, voltage returns to rest. Pulse of amplitudeIapp = 20 µA/cm2 elicits a single
spike. B: time courses ofNa+andK+conductances during the spike from A.C-D: Single neuron
bursting in brain stem circuit involved with respiration.A: Voltage recording in rat. Data courtesy of
Christopher A. Del Negro and Jack L. Feldman. See also, Figure 1 of [5].B: Voltage trace in a model.
Equations used are the same as in [5], withIapp = 0 µA/cm2, gsyn = 0 mS/cm2, gton = 0.3
mS/cm2.
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teraction currents from coupling with other cells (with their voltages,Vj), while

Iapp is the current supplied by the experimentalist’s electrode. The term∂2V
∂x2 rep-

resents current spread along dendritic or axonal segments due to spatial gradients
in voltage (d is diameter,Ri is cytoplasmic resistivity). We will neglect this term
by considering the case of a ”point” neuron, i.e. all the membrane currents and
inputs are lumped into a single "compartment" withV independent ofx. This
can be a good approximation when the cell is electrically compact.

Coupling to other cells can be via chemical synapses. Neurotransmitter re-
leased from the presynaptic cell "j" activates receptors on the postsynaptic mem-
brane that in turn open channels, allowing for the flow of some types of ions:

∑

j

gsyn,j(Vj(t))(V − V̄syn).

In fact, gsyn,j is not really an instantaneous function ofVj and its dynamics
can be quite important, although we will not be addressing these issues here.
Coupling may also be "electrical" mediated by gap junctions (formed by local
clusters of ionic channels that span the abutting membranes of both cells), that
act effectively as resistors:

∑

j

gelec,j(V − Vj).

The termIion includes all of the intrinsic ionic currents present in the cell,

Iion =
∑

k

gk(V − V̄k).

Although approximately Ohmic instantaneously, these currents provide signifi-
cant nonlinearities. Their conductancesgk are voltage-dependent and dynamic,
expressed in terms of gating variables with a variety of time scales from msecs
to 10s or 100s of msecs. Sometimes conductances are also affected by the pres-
ence of various substances, for example, by concentrations of other ions, second
messengers, etc. The reversal potentialV̄k for current flow depends on the ionic
channels’ (of "k" type) selectivity for ions. The most common ionic species con-
tributing to the electrical activity areCa2+, Na+, K+, andCl−. There are several
different types of channels associated with each of these various ions, and some
channels pass more than one type of ion.

The available constellation of different channel types leads to a large variety
of nonlinear properties and electrical activity patterns amongst cells, even in the
absence of coupling. The simplest example of a cell’s nonlinear responsiveness
is the generation of a spike or action potential. After stimulation by a small brief
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pulse ofIapp V returns back to rest, quite directly (Fig. 1A). However, if the
stimulus exceeds a threshold value,V executes a large and characteristic excur-
sion (action potential) and then eventually returns to rest (Fig. 1A). Briefly, the
events are as follows (Fig. 1B). Note first that according to the current balance
equation,V will tend toward theV̄k associated with the momentarily dominant
gk. Thus, the spike’s regenerative upstroke (for example, in the Hodgkin-Huxley
model, see section 2) is due to the rapid V-dependent increase ingNa pushing
V towardV̄Na. Then also driven byV but on a slower time scale,gNa turns off
while gK activates, pushingV towardV̄K . The fall inV causesgK to eventually
die down and the system returns to rest. Excitability involves fast autocatalysis
(V rises openingNa+channels causingV to increase further, etc) and slower neg-
ative feedback (gNa shuts down andgK turns on). Non-linearity is manifested
also in the fact that the spike’s amplitude is approximately independent of stim-
ulus strength, provided it is superthreshold. Many models and cells respond to a
step ofIapp by firing repetitively. The firing frequency typically exhibits a tran-
sient phase and may then adapt to a steady level. The adapted firing frequency
(f ) versusIapp is a typical characterization of the cell or model’s input-output
relation (f − I curve) (e.g., Fig. 5B). How thef − I curve’s shape, position,
and frequency range depend on state parameters or background activity are of
interest. In cells that show bursting behavior (Fig. 1C,D) a much slower negative
feedback (for example, a slowly activatingK+current) can bring the cell out of
firing mode. Then, during the long quiescent phase, whileV is low the negative
feedback process recovers and re-entry into the firing mode occurs eventually.
Other instances of nonlinear behavior involve various types of bistability, exhib-
ited by some neurons. A cell might be either quiescent or firing repetitively for a
steady stimulus or maybe capable of firing at two different frequencies (a multi-
valuedf − I curve). Without intervention each state might persist for 100s of
msecs. The cell can be switched from one state to the other by brief stimuli.

In some experimental situationsV can be measured directly with an electrode,
by penetrating or attaching it to the cell (this is much easier to doin vitro than
in vivo). This yieldsV (t) at one site (typically, the soma) that may or may not
reflect what is happening in other parts of the cell, in particular along the axon,
which carries the output signal to other areas. While much theoretical research
has been done on spatial characteristics, such as action potential propagation (see,
e.g. [54, 55]) and the role of dendrites (for reviews see, e.g., [47, 48, 60, 61]), in
this chapter we will focus on the point neuron.



10 A. Borisyuk1, J. Rinzel2

2. Revisiting the Hodgkin-Huxley equations

2.1. Background and formulation

Before we analyze mathematically action potential generation, let’s review the
experimental basis and determination of the equations. The recipe for experi-
mentally describing the currents that dictate neuronal electric properties comes
from the work of Hodgkin and Huxley ( [35] and, for reviews, [33,38,52] ). Two
major hurdles were overcome. First, in order to isolateIion, the confounding
and unknown contribution from the spatial spread of current had to be elimi-
nated. Hodgkin and Huxley chose to use the squid’s giant axon [35], extracted
and isolated in a dish. It is so big that one can insert a silver wire along its
length. Because silver is a good conductor, it equalizes voltage values along the
observable segment, constituting the so-called "space-clamp". Second, to dis-
sect the contributions of individual ionic currents one can eliminate some of the
ionic species from the bathing solution, thereby revealing the membrane current
contributed by other ions. Finally, a tour de force: the voltage-clamp technique
involves a feedback circuit to deliver the appropriate current to the axon so that
V is held fixed to a commanded level. By systematically using different com-
mandV ’s the dynamics andV -dependence of the isolated current can be found.
Another use of the voltage-clamp technique is to zero out the contribution of the
k type current by clampingV to V̄k, recalling thatV̄k (the Nernst potential) can
be altered by changing ion concentrations in bath or axon. After the ionic cur-
rent time courses are measured they can be empirically fitted with solutions of
differential equations.

With theV -dependent kinetics of different contributing ionic currents in hand,
the test phase involves combining them along with the capacitive membrane cur-
rent to thus synthesize the current-balance equation. Then, by numerical inte-
gration, confirm that the constituted equations describe the evolution ofV as a
function ofIapp (i.e., under current-clamp).

Hodgkin and Huxley shared a Nobel prize for their description ofIion, ac-
counting for the action potential in squid giant axon and for providing the frame-
work for other excitable membrane systems. Fortunately, there were only two
voltage-gated currents, forNa+and forK+, the delayed-rectifierK+current, and
a constant-conductance leak current. The equations (space-clamped configura-
tion) are:

CmV̇ = −Iion(V,m, h, n) + Iapp

= −ḡNam3h(V − V̄Na)− ḡKn4(V − V̄K)− gL(V − V̄L) + Iapp,

ṁ = φ [m∞(V )−m] /τm(V ), (2.1)

ḣ = φ [h∞(V )− h] /τh(V ),
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ṅ = φ [n∞(V )− n] /τn(V ),

where membrane potentialV is in mV, and expressed relative to rest;t is in msec;
m,h andn are the dimensionless phenomenological gating variables (with values
between 0 and 1): sodium activation, sodium inactivation, and potassium activa-
tion. The applied currentIapp (µA/cm2) will be taken as time-independent in
this section. The functionsτx(V ) andx∞(V ) can be interpreted as, respectively,
the “time constant” and the “steady-state” functions form,h, n. Their graphs are
shown in Figure 2. The activation variables have steady-state functions that in-
crease withV and and asymptote to 1, while for the inactivation variableh∞(V )
decreases withV and asymptotes to 0. Note also in Fig. 2 that the time constant
scale form is about 1/10 that forh andn, so thatm is relatively fast. The tem-
perature factorφ speeds up the rates form, h, n for increasing temperature with
Q10 of 3:

φ = 3(Temp−6.3)/10.

Here, we fix the temperature at 18.5◦ C, unless noted otherwise. Values for the
other parameters are as in the original model (see, e.g. [38]).

After these many years, the conceptual approach of Hodgkin and Huxley
(voltage-clamp, segregate currents, synthesize and confirm) and general form
of the mathematical expressions for conductances (products of gating variables)
are still being widely applied. Many cell types, with different types of currents,
have been successfully studied experimentally, and described in models using the
same framework. Some examples include [33,38,39]Ca2+ currents (ICa; T,L,N
types), A-current (IA; K+current with inactivation),Ca2+-dependentK+current
(IK−Ca; K+current activated by voltage and intracellularCa2+concentration).



12 A. Borisyuk1, J. Rinzel2

These advances are aided by development of new experimental techniques [33].
For example, to reduce the complexity of the system the ionic channels can be
selectively blocked by pharmacological agents or disabled by genetic modifica-
tion ; the patch-clamp recording technique gives accurate access to currents and
channels in electrically compact neurons or even a small patch of membrane,
sometimes containing only a single channel whose opening/closing statistics are
then obtained.

From the modeling perspective, it is important to keep in mind that even
though many of the ionic currents can be described in the Hodgkin-Huxley for-
malism, and written in the form of equations 2.1, the parameters can be difficult
to measure experimentally. In fact, it is rare that the voltage-clamp data are avail-
able for all channel types that are present in a given neuronal system. For exam-
ple, the time constants of activation and inactivation of currents are often hard
to measure. Therefore, the parameters in the model have to be estimated from
empirical observations and indirect measurements. Also, in developing a model,
the parameters of a particular channel are sometimes borrowed from other exper-
imental systems where the channel has been studied in more detail. This latter
technique has to be used with caution — there are many different types of chan-
nels for each ionic species, and their dynamics often differs significantly, so one
model cannot always be substituted to describe other types of channels for the
same ion.

2.2. Hodgkin-Huxley gating equations as idealized kinetic models

In this section we outline an interpretation of the Hodgkin-Huxley gating vari-
ables in terms of idealized kinetic schemes, but these schemes are not meant as
realistic representations of a channel’s molecular dynamics. In particular, the
“gating subunits” in the Hodgkin-Huxley model (see below) are not the molec-
ular subunits of the channel conformation. For an introduction to the molecular
biology of ionic channels see, e.g., [33]. The representation here treats activation
and inactivation as independent, and each gating subunit obeys a one-step kinetic
scheme.

Each of the quantitiesm,h, n can be interpreted as a probability for a spe-
cific gating subunit to be “available”. In this interpretation aNa+channel is
said to consist of 3 “m-subunits” and 1 “h-subunit”, and aK+channel has 4
“n-subunits”. If all gating subunits must be available to open a channel, and
the subunits are independent, then the probability of the channel to be open is
the product of probabilities of the subunits to be available. Further, the total
conductance of the channels of a given type is proportional to the fraction of
channels open, which, in turn, is proportional to the probability of the channel
being open if the number of channels is large. Hence, say, for theK+current the
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instantaneous conductance isn4, and the coefficient of proportionality,̄gK (say,
mS/cm2) is the maximal conductance if all channels are open, i.e.ḡK equals the
local channel density times the conductance of a single open channel.

For the dynamics of a gating subunit of typex suppose the subunit has only
2 states: “available” and “unavailable”, and the rate of going from unavailable
to available isαx(V ) and from available to unavailable isβx(V ). Notice that
the rates are voltage-dependent. Then the probability (or fraction) of available
subunits,x, satisfies

ẋ = αx(V )(1− x)− βx(V )x.

Dividing both sides of this equation byαx(V )+βx(V ), and introducing notations
τx(V ) = 1/(αx(V ) + βx(V )) andx∞(V ) = αx(V )/(αx(V ) + βx(V )), we get

τx(V )ẋ = x∞(V )− x,

which has the same form as in Hodgkin-Huxley equations 2.1.

2.3. Dissection of the action potential

To understand the dynamics of action potential generation (figure 3A) we will
use the fact that there are two different time scales in the system;τm is much
smaller thanτh andτn (see Figure 2A). Using the methods of fast-slow analysis
we dissect the system into fast (forV, m) and slow (forn, h) subsystems. In fact,
m is so fast that we will treat it as instantaneous for now, settingm = m∞(V ),
and thus the fast subsystem is one-dimensional. Here, we describe the process
in mixed mathematical and biophysical terms; a more formal description of the
framework is in Appendix A.

2.3.1. Current-voltage relations
Motivated by the biophysicist’s interest in the membrane’s current-voltage re-
lations we will examine these on two different time scales. First, we consider
the steady current that is needed to maintain a constant voltage (as in voltage-
clamp). This steady state current,Iss(V ), equalsIion(V,m, h, n) with all gating
variables set to their steady state values:

Iss(V ) = Iion(V, m∞(V ), h∞(V ), n∞(V ))
= ḡNam3

∞(V )h∞(V )(V − V̄Na) + ḡKn4
∞(V )(V − V̄K) + ḡL(V − V̄L).

Figure 3B shows the steady-state current for each type of ion and the totalIss

for equations 2.1. Notice that for the Hodgkin-Huxley equations this current is
monotonically increasing. It is dominated by the steadily-activatedK+-current.
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INa plays little role in Iss(V ) because of inactivation;m∞(V ) and h∞(V )
”overlap" only slightly.

Second, on a very short time scale the instantaneous current,Iinst(V ), de-
scribes theV -dependence ofIion(V,m, h, n) with m = m∞(V ) and withn and
h frozen, since they are so slow (on this time scale):

Iinst(V ; n0, h0) = I(V,m∞(V ), h0, n0)
= ḡNam3

∞(V )h0(V − V̄Na) + ḡKn4
0(V − V̄K) + ḡL(V − V̄L).

Whenn andh are fixed at their rest valuesIinst(V ) approximates the net ionic
current that will be produced if the membrane potential is quickly perturbed from
rest to the valueV . Figure 3C shows this current, as a function ofV , for equations
2.1 withn andh fixed at rest values.

2.3.2. Qualitative view of fast-slow dissection
Here, using the current-voltage relations defined in the previous section, we can
describe a Hodgkin-Huxley action potential (Fig. 3A). Except for a brief initial
transient pulse we will assume thatIapp = 0 in this section.

We idealize the action potential as consisting of 4 phases (see Figs. 3A and
4): (1) upstroke, (2) plateau, (3) downstroke, and (4) recovery. The upstroke and
downstroke happen on the fast time scale. Therefore we will use the approxima-
tion that the slow variablesh andn are constant during these phases, so thatV
satisfies

Cm
dV

dt
= −Iinst(V ; n0, h0). (2.2)

The plateau and recovery, on the other hand, happen on the slow time scale.
During these two phases the dynamics is determined byh andn, whereasV and
m are “slaved”, or “equilibrated”: their values follow the dynamics ofh, n in
such a way that the right-hand sides of their equations remain zero:

0 = −I(V,m∞(V ), h, n) = −Iinst(V, h0, n0).

Note, this does not mean thatdV/dt = 0 but rather that thatV is so fast that it
can be treated as tracking instantaneously a zero ofIinst(V, h, n).

Upstroke(phase 1, characterized by the very rapid activation ofNa+channels,
Figure 4top left): assumeh, n are slow (fixed at their rest values);m instanta-
neous (m = m∞(V )), V satisfies 2.2. This a one-dimensional dynamical system
and its dynamics is determined by the zeros and signs of the right hand side of
the equation 2.2. The graph ofIinst(V ) is N-shaped, therefore there are 3 steady
states (R,T,E) (see Fig. 4), corresponding toRest, ThresholdandExcitedstates.
We show in the section 2.3.3 below that their stability is determined by the sign
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of the derivativedIinst

dV , and that R and E are stable, and T is unstable . IfV is
depolarized above T, it increases on the fast time scale toward E (Figure 4top
left).

Plateau(phase 2, Figure 4top right): asV reaches E (depolarizes), the slow
dynamics forh andn take place. The solution remains atI(V, m∞(V ), h, n) =
0, but this curve as a function ofV is parameterized byh andn and these pa-
rameters are changing according to their dynamics 2.1. For depolarizedV : h de-
creases,n increases, i.e. the (positive) contribution of K+ current increases and
the negative feedback contribution ofNa+ inactivation decreasesINa. There-
fore, the N-shaped curve ofI(V ;h, n) drifts upward. As a result the steady states
T and E move closer together until they coalesce and disappear, ending phase 2
(Figure 4top right).

Downstroke(phase 3, Figure 4bottom right): now there is only one steady
state (hyperpolarized R) andV decreases toward it (on the fast time scale).

Recovery(phase 4, Figure 4bottom left): In this phaseV is hyperpolarized.
Therefore,h increases andn decreases. As a resultIinst slowly moves down-
ward; R returns to the original value andV drifts with it.

2.3.3. Stability of the fast subsystem’s steady states
Now, for the analysis of the action potential it remains to show that the stability
of any steady stateVss of the equation

Cm
dV

dt
= −Iinst(V, m∞(V ), h0, n0) + Iapp = −Iinst(V ; n0, h0) + Iapp

is determined by the derivative of the right-hand side.
Consider the effect of a small perturbationv from the steady stateV (t) =

Vss + v(t). Then

Cm
dV

dt
= Cm

dv

dt
= −Iinst(Vss + v; n0, h0) + Iapp

= −Iinst(Vss;n0, h0)− dIinst

dV

∣∣∣∣
Vss

v + O(v2) + Iapp.

The first and last terms sum to 0, becauseVss is a steady state. As a linear
approximation, we have:

Cm
dv

dt
= − dIinst

dV

∣∣∣∣
Vss

v.

The steady state is

stable if
dIinst

dV

∣∣∣∣
Vss

> 0,
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Fig. 5. Repetitive firing through Hopf bifurcation in Hodgkin-Huxley model.A: Voltage time courses
in response to a step of constant depolarizing current (several levels of current: from bottom to top:
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and

unstable if
dIinst

dV

∣∣∣∣
Vss

< 0.

A biophysical interpretation for this instability condition is that negative resis-
tance, due to the rapidly activatingINa, is destabilizing.

2.4. Repetitive firing

Numerical simulations show that the Hodgkin-Huxley model exhibits repetitive
firing in response to steadyIapp within a certain range of values,Iν < Iapp < I2

(Fig. 5 A) [15, 57]. Generally, the firing rate increases and the amplitude of
spikes decreases with increasing current. IfIapp is too largeV settles to a stable
depolarized level. This is called depolarization block. As the temperature is
increased the frequency range moves upward (Fig. 5 B). This is because the
recovery processesh andn become faster and the membrane’s refractory period
decreases. However, if the temperature is increased too much then excitability
and repetitive firing is lost, i.e. the negative feedback is too fast. In order to
study the emergence and properties of rhythmic behavior we use stability and
bifurcation theory.

2.4.1. Stability of the four-variable model’s steady state
The Hodgkin-Huxley model has a unique steady state voltageVss for each value
of Iapp, becauseIss is monotonic. Yet we see that for some levels ofIapp the
membrane oscillates and does not remain stably atVss. To find the conditions for
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stability of the steady state, we linearize the full system 2.1 around

(Vss,m∞(Vss), h∞(Vss), n∞(Vss)).

This leads to the constant coefficient 4th order system for evolution of the vector
y(t) of perturbations of(V, m, h, n):

dy

dt
= Jssy,

whereJss is the 4x4 Jacobian matrix of 2.1, evaluated at the steady state. The
four eigenvaluesλi of Jss determine stability. Stability requires that eachλi have
negative real part. If any of them has positive real part then the steady state is
unstable. In Fig. 6A we plot the leading eigenvalues as functions ofIapp. Indeed,
we have stability for low and high values ofIapp. However, there is an interme-
diate range ofIapp : I1 < Iapp < I2 where the steady state point is unstable.
The leading eigenvalues form a complex pair and the steady state loses stability
via a Hopf bifurcation [30,62] asIapp increases through the critical valueI1 and
regains stability via Hopf bifurcation asIapp increases throughI2. Figure 7A
showsVss as a function ofIapp (thin lines). (Note, this is just a replotting ofIss

from Fig. 3B.) The valuesI1 andI2 depend on temperature and other parame-
ters of the system. Figure 7B shows how the region of instability shrinks with
temperature. As the numerical simulations suggest the model oscillates stably
for I1 < Iapp < I2 and rhythmicity is lost at high temperature [49, 57]. The
branches forI1(Temp) andI2(Temp) coalesce atTemp = 28.85◦C. Notice,
there are no Hopf bifurcations, and the steady state does not lose stability above
this temperature.

2.4.2. Stability of periodic solutions
The theory of Hopf bifurcations [30, 62] guarantees that small amplitude oscil-
lations emerge at the criticalIapp values. In this Hodgkin-Huxley case, the bi-
furcation is subcritical atI1 (unstable oscillations on a branch directed into the
region where the steady state is stable) and supercritical atI2. One could com-
pute these local properties by evaluating complicated expansion formulae [30].
Alternatively, the emergence, extension to large amplitude and stability of these
periodic solutions, both stable and unstable orbits, can be traced across a range
of parameters, using a variety of numerical methods (e.g. [18,57]). Such branch
tracking software [18] was used to compute the periodic solutions as a function
of Iapp, shown in Figure 7A (thick lines).

The stability of a periodic solution, in general, is determined according to the
Floquet theory [10, 30, 71]. We describe this formally in Appendix B and here
just sketch the idea and give the numerical results from the stability analysis. In
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Fig. 6. Stability of steady states and periodic orbits in the Hodgkin-Huxley model.A: Real part of the
complex pair of eigenvaluesRe(λ1,2) and third negative eigenvalueλ3. λ4 is even more negative is
off the scale of this plot. ForI1 < Iapp < I2 Re(λ1,2) is positive (dashed) , showing instability of
the steady state.B: Values of the leading non-trivial Floquet multiplier along the branch of periodic
solutions in log-log axes. The part of the curve withσ1 > 1 (dashed) indicates instability of the
periodic solutions (see text). In both panelsIapp is in µA/cm2.

analogy to the steady state case, we linearize the equations 2.1 about the periodic
solution (periodT ),

dy

dt
= Joscy,

whereJosc, the 4x4 Jacobian matrix, now has entries that are periodic. It has so-
lutions of the formexp(λt)q(t) whereq is periodic. The cycle-to-cycle growth or
decay of perturbations are governed by the numbersσ = exp(λT ), the Floquet
multipliers. If anyσ (of the 4) has|σ| > 1 then the periodic solution is unstable.
The (nontrivial) leading multiplierσ1 is plotted vs. Iapp in Fig. 6B along the
branch of periodic solutions. (Note, there is always oneσ equal to unity since
the derivative of the periodic solution satisfies the above linear equation, with
λ=0.) The curve is multivalued because forIν < Iapp < I1 two periodic solu-
tions exist, one stable (corresponding to repetitive firing) and one unstable. The
leading Floquet multiplier is greater than 1 for the unstable orbit (thick dashes),
in fact much larger than 1, indicating that this orbit would not be seen in forward
integration of 2.1 and, even more unlikely, in experiments.

2.4.3. Bistability
Notice that for a range of applied current,Iν < Iapp < I1, the stable steady state
and the stable limit cycle coexist. This means that the system is bistable, i.e. that
for the same value of parameters depending on initial conditions the long-term
state of the system can be different. In this section we discuss predictions of the
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model derived from the existence of bistability and their experimental verification
for the squid giant axon.

One prediction concerns the onset of repetitive firing. The model predicts two
critical values of current intensity for the onset of repetitive firing (Fig. 7A): a
lower one (Iν) for a suddenly applied stimulus, and an upper one (I1) for a slowly
increasing ramp. The reason for this is that if the system starts at the steady state
and the applied current is belowIν , then gradual increase of current will keep the
solution at the stable steady state until it loses stability atI1. On the other hand,
if a current is turned on abruptly aboveIν , then the phase space abruptly changes
to include the stable limit cycle and the system may find itself in the domain
of attraction of the limit cycle. Experimentally determining both critical values
for the onset of repetitive firing also indicates the range of currents (between the
critical values) where bistability is expected.

A second prediction is that ifIapp is tuned into the range for bistability, then
brief perturbations of appropriate strength and phase will stop the repetitive fir-
ing. Moreover, the model predicts that such annihilation can be evoked by depo-
larizing as well as hyperpolarizing perturbations. This prediction is based on the
fact that the domains of attraction are separated by a surface (which presumably
contains the unstable limit cycles mentioned above (see [49, 57])). This struc-
ture suggests that the trajectory could be forced across the separatrix surface by
a brief perturbation. In Hodgkin-Huxley simulations by Cooley et al. [15] and
in experiments with stretch receptors of Gregory et al. [29] it was shown that a
neural system can be shocked out of the steady state into repetitive firing. Later
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Guttman et al. [32] demonstrated both theoretically and experimentally that the
Hodgkin-Huxley system and squid giant axon can be shocked out of the period-
ically spiking state. To choose the appropriate phase and amplitude of the per-
turbation it is useful to look at the projection of the 4-dimensional phase space
to a 2-dimensional plane. Figure 8A shows the stable limit cycle and the stable
fixed point in theV − n plane. This graph indicates that if we have a trajectory
running along the limit cycle, and we deliver a hyperpolarizing perturbation just
before the upstroke of the action potential (marked with an asterisk) or a depolar-
izing perturbation at the end of the recovery period (marked with two asterisks),
then it is possible to switch the trajectory into the domain of attraction of the
fixed point. The system will stop firing and will exhibit damped oscillations to
the steady state (see examples in Fig. 8B). It is important to remember that the
two-dimensional projection of the phase space in Figure 8A does not give an ac-
curate picture of the behavior of the solutions. In theV −n plane trajectories can
cross while this is ruled out for the actual four-dimensional trajectories. More-
over, the perturbations that bring trajectories close to one of the attractors in the
plane do not necessarily bring the actual trajectory across the separating surface.
Therefore we treat two-dimensional projections as merely a useful indication of
the behavior of the full system.

The model also indicates that it may be easier to stop periodic firing if the bias
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current is just aboveIν , and it is easier to start the oscillation if the bias current
is closer toI1, because the domain of attraction of the fixed point is reduced near
I1.

Most of these predictions were qualitatively confirmed experimentally in the
squid axon preparation [32]. Squid giant axon bathed in lowCa2+can exhibit co-
existent stable states, one oscillatory (repetitive firing) and one time-independent
(steady-state), for just superthreshold values of the applied current step. For a
slow up and down current ramp the critical current intensities for switching from
one stable to other depend on whether current was increasing or decreasing. That
is, the experimental system manifests a hysteresis behavior in this near threshold
region. Moreover, repetitive firing in response to a just-superthrehsold step of
current was annihilated by a brief perturbation provided its amplitude and phase
were in an appropriate range of values.

The existence of a range of bistability has important implications for overall
dynamics of the system. First, it allows greater stability in the near-threshold
regime in the presence of noise. This is the same principle as used in thermostats
— once the system is settled to one of the stable states small perturbations have
little effect. Bistability in the system can also underlie more complex firing pat-
terns in the autonomous system — for example, it can provide the basis for burst-
ing, observed in many cell types (see section 4). To achieve this, the bifurcation
parameter (Iapp in our case) becomes a dynamic variable whose typical time
scale is much longer than the typical oscillation period. Finally, we note that
similar phenomena can occur if other quantities are used instead ofIapp as bifur-
cation parameters (or as slow dynamic variables), for example the concentration
of intracellularCa2+.

3. Morris-Lecar model

In order to more fully exploit the power of geometric phase-plane analysis and bi-
furcation theory in understanding neuronal dynamics we focus on a two-variable
model of cellular electrical activity. The model was developed by Morris and
Lecar in 1981 [40] in their study of barnacle muscle electrical activity and then
popularized as a reduced model for neuronal excitability [53]. Our presenta-
tion parallels some of that in [53]. The Morris-Lecar model is formulated in
the Hodgkin-Huxley framework, with biophysically meaningful parameters and
structure, yet it is simple enough to analyze and it exhibits a great repertoire of
interesting behaviors (see e.g. [53]). Of course, it is rather idealized compared to
many other neuronal models that are designed to investigate the details of inter-
action of many known ionic currents, or the spatial propagation of activity, etc.
Such minimal models however are invaluable when the problem or questions at
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hand require only qualitative or semi-quantitative characterizations of spiking ac-
tivity. This is especially important in studies of large networks of cells. We note
that the geometrical approach via phase plane analysis was pioneered in the study
of neuronal excitability by Fitzhugh [22,23].

The Morris-Lecar model incorporates a delayed-rectifierK+current similar to
the Hodgkin-HuxleyIK and a fast non-inactivatingCa2+current (depolarizing,
and regenerative, like the Hodgkin-HuxleyINa). The activation ofCa2+is as-
sumed to be so fast that it is modeled as instantaneous. The model equations
are

C
dV

dt
= −Iion(V,w) + Iapp (3.1)

= −(ḡCam∞(V )(V − V̄Ca) + ḡKw(V − V̄K) + ḡL(V − V̄L)) + Iapp,

dw

dt
= φ [w∞(V )− w] /τw(V ).

The activation variablew is the fraction ofK+channels open, and provides the
slow voltage-dependent negative feedback as required for excitability. The V-
dependence ofτw, m∞ andw∞ is shown in Figure 9A. We use the same values
of model parameters as in [53]. They are summarized in the caption to figure 9
and are the same throughout the section unless noted otherwise.

This two-variable system’s behaviors can be fully revealed in the phase plane.
We start by finding the nullclines — the two curves defined by settingdV/dt and
dw/dt individually equal to zero. These nullclines define some key features of
the dynamics. A solution trajectory that crosses a nullcline does so either verti-
cally or horizontally. The nullclines also segregate the phase plane into regions
with different directions for a trajectory’s vector flow. The nullclines’ intersec-
tions are the steady states or fixed points of the system. Much can be concluded
just by looking at the nullclines, and how they change with parameters. The
V -nullcline is defined by

−Iion(V,w) + Iapp = 0.

To see what this curve looks like, let us say thatIapp = 0, and look at the
currentIion(V,w0) versusV with w fixed. This is the just the instantaneous
I − V relationIion(V, w0) = Iinst(V ;w0), depending on the level ofw, and we
want to know it’s zeros. Similar to the Hodgkin-Huxley model, this curve is N-
shaped (see Fig. 9B1), and increasingw approximately moves the curve upward.
Dependence of the zero-crossings withw will determine theV nullcline (Fig.
9B). For moderatew there are three zeros, and therefore three branches of the
V -nullcline (corresponding to R,T and E: rest, threshold and the excited state);
for low w there is only one high-V branch; and for largew only a low-V branch.
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Below theV -nullcline in theV −w planedV/dt > 0, i.e.V is increasing, while
above the nullclineV is decreasing. Thew-nullcline is simply the activation
curvew = w∞(V ). Left of this curvew decreases and to the rightw increases
(Fig. 9B2).

The steady state solution(V̄ , w̄) of the system is the point where the nullclines
intersect. It must satisfyIss(V̄ ) = Iapp, whereIss(V ) is the steady stateI − V
relation of the model given by

Iss(V ) = Iion(V, w∞(V )).

If Iss is N-shaped, then there can be three steady states for some range ofIapp.
However, ifIss is monotone (as is the case for the parameters in figure 9), then
there is a unique steady state, for anyIapp.

3.1. Excitable regime

We say that the system is in the excitable regime when it has just one stable steady
state and the action potential (large regenerative excursion) is evoked following
a large enough brief stimulus. Figure 10A,B shows the responses to briefIapp

pulses of different amplitude. After a small pulse the solution returns directly
back to rest (subthreshold). If the pulse is large enough, autocatalysis starts, the
solution’s trajectory heads rightward toward theV -nullcline. After the trajec-
tory crosses theV -nullcline (vertically, of course)it follows upward along the
nullcline’s right branch. After passing above the knee it heads rapidly leftward
(downstroke). The number ofK+channels open reaches a maximum during the
downstroke, as thew-nullcline is crossed. Then the trajectory crosses theV -
nullcline’s left branch (minimum ofV ) and heads downward, returning to rest
(recovery).

Notice that if a superthreshold pulse initiates the action potential with differ-
ent initial conditions (say, closer to theV -nullcline’s middle branch), then the
solution does not go as far rightward inV , resulting in an intermediate amplitude
(graded) response. This contradicts the traditional view that the action potential
is an all-or-none event with a fixed amplitude. This possibility of graded respon-
siveness in an excitable model was first observed by FitzHugh [23], in studying
an idealized analytically tractable two-variable model. His model is often con-
sidered as a prototype for excitable systems in many biological and chemical
contexts. But in that model, as well as in the Hodgkin-Huxley model and in the
Morris-Lecar example of Fig. 10A, there is not a strict threshold. If we plot the
peakV vs. the size of the pulse or initial conditionV0, we get a continuous curve
(Fig. 10C). The steepness of this curve depends on how slow is the negative
feedback. Ifw, for example, is very slow then the flow in the phase plane is close
to horizontal,V is relatively much faster thanw, and it takes fine tuning of the
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initial conditions to evoke the graded responses – the curve is steep. How close
to horizontal the flow is, is determined by the size ofφ:

dw

dV
=

(
dw

dt

) / (
dV

dt

)
= O(φ).

If φ is very small (w slow) then the trajectory of the action potential looks like
a relaxation oscillator and the plateau, upstroke and the downstroke are more
pronounced, like in a cardiac action potential, or an envelope of a burst pat-
tern. This suggests that if the experimentally observed action potentials look like
all-or-none events, they may become graded if recordings are made at higher
temperatures. This experiment was suggested by FitzHugh and carried out by
Cole et al. [11]. It was found that if recordings in squid giant axon are made at
38◦C instead of, say, 15◦C then action potentials do not behave in an all-or none
manner.

3.2. Post-inhibitory rebound

Many neurons can fire an action potential when released from hyperpolariza-
tion. Namely, if a step withIapp < 0 is applied for a prolonged period of time
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and then switched off, the neuron may respond with a single spike upon the re-
lease (Fig. 11A). This phenomenon is called post-inhibitory rebound (PIR), or
in the classical literature, anodal break excitation. To explain PIR, let us look
at the phase-plane (Fig. 11B). BeforeIapp is turned on the resting point is on
the left branch of theV -nullcline. WhenIapp comes on, it pulls theV -nullcline
down. The steady state moves, accordingly, down and to the left (i.e. it becomes
more hyperpolarized and withK+further deactivated). If the current is held long
enough, then the solution settles to the new steady state. Next, when the current
is released abruptly theV -nullcline snaps back up. The solution location is now
below the nullcline, and ifφ is sufficiently small, the solution will fly all the way
to the right branch and then return to rest through the full action potential.

Physiologically, the rebound is possible because theK+channels that are usu-
ally open at rest are closed by the hyperpolarization. This makes the membrane
hyperexcitable, i.e. lowers its threshold for firing. When the cell is released
it takes awhile forw to activate and during this delay the autocatalyticICa is
less opposed. Anodal break excitation is also observed in the Hodgkin-Huxley
model [24]. There, the hyperpolarization also causes removal of inactivation of
INa (increase inh), which contributes to facilitating the rebound.

3.3. Single steady state. Onset of repetitive firing, type II

Let us ask now whether and how repetitive firing can arise in this model with
Iapp as a control parameter. As before, we will look for parameter values where
the steady state is unstable, using linear stability theory. Let us say the steady
state is(V̄ (Iapp), w̄(Iapp)). Now, consider the effects of a perturbation from the
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steady state:(V (t), w(t)) = (V̄ + x(t), w̄ + y(t)), and ask whetherx andy can
grow with t (unstable solution) or decay (stable solution). For the first equation:

C
dV

dt
= C

dx

dt
= Iapp − Iion(V̄ + x, w̄ + y) =

= Iapp − Iion(V̄ , w̄)− ∂Iion

∂V

∣∣
(V̄ ,w̄) x− ∂Iion

∂w

∣∣
(V̄ ,w̄) y + h.o.t.,

whereh.o.t. means higher order terms. The first 2 terms sum to zero, leaving
(after neglecting h.o.t.)

C
dx

dt
= −∂Iinst

∂V

∣∣
(V̄ ,w̄) x− ∂Iinst

∂w

∣∣
(V̄ ,w̄) y.

For the second equation:

dy

dt
= φ

w′∞
τw

x− φ

τw
y.

To summarize:

d

dt

(
x
y

)
= J

(
x
y

)
, (3.2)

whereJ is the Jacobian matrix, evaluated at the steady state:

J =



− 1

C
∂Iinst

∂V − 1
C

∂Iinst

∂w

φ
w′∞
τw

−φ 1
τw




∣∣∣∣∣∣
(V̄ ,w̄)

.

Stability of the system 3.2 is determined by the eigenvaluesλ1 andλ2 of J :

detJ = λ1 · λ2,

tr J = λ1 + λ2.

For the steady state to be stable the real parts of both eigenvalues must be nega-
tive. In order for the fixed point to lose stability one of the following two things
must happen:
(1)λ1 or λ2 is equal to 0, i.e.detJ = 0;
(2) Re(λ1) = Re(λ2) = 0, Im(λ1,2) 6= 0, i.e. trJ = 0 — Hopf bifurcation.
Case (1) can only happen if̄V is at the "knee" ofIss(V ), becausedetJ = 0 =
φ
τw
· 1
C

[
dIss

dV

]
. Therefore, ifIss is monotonic, the loss of stability can only happen

via case (2), Hopf bifurcation.
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For the parameters in figure 9 both eigenvalues are real and negative, i.e. the
steady state is stable. Moreover,Iss(V ) in this case is monotonic (as in the
Hodgkin-Huxley equations) and the loss of stability can happen only through
Hopf bifurcation. We have:

tr J = 0 = − 1
C

∂Iinst

∂V

∣∣
(V̄ ,w̄) −

φ

τw
.

Instability means that this expression is positive, i.e.

− 1
C

∂Iinst

∂V
>

φ

τw
. (3.3)

This says that in order to get instability∂Iinst

∂V must be sufficiently negative,
which is equivalent to having the fixed point on the middle branch (and suffi-
ciently away from the ”knees") of theV -nullcline. Also the rate of the negative
feedback φ

τw
should be slow enough. If the temperature is too high (φ is too

large), then destabilization will not happen. Condition 3.3 can also be interpreted
as the autocatalysis rate being faster than the negative feedback’s rate. When this
condition is met, the steady state loses stability through a Hopf bifurcation, giv-
ing rise to a periodic solution, i.e. leading to the onset of repetitive firing. This
periodic solution has a non-zero frequency associated with it, which is propor-
tional to theIm(λ1,2) ( [62]), i.e. the repetitive firing emerges with non-zero
frequency. Figures 12B and C show the bifurcation diagram and thef − I rela-
tion, respectively. Notice that this is the same type of repetitive firing onset as we
have seen in the Hodgkin-Huxley equations. It is called Type II onset, following
the terminology of Hodgkin [34].

Figure 12A shows snapshots of the nullcline positions at differentIapp (the
values are markedIexcit, Iosc andIblock in Fig. 12B), and the lower panels show
theV time courses for the same values ofIapp. ForIapp = Iexcit the membrane
is excitable (the steady state is on the left branch). IncreasingIapp to Iosc shifts
theV -nullcline up, and the steady state moves to the middle branch and becomes
unstable. Existence of a stable periodic orbit can be shown qualitatively forφ
small considering the direction of the flow in the phase plane: the flow is always
away from the unstable point, horizontally (say to the right), then following the
V -nullcline to the knee, shoots left again, etc. The cycle can also be constructed
by the geometrical singular perturbation or by the Poincare-Bendixon theorem
(see chapter by Terman in this volume). IfIapp is further increased toIblock the
steady state moves to the right branch and becomes stable again. In this state
theK+andCa2+currents are strongly activated, but they are in a stable balance.
This is nerve block — there is no firing, but the membrane is depolarized. At
this point we have to remind ourselves again that this model is a description of a
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Fig. 12. Onset of repetitive firing with one steady state (Type II).A: Nullclines for different values
of Iapp (60, 160 and 260µA/cm2), corresponding to excitable, oscillatory and nerve-block states of
the system.B, C: Bifurcation diagram (B) and f-I curve (C). B: Thin solid curves:stable steady state,
thin dashed curves:unstable steady state,thick solid curves:maximum and minimumV of the stable
limit cycle, thick dashed curves:maximum and minimumV of the unstable limit cycle. Parameter
values are the same as in figure 9.

point neuron. It does not address what is happening in the axon. In principle, the
axon may be generating action potentials that we do not see in this description.

Finally, we notice in figure 12B that, as in the Hodgkin-Huxley model (see
section 2.4.3) there is a range of bistability, and the solution in that range can be
brought into the domain of attraction of either the fixed point or the limit cycle
by brief perturbations.

3.4. Three steady states

The cases of Morris-Lecar model dynamics that we have so far considered are
reminiscent of the Hodgkin-Huxley dynamics in that there is always a unique
fixed point. In other parameter regimesIss(V ) may not be monotonic. For
example, increasinḡVK to higher values [50], corrsponding experimentally to
increasing the extracellularK+concentration, can causeIss(V ) to become N-
shaped. This means that for some values ofIapp there are three steady states and
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the curve of steady states vs.Iapp is S-shaped (Figs. 13-15). We also choose
parameters in such a way that only the lower steady state is on the left branch
of theV -nullcline, while both middle and upper steady states are on the middle
branch (Figs. 13-15). The number and location of steady states do not depend on
temperature (i.e. onφ). But the stability and the onset of repetitive firing, as we
have seen above, do depend onφ. Therefore, we will further study the dynamics
at different values ofφ.

3.4.1. Largeφ. Bistability of steady states
We have computed above in equation 3.3 the condition for destabilization of a
steady state through Hopf bifurcation. It shows that the negative feedback from
w has to be sufficiently slow compared toV for the bifurcation to happen. For
largeφ this condition is not satisfied. Moreover, for largeφ w is so fast that it can
be considered as instantaneousw = w∞(V ). Then the model is reduced to one
dynamic variableV and the stability of the steady states is simply determined by
the sign ofdIss

dV , i.e. the middle steady state is unstable and the upper and lower
ones are stable. Figure 13A shows theV − w phase plane with steady states and
nullclines for increasedφ. There is again a range of bistability, but in this case
it is bistability between two steady states — with higher and lower voltage. The
voltage can be switched from one constant level to the other by brief pulses (Fig.
13B). This type of behavior is sometimes called “plateau behavior” and it has
been used in models describing vertebrate motoneurons [4].

3.4.2. Smallφ. Onset of repetitive firing, Type I
If φ is very small (Fig. 14A1), then according to the instability condition 3.3
both middle and upper steady states can be unstable for a range ofIapp. (Notice
that when there are three fixed points in the system they are not always “stable-
unstable-stable”!) The middle fixed point is a saddle. One of the branches of its
unstable (”outgoing") manifold goes directly to the stable steady state, and the
other branch goes around the unstable spiral and also comes back to the stable
point. These two unstable manifold branches are heteroclinic orbits — connect-
ing two singular points. They effectively form (topologically) a circle that has
two fixed points on it (Fig. 14A2, left panel). AsIapp is increased, theV -
nullcline moves up and the stable fixed point and the saddle must coalesce and
disappear. Figure 14A2, middle and right panels, show this bifurcation schemat-
ically. As the two points coalesce and then disappear the orbits connecting them
form a single limit cycle. ForIapp exactly at the critical valueI1 the limit cycle
has infinite period, i.e. the closed trajectory is a homoclinic orbit. Such an orbit
is called (by some dynamicists) a saddle-node on an invariant circle (SNIC). For
Iapp just above the critical value the frequency is proportional to

√
Iapp − I1

(see [62]), i.e. the repetitive firing emerges with zero initial frequency and high
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Fig. 13. Largeφ case.A: Schematic ofV − w phase plane with steady states (filled circles – stable
steady states, open circle – unstable), nullclines (dotted curves), and trajectories going in and out
the saddle point (solid curves). The curves are slightly modified from the actual computed ones for
easier viewing; in particular, the trajectories emanating from the saddle would not have extrema away
from nullclines.B: Switching the solution from one stable steady state (marked 1 in A) to the other
(marked 3 in A) and back with brief current pulses. Parameters are the same as in Fig. 9, except
V3 = 12 mV, V4 = 17 mV, φ = 1. Depolarizing pulse of strength 250µA/cm2is applied att = 15
msec, hyperpolarizing pulse of strength -250µA/cm2is applied att = 65 msec; duration of each
pulse 5 msec.

amplitude. Figure 14B shows an example of theV time-course withIapp not far
above the critical value, and the period of spiking is very large.

The bifurcation diagram for this case is shown in Fig. 14C and thef−I curve
in Fig. 14D. AsIapp increases beyond the saddle-node bifurcation the frequency
of the oscillation increases while the amplitude decreases. The oscillatory so-
lutions terminate via subcritical Hopf bifurcation, generating a small range of
bistability.

Emergence of oscillatory behavior with arbitrary low frequencies has been
reported in other models as well as in experiments (for example [12,27,31,59]).
Sometimes this zero-frequency onset has been attributed to the presence of an
inactivating potassium A-type current ( [12], although as we see here such anIK

is not required [58].

3.4.3. Intermediateφ. Bistability of rest state and a depolarized oscillation
At intermediate values ofφ both middle and upper steady states can be unstable,
but the upper steady state is surrounded by a stable periodic orbit (Fig. 15A).
In this case there is bistability between the low-voltage stationary point and de-
polarized repetitive firing. As before, briefIapp pulses can be used to switch
between the states (Fig. 15B). The saddle’s stable manifold serves as the separa-
trix between the domains of attraction of the two states. The model also predicts
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Fig. 14. Smallφ case. Parameters are the same as in Fig. 13, exceptφ = .06666667. A: Schematics
of phase plane.A1: Schematic of phase plane forIapp = 0 µA/cm2. Notations are the same as
in Fig. 13A. The curves are slightly modified from the actual computed ones for easier viewing; in
particular, actual trajectories would not have extrema away from nullclines.A2: Schematic of change
in phase plane with change ofIapp (see text).B: Time course of voltage forIapp=40 µA/cm2. C:
Bifurcation diagram. Notation the same as in Fig. 7.D: f − I curve. Dashed portion corresponds to
unstable periodic orbit.
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that if a perturbation from rest is too large, then the system will exhibit one spike
and come back to rest, not to the cycle. This happens, mathematically, because
the perturbation causes the solution to cross the separatrix twice (see Fig. 15A),
and, biophysically, because too muchIK gets recruited. This phenomenon in the
model has yet to demonstrated experimentally, to our knowledge.

To see how this phase plane portrait arises, let us look at the bifurcation di-
agram in Fig. 15C. The lower steady state is stable for allIapp and the middle
one, a saddle, is always unstable. WhenIapp is very high nerve block occurs.
WhenIapp is decreased from large values, the high-V steady state loses stabil-
ity through a subcritical Hopf bifurcation. The emergent branch of (unstable)
periodic orbits bends rightward from the Hopf point, but then turns around, sta-
bilizing at the knee. So for some range ofIapp there are three steady states and
two periodic states. An example from this range ofIapp is shown in figure 15A.
As Iapp is decreased further the stable periodic orbit’s minimumV drops enough
to contact the saddle, terminating the periodic branch. At this critical value of
Iapp = I1 when the limit circle collides with the saddle, the unstable manifold of
the saddle leaves the fixed point along the cycle and then returns back along the
cycle as the stable manifold. This homoclinic loop is called a “saddle loop homo-
clinic orbit”. The firing rate in this case also emerges from zero, but it increases
as1/| ln(Iapp − I1)| (Fig. 15D, see also [62]).

This example in which a stable rest state coexists with a depolarized limit
cycle provides the basis for square wave bursting (see section 4).

3.5. Similar phenomena in the Hodgkin-Huxley model

In section 2 we saw that in the Hodgkin-Huxley model repetitive firing emerges
through a Hopf bifurcation with small amplitude and non-zero frequency. In fact,
the Hodgkin-Huxley model can be tuned into parameter regimes that yield most
of the dynamic behaviors that we described for the Morris-Lecar model [50]. For
increased̄VK Iss(V ) becomes N-shaped, becauseK+now has a reversal potential
that is not below restingV . If we also vary the temperature, the model will be
tuned into plateauing behavior (coexistence of two steady states) or the type of
behavior that we described for intermediateφ in Morris-Lecar model (resting
state and a depolarized stable cycle).

3.6. Summary: onset of repetitive firing, Types I and II

Here we summarize the characteristic properties of two generic types of transition
from the excitable to oscillatory mode in neuronal models.

Type II : (1) Iss monotonic; (2) subthreshold oscillations; (3) excitability with-
out distinct threshold; (4) excitability with finite latency.



36 A. Borisyuk1, J. Rinzel2

−40 0 40

0

0.2

0.4

V, mV

w

A

0 100 200 300

−40

0

Time, msec

V
, m

V

B 

0 20 40

−40

−20

0

I
app

V
, m

V

C 

27.5 29.5
0   

30

60

I
app

Frequency , HzD 
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Type I: (1) Iss N-shaped; (2) no subthreshold oscillations; (3) all-or-none
excitability with strict threshold; (4) infinite latencies.

The two cases also have different (f − I) relations. However, if there is noise
in the system, thef − I curves for both types will become qualitatively similar.
The discontinuity of Type II will disappear with noise since the probability of
firing becomes non-zero where it was zero before. Type I’sf − I curve will also
inherit a smooth foot rather than the infinite slope at zero frequency due to the
noise-free case’s square root rise (see, for example [31]).

4. Bursting, cellular level

Bursting is an oscillation mode with relatively slow rhythmic alternations be-
tween an active phase of rapid spiking and a phase of quiescence. A classical
case, and well studied (both experimentally and theoretically), is the parabolic
bursting R15 neuron of theAplysisa’s abdominal ganglion [2,63]. Since its early
discovery bursting has been found as a primary mode of behavior in many nerve
and endocrine cells. Many of the experimentally found examples have been suc-
cessfully modeled — sometimes with very good agreement between the data and
the model. A collection of experimental examples and models was presented
by Rinzel and Wang [70], including bursting in pancreaticβ-cells, dopaminer-
gic neurons of the mammalian midbrain, thalamic relay cells, inferior olive cells,
and neocortical pyramidal neurons. Several classification schemes of different
types of bursting, based on the bifurcation structure of the corresponding math-
ematical models, have been developed e.g. by Rinzel [51], Bertram et al. [3],
de Vries [68], Izhikevich [36], Golubitsky et al. [28]. These classifications char-
acterize the bursting behaviors by describing the topologies of the sequence of
invariant sets that the solutions visit (steady states, periodic orbits, etc.) and the
ways in which the solutions move between the sets (topological structure of the
bursting). They also describe phenomenological properties of different types of
bursting, for example, the shape and the amplitude of the spikes, evolution of
spiking frequency during the active phase, presence or absence of bistability, etc.
These phenomenological properties may be identified experimentally, and used
for classification of biological bursters.

Biophysically the rhythmicity in bursts is generated by an autocatalytic de-
polarization process and slower negative feedback. In some burst mechanisms
there is a distinct slow autocatalytic process (in addition to fast autocatalysis of
spike generation) with even slower negative feedback, as in the case of R15. In
this case the spike generation can be disabled and an underlying slow rhythm, on
which spike bursts ride, may persist. In other examples the fast autocatalysis of
spike generation is adequate to guarantee an active phase and then a single slow
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(burst time scale) negative feedback process will drive the alternation back and
forth over a hysteresis loop (as suggested by Figs. 7 and 15).

For more complete presentations and mathematical details of bursting types
the readers are referred to the original papers. In this section we review geo-
metrical methods for fast-slow analysis of bursting and some examples of the
different oscillation types. We describe mathematical features of some illustra-
tive examples in the classifications and phenomenological features that can help
to identify them in the experiments. For some examples we also describe ionic
conductance mechanisms that are sufficient to produce these oscillations and ex-
amples of experimental systems where this bursting type has been observed.

4.1. Geometrical analysis and fast-slow dissection of bursting dynamics

The general framework described here was first used for analysis of bursting
in [50,51], and then extended, for example, in [3,70]. We consider a point neuron
model and separate all dynamic variables into two subgroups: “fast” (denoted as
X) and “slow” (denoted asY ). In the context of bursting analysis a variable
is considered fast if it changes significantly during an action potential, and a
variable is considered slow if it only changes significantly on the time scale of
burst duration, not during single spikes. In this formulation bothV andw of the
above Morris-Lecar examples fall into the “fast” category — they both participate
in the spike generation mechanism, even thoughw may be noticeably slower than
V . The model equations can now be written as:

Ẋ = F (X,Y ),

Ẏ = εG(X, Y ).

In the second group of equationsε is a small parameter indicating the slower time
scale. The slow variables can represent the gating variables with very slow kinet-
ics (e.g., inactivation of a low thresholdICa or slowV -gated activation of some
IK), ionic concentrations (for example, intracellular concentration ofCa2+), sec-
ond messenger variables, etc. We focus on cases in which the dynamics ofY
depends onX, i.e. on activity-dependent feedback from the fast subsystem. In
special cases where it does not, i.e.,G(X,Y ) = G(Y ), the fast subsystem is
driven non-autonomously by the slow subsystem; the slow burst rhythm cannot
be reset by brief perturbations to the fast subsystem variables.

The analysis of the system can be conducted in two steps.
Step 1.First we think of the slow variables as parameters and describe the spike-
generating fast subsystem forX as a function ofY . This description involves
finding steady states, oscillatory orbits and their periods, and transitions between
all these solutions (bifurcations) as a function ofY :

0 = F (Xss, Y ) =⇒ Xss = Xss(Y )
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or
Ẋosc = F (Xosc, Y ) =⇒ Xosc(t) = Xosc(t + T ), T = T (Y ).

If Y is one-dimensional (there is only one slow variable) then the results can
be summarized in a bifurcation diagram of the same type as we have seen above,
with Y as the bifurcation parameter. WhenY is multi-dimensional it simply adds
dimensions to the bifurcation diagram and it may become harder to visualize.

Step 2.To describe the full system we overlay the slow dynamics on the fast
system behavior.Y evolves slowly in time according to its equations, whileX is
tracking its stable states. Therefore, we must understand the direction of change
of Y at each part of the bifurcation diagram forX.

When the full burst dynamics is projected to the(Y, V ) plane, it coincides
with portions of the bifurcation diagram. The results of this analysis allow one to
make phenomenological descriptions of the bursting behavior and predict effects
of parameter changes on behavior.

4.2. Examples of bursting behavior

4.2.1. Square wave bursting
Square wave bursting (see Fig. 16) is characterized minimally by a single slow
variable (i.e.,Y is a scalar) and the fast subsystem structure is qualitatively as
described in section 3.4.3 above. To recall, in the fast subsystem there is an S-
shaped curve of steady states. The lower steady state is stable and corresponds
to the silent phase of the bursting solution (Fig. 16B). The upper steady state
is surrounded by an oscillatory state which corresponds to the active phase of
firing. The oscillatory state terminates when it contacts the middle branch in a
saddle-loop homoclinic bifurcation. At the intermediate range of the parameter
values there is bistability between the lower steady state and the ”upper" periodic
orbit (Fig. 16B). Next, the kinetics of the slow parameterY has to be such thatY
decreases when the fast subsystem is at the low steady state and increases when
the fast subsystem oscillates around the upper steady state. This dynamics of
Y allows fast switching between coexistent stable states, generating bursting, as
shown in Fig. 16A. The active phase begins at the saddle-node bifurcation and
terminates at the saddle-loop. (Note, it is not essential in Fig. 15 that the Hopf
bifurcation on the high-V branch be subcritical.)

Phenomenologically, square wave bursting is characterized by abrupt peri-
odic switching between a silent phase and a state of depolarized repetitive firing.
Moreover, the spikes typically ride on a plateau (i.e., do not undershoot), spike
frequency decreases towards the end of the active phase (due to proximity to a
homoclinic), and the burst rhythm’s phase can be reset by brief pulses ofIapp

(due to bistability).



40 A. Borisyuk1, J. Rinzel2

The seminal work of Hodgkin-Huxley -like modeling of square wave bursting
[7] was for the electrical activity of pancreaticβ-cells, leading to the subsequent
mathematical treatment and characterization of fast-slow analysis ( [50]).

In a number of minimal biophysical models for square wave bursting, spiking
is due to high-thresholdCa2+and delayed-rectifierK+currents; bursting is due
to either a calcium-activated potassium current [7, 50] or due to slow inactiva-
tion of theCa2+current by feedback from voltage or fromCa2+concentration
itself [14]. TheIK−Ca bursting mechanism, for example, depends on the slow
dynamics ofCa2+-handling in the cell. It works in the following way. During
the active phase each spike slightly increasesCa2+concentration inside the cell,
which in turn activates a bit of theIK−Ca current. When the potassium current
is large enough, it brings the voltage down, terminating the active phase. During
the silent phaseCa2+influx is minimal andCa2+concentration slowly decreases
turning off IK−Ca until spiking can resume. In these models of square wave
bursting intracellularCa2+concentrationCa satisfies

Ċa = f [−αICa − k · Ca] ,

wheref is the buffering constantf =
[Ca2+

free]

[CaT OT ] , and theCa2+concentration is in-
creased by the inward (i.e. negative) membrane calcium currentICa and calcium
is removed from the cytoplasm with ratek. The slow time scale is due to the fact
thatf is small (say, 0.01 or so); most of theCa2+that enters the cell is rapidly
buffered by reversible binding to sites on various molecules inside the cell. As
the removal ratek is increased parametrically the behavior changes from a low-V
steady state, to bursting, to continuous spiking.

Multiple biophysical mechanisms have also been modelled to account for
square bursting in brain stem neurons that are involved in neural circuits that
drive respiration (see [5] and Fig. 1C,D in this chapter).

4.2.2. Parabolic bursting
Parabolic bursting is generated without bistability in the fast subsystem and it
requires at least two-variables in the slow subsystem. Steady states of the fast
subsystem are now represented as an S-shaped surface over the two-dimensional
plane of slow variables. Oscillatory solutions, similarly, are also represented as
surfaces. They terminate as they touch the steady state surface at the (say, low-V )
knee in a SNIC bifurcation. If the fast subsystem bifurcation surface is projected
down to the slow-variable plane, the plane is divided into two non-overlapping
regions: one with the resting steady state and the other with the repetitive firing
for the fast subsystem. The dynamics of the slow variables is designed in such a
way that there is an oscillation in this slow-variable plane that visits both regions



Understanding neuronal dynamics by geometrical dissection of minimal models41

10 mV 

A 

V(t) 

Ca(t) 

z(t) 

200 msec 
−2 −1 0 1

−40

−20

0

z=Ca
0
/(Ca+Ca

0
)

V
, m

VB 

Fig. 16. Square wave burster. Equations and parameters are the same as in Fig. 15 withIapp = 45
µA/cm2and an additionalCa2+-dependentK+currentIK−Ca = gK−Ca(1−z)(V −VK), where
gK−Ca = .25 mS/cm2, gating variablez = Ca0/(Ca + Ca0), Ca2+concentration is governed
by Ċa = ε(−µ · gCam∞(V )(V − VCa) − Ca), Ca0 = 10, ε = 0.005, µ = 0.2. A: Bursting
time course.Ca2+is playing the role of a slow variable, accumulating during the burst and slowly
decaying during the silent phase. This is entered into the original equation through theIK−Ca term.
The quantity that we use as a bifurcation parameter is a function ofCa: z = Ca0/(Ca+Ca0) (top
trace).B: Bifurcation diagram withz as a parameter (compare to Fig 15C). Arrows show direction
of change ofz during the firing and during the silent phase.

(Fig. 17A), creating bursting. An active phase begins and ends with the system’s
trajectory crossing a SNIC bifurcation.

The monostability of the fast subsystem allows parabolic bursting to have
smooth transitions between silent and active phases and to ride on a smooth sub-
threshold wave (Fig. 17B). It also precludes resetting of this bursting by brief
perturbations. Because the bursting trajectory passes through the homoclinic bi-
furcation, the spike frequency at the beginning and at the end of the active phase
is reduced, hence the time course of the spike frequency has a parabolic shape,
giving this bursting type its name.

Parabolic bursting was observed, probably first, in the Aplysia R15 neuron [1],
and described with minimal biophysical models [46, 51, 56], and with various
more detailed models (e.g., [6]). Experimentally, the sodium spikes during a burst
can be blocked to reveal an underlying slow periodic wave generated mainly by
Ca2+current. In the model [56] of the slow activation of thisCa2+current and its
even slower inactivation by internalCa2+concentration provide the two variables
for the slow subsystem.

4.2.3. Elliptic bursting
In the case of elliptic bursting the fast subsystem has bistability due to a sub-
critical Hopf bifurcation (as, for example, in the Hodgkin-Huxley model, Fig. 7),
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Fig. 17. Parabolic burster. Equations and parameters are the same as in Fig. 14 withIapp = 65
µA/cm2and the sameCa2+-dependentK+currentIK−Ca as in Fig. 16. One slow variable will be
z = Ca0/(Ca+Ca0) as in Fig. 16 above, and the second slow variable will be gating variables of
another, slow,Ca2+currentICa,s = gCa,ss(V −VCa). Parameter values:gK−Ca = .1 mS/cm2,
Ca0 = 1, ε = 0.0005, µ = 0.25, gCa,s = 1 mS/cm2, as in [53]. A: Projection of the bursting
trajectory to the slow-variable plane. Direction of movement is indicated with arrows. Below the
straight-looking curve low-voltage steady state is the only fast-subsystem attractor (silent phase) and
above this curve there is an oscillation of the fast variables (spiking).B: Time course of voltage.

and the curve of steady states can be monotonic. As for square wave bursting, the
mechanism requires one slow variable andY alternates back and forth through
the region of bistability, allowing the switching between the steady state and the
oscillatory solution (Fig. 18A, B). Unlike the above types of bursting, though,
the elliptic burster exhibits subthreshold oscillations in the silent phase, and the
oscillations grow as the steady state becomes unstable through Hopf bifurcation
(Fig. 18C). The active phase starts near the subcritical Hopf (just before or af-
ter, depending on whether or not some noise is present) and terminates at the
saddle-node bifurcation of periodic orbits.

In elliptic bursting the envelope of the oscillatory events is modulated at very
low frequency (creating an “elliptical” shape), small amplitude just before and
after the large amplitude of the burst spikes. The frequency of the“silent” phase’s
subthreshhold oscillations is comparable to that of the Hopf bifurcation, and may
or not be similar to the firing rate during bursts. The burst rhythm’s phase can
be reset by brief pulses. Elliptic bursting has been described in several computa-
tional models [16,58,69].

4.2.4. Other types of bursting
There are many other types of bursting that have been observed experimentally,
and/or constructed theoretically based on the same principles that we have just
illustrated. Their classification based on the topology of the underlying structure,
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Fig. 18. Elliptic burster. Equations and pa-
rameters are the same as in Fig. 9 with
Iapp = 120 µA/cm2and the sameCa2+-
dependentK+current IK−Ca as in Fig. 16.
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A: Bifurcation diagram of the fast subsystem with
IK−Ca gating variable as the parameter. Ar-
rows shows the direction of change ofz in the
full burster model.B: Zoom-in on the bifurcation
diagram from A with bursting solution overlayed.
C: Time course ofV and the slow variablez.

rather than on phenomenological description, is not only more accurate, but its
predictions are more reliable. The reason for this is that sometimes visually sim-
ilar bursting patterns can have different ionic and other biophysical mechanisms
associated with them. Conversely, sometimes bursting patterns that phenomeno-
logically appear quite different are actually found to belong to the same class,
with variations in some parameters. For example, Type Ib and Type IV bursting
of Bertram et al. [3] appear to be different from square wave bursting at least in
that they have undershooting spikes. However, both of them were revealed to be
relatively minor modifications of the square wave bursting.

As in the rest of this chapter, we have focused on bursting mechanisms in
isopotential, point neuron models. We would like to note, however, that bursting
can also arise due to interactions between different parts of cells, or, in a model,
between different compartments (e.g. in pyramidal neocortex cells [13, 45, 66]).
In a recent example, ghostbursting [17] of pyramidal cells in the electrosensory
organ of weakly electric fish was studied both experimentally and theoretically.
It was shown that this type of bursting depends on dendritic properties.

Bursting can also be created via the interaction of many non-bursting cells in
a network, as we describe in the next section, rather then by intrinsic cellular
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mechanisms.

5. Bursting, network generated. Episodic rhythms in the developing spinal
cord

In this section we present an example of a model which is similar in form to
the models described above, and which can be studied with similar methods, but
which represents activity of a large network of cells, rather than a single cell.

5.1. Experimental background

Many developing neuronal systems exhibit spontaneous activity that is crucial for
development. For example, in embryonic rat retina the ganglion cells are spon-
taneously active [25]. Moreover, the neighboring cells fire synchronous bursts
while the activities of cells that are far apart (for example, in different eyes) are
uncorrelated. This difference in the degree of synchrony in the spontaneous ac-
tivity is thought to underlie the formation of ocular dominance regions in the
lateral geniculate nucleus, the target of retinal output. In embryonic chick spinal
cord the cells exhibit population bursts of activity (called episodes) with episode
durations on the order of tens of seconds, and long inter-episode intervals of 2-
10 minutes ( [42, 43]). Figure 19 shows an example of such a recording. The
recording is made from a bundle of fibers that carry the (motoneuron) output of
a segment of the spinal cord. The signal represents the combined activity of a
large population of cells. During each episode single cells fire at 20-30 Hz, while
the frequency of “population cycles” within an episode is about 0.5 Hz. This
pattern of population activity is very robust, and it is generated spontaneously.
This means that an isolated section of the spinal cord will produce this activity
without any external inputs.

Before introducing the model we identify from the experimental data the key
network properties that are essential for such rhythmogenesis. First of all, cells
that are intrinsic bursters have not been found in this network. The percentage
of cells that are pacemakers (fire periodically in isolation) is estimated to be less
than 5%. Therefore, the rhythm is thought not to be a direct consequence of the
cells’ intrinsic properties alone. Second, if excitatory (glutamatergic) connec-
tions are blocked, the rhythm persists [8], i.e. the mechanism of rhythm gener-
ation is not dependent on the glutamatergic synapses. However, at this stage in
development GABA-A synapses (usually associated with inhibition) can cause
depolarization, i.e. be “excitatory” in effect. This is due to the fact that the
Cl−reversal potential is about -30, -40 mV, i.e. close to or even above the thresh-
old for firing. This phenomenon is observed in many developing systems, for
example in retina [25].
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Fig. 19. Population activity of network of cells in a segment of an embryonic chick spinal cord
(adapted from [65]).

Experiments also show that the size of the evoked synaptic potentials in the
network is transiently reduced after an episode of spontaneous activity [21].
Shorter episodes cause less reduction of evoked synaptic potentials. These ex-
perimental observations led to the hypothesis that the episodes of activity can
be terminated by the accumulated reduction in the synaptic efficacy and initiated
after the synaptic recovery [43]. The primary goal of the modeling is to test this
hypothesis.

5.2. Firing rate model

This model describes only the average firing rate of the population, rather than
the instantaneous membrane potential and spikes of the individual neurons. It
assumes a purely excitatory recurrent network in which synaptic coupling is sus-
ceptible to both short- and long-term, very slow, activity-dependent depression.
The model is described by only three coupled nonlinear differential equations.
Therefore, the analysis can be done graphically, step by step, which facilitates an
intuitive understanding of the network dynamics.

5.2.1. Basic recurrent network
A basic model of the excitatory recurrent network can be written as:

τaȧ = a∞(input)− a.

Herea is the population activity or mean firing rate, anda∞ is the input-output
relation of a neuron, taken to be an increasing sigmoidal function.τa is an effec-
tive time constant, reflecting integration time within a cell and recruitment time
in the network. Because the network is recurrent the input is proportional to the
activity of the network itself:

τaȧ = a∞(n · a)− a.
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The coefficient of proportionalityn represents the efficacy of coupling. The
steady state activity of this network depends onn (see Fig. 20A). For lown
there is only one stable low activity steady state; forn high there is only one sta-
ble state, of high activity. And for intermediate values ofn there are three steady
states, the middle of which is unstable and the lower and upper ones are stable.

Next, we allow the effectiven to vary dynamically. Based on the assumption
that there is synaptic depression the synaptic efficacyn should not only vary with
time, but be activity dependent. Figure 20B gives a hint of how the full model
will work. When a is low, the synapses are recovering, i.e.n is increasing and
the steady state moves along the lower branch of the curve to the right. When
the solution reaches the knee of the curve, the steady state switches to the upper
branch, which corresponds to higha. The population activity is now high which
leads to depression of synapses (n decreases), until the solution crashes back to
the lower branch.

5.2.2. Full model
The full model is described by three differential equations with both “fast” and
“slow” depression [65]. Slow depression governs the initiation and termination
of the episodes, while fast depression allows cycling within an episode. The
equations of the model are:

τaȧ = a∞(s · d · a)− a,

τdḋ = d∞(a)− d,
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τsṡ = s∞(a)− s.

The products · d gives the available synaptic efficacy or fraction of synapses
not affected by depression. It has one component (d) that changes on a faster
time scale, and the other components that is very slow. The functionsd∞ and
s∞ are depression (turn-off) functions or efficacy recovery functions; they are
sigmoidally decreasing with a from 1 to 0. The parameters of the model can be
found in [65].

To understand the behavior of the model we first treat the slow variables as
a parameter and study thea − d dynamics. We would like to design the two-
dimensionala− d system in such a way that at low values of the parameters the
solution rests at a low-activity steady state (inter-episode interval), and for high
s the solution oscillates (episode). Moreover, there needs to be an overlap (bista-
bility) between oscillation and the steady state so thats can provide transition
from one to the other.

For a range of values ofs there is a limit cycle oscillation in thea − d plane.
It originates because the recurrent excitationa provides the autocatalysis and
d provides a delayed negative feedback. As activity grows, synapses start to
depress, and eventually the depression reduces the activity. Asa is reduced,d
starts to recover and allowsa to grow again, repeating the cycle (see Fig. 21A).
If s is small, then there is only one stable steady state in thea − d plane at low
values ofa. However, it is possible to choose parameters in such a way that
there are three steady states, only the one with lowesta is stable, and there is a
small stable limit cycle around the upper one (Fig. 21B). Figure 22A shows the
bifurcation diagram of the system withs as the bifurcation parameter. We can
see that there is a region of bistability, and ass decreases the cycle disappears in a
homoclinic (saddle-loop) orbit. Now we can design the s dynamics in such a way
that if a is small,s slowly increases, and whena is at higher values (as during
the oscillation)s slowly decreases. Figure 22B shows the full model generating
the rhythmic spontaneous activity.

5.3. Predictions of the model

The model predicts that a brief perturbation should bring the network from one
steady state to the other, i.e. terminate or start an episode. Moreover, the bifur-
cation diagram in figure 22B predicts that if the perturbation is delivered early
in the silent phase, then the following episode will be shorter, if the perturbation
is delivered late in the silent phase the episode will be longer. This prediction
has been confirmed experimentally [64]: there is a correlation between the time
since the previous episode and the length of the next episode. The correlation
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is the same for both spontaneous and evoked episodes. This confirms that the
termination of the episode is well-determined. On the other hand, no correlation
has been found between the duration of the episode and the following silent inter-
val, suggesting that stochastic effects influence episode initiation (for example,
spontaneous synaptic release may cause some cells to fire, thereby triggering an
episode).

The model also predicts the effects of pharmacological agents that alter the
effective network connectivity. To to do that we re-introduce the synaptic efficacy
n:

τaȧ = a∞(n · s · d · a)− a.

Synaptic blockers in the model have the effect of reducingn. Experimentally
it was found that when some of the synapses are blocked, the network exhibits
a prolonged silent phase and then settles into a slower rhythm (Fig. 23A). To
explain this in the model let us calls̄ = n · s. The fast subsystem is bistable over
a particular range of̄s values. Ifn is reduced the range ofs in which oscillations
exist moves to higher values ofs. Therefore, just aftern is decreased, initially the
network must collapse to the silent state (as this is the only attractor at that value
of s̄). Before an episode can starts has to recover to a much higher value than
before. This leads to a very prolonged first silent phase. Moreover, whens settles
into its new range of operation the silent phase is now closer to thes-nullcline,
which makes the rhythm’s period longer.

The simulation of pharmacological manipulation of synapses was originally
done to distinguish between a model that we just presented and one with a spike
frequency adaptation instead of a synaptic depressions. The spike frequency
adaptation model assumes that if a cell is active, then more and more input is
needed to keep the activity at the same level. It is modeled by

a∞(input) = a∞(input− θ),

and the thresholdθ slowly increases witha:

τθ θ̇ = θ∞(a)− θ.

It is found that for theθ-model, in contrast to thes-model the rhythm’s period ac-
tually becomes shorter as connections are blocked and the length of each episode
also significantly decreases (Fig. 23B). Experimental data agreed with predic-
tions of thes-model. This favored synaptic depression as the proposed mecha-
nisms for spontaneous rhythm generation in the embryonic spinal cord.

Recent experimental data [9] show that the reversal potential forCl−oscillates
slowly in phase with the episodic rhythm. This variation contrasts with what
is usually assumed, that for firing on short time scales the Nernst potentials for
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Fig. 23. Effect of a reduction of connectivity.A: Experimentally the connectivity is reduced by
application of a synaptic blocker, NMDA-receptor antagonist, (adapted from Fig. 11 in [65]), after
which there is one very long inter-event interval and then rhythm settles to a new (slower) period.B:
Simulation results analogous to experiments in A fors-model andθ-model.

various ion species remain approximately constant. Such a slowly oscillatingVCl

could provide a specific mechanism for slowly modulating the GABA-mediated
synaptic current, thereby a biophysical realization of the phenomenologicals-
variable in the model above. Thus,Cl−handling dynamics have been introduced
into the model (not shown here) as a specific mechanism for slowly modulating
the GABA-mediated synaptic current. Synaptic activity and currents are strong
during an episode leading to slow and considerable efflux ofCl−. Consequently
VCl slowly declines, making the GABA-synapses less ”functionally excitatory",
eventually terminating the episode. In the interepisode intervalCl−efflux is very
small and cloride pumps are able to slowly restoreVCl so that a new episode can
eventually begin.

6. Chapter summary

We have offered here an introduction to some concepts and techniques of dy-
namical systems theory that we and others have used to gain insight into neu-
ronal dynamics. Our examples are illustrative of a variety of nonlinear behaviors
including bifurcations, multi-stability, oscillations (tonic and bursting), and ex-
citability primarily in the context of individual neurons. We have used reduced
modeling formulations, fast-slow dissections, branch-tracking methods, phase
plane geometrical treatments, stability analyses, and rapid equilibrium assump-



Understanding neuronal dynamics by geometrical dissection of minimal models51

tions to gain insight into these behaviors. By applying these approaches to for-
mulate and dissect a model of episodic rhythmicity in developing spinal cord you
can see how one could analyze and understand mean field (firing rate) models
for networks. We have restricted our attention to point models (non-distributed
systems), neglecting the effects of cable properties of axons and dendrites at the
cellular level and of spatial extension in networks of neurons. These latter con-
siderations are important and mathematical treatments of the partial differential
equations or integro-differential equations (say for networks, where cell coupling
is handled by convolution integrals with kernels that represent synaptic weight-
ing/footprints) involve the above and other techniques (some review is provided
in [20]).

There are many other dynamical phenomena that we have not addressed in-
cluding the effects of stochastic fluctuations, intrinsic to a cell or to synapses, or
due to network sparseness and complex dynamical states (e.g., see [41, 44, 67]).
We have focused on reduced models but yet have by-passed the historical liter-
ature having to do with non-continuous models like integrate-and-fire (see [67])
and modern, more general, formulations (e.g. [26]). We have not considered
models of synaptic plasticity, in the sense of learning, which seem like natural
candidates for fast-slow treatment.

We close by reiterating a primary take-home message: that in many of the
continuous models excitability and oscillations are realized mechanistically by
fast autocatalytic/regenerative processes and slower negative feedback. The for-
mer at the cell level are usually due to rapidly activating inward currents (due
to Na+and/orCa2+) and the latter to slower activating outward currents (K+) or
slower inactivation of inward currents. At the network level recurrent excitation
may be the autocatalytic process and synaptic depression is just one candidate
for negative feedback.

6.1. Appendix A. Mathematical formulation of fast-slow dissection.

In order to describe the mathematical approach more systematically we imagine
exaggerating the time scale differences in the Hodgkin-Huxley equations and
introduce a "small" parameterε to carry out this process. For simplicity we will
again assumea priori thatm is still much faster thanV so thatm = m∞(V ) is
a valid idealization. Now, restating explicitly thatV andm are fast relative toh
andn we write the equations as follows:

εdV/dt = [−Iion(V, m∞(V ), h, n) + Iapp]/Cm,

dh/dt = φ [h∞(V )− h] /τh(V ),
dn/dt = φ [n∞(V )− n] /τn(V ).
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In this formulation ifh andn vary on the time scale of msec thenV (m as well)
varies with an effective time constant of orderε. The upstroke and downstroke
will occur very rapidly. In the limit, withε very small, these phases appear almost
as jumps. In order to describe these 2 fast phases (cf, Fig. 3A) we must stretch
the time variable and look at the dynamics "inside" this time window. So we let,
s = t/ε be the stretched time variable. Rewriting the equations in terms ofs we
get:

dV/ds = [−Iion(V,m∞(V ), h, n) + Iapp]/Cm,

dh/ds = εφ [h∞(V )− h] /τh(V ),
dn/ds = εφ [n∞(V )− n] /τn(V ).

Now to get this "inner" solution we setε = 0 and find that, on the fast time scale,
h andn are constant (say, equal toh0, n0, respectively), according to the second
pair of equations below:

dV/ds = [−Iion(V,m∞(V ), h0, n0) + Iapp]/Cm,

dh/ds = 0,

dn/ds = 0.

This, of course, is just the mathematical expression of what we did for phases 1
and 3 in Section 2.3.2. Withh0, n0 set to their resting values the equation forV
is just the 1st order equation satisfied by the upstroke in this approximation when
ε is small. Now to describe the solution during the plateau and recovery phases
we look on the unstretched time scale, return to the first equation and setε = 0
there to get:

0 = −Iion(V, m∞(V ), h, n) + Iapp,

dh/dt = φ [h∞(V )− h] /τh(V ),
dn/dt = φ [n∞(V )− n] /τn(V ).

Here,V corresponds to an instantaneous crossing byIinst(V ) of the levelIapp,
i.e. to a zero crossing ofIinst(V ) if Iapp = 0. Of course there are in general,
for the Hodgkin-Huxley equations, up to 3 such crossings (recall, R,T and E) and
theseV -values depend onh andn. Meanwhileh andn evolve according the 2nd
and 3rd equations with, say during the plateau phase,V = VE(h, n). Geomet-
rically, the first equation defines a surface inV, h, n space; a multi-valued and
folded surface with (ifV is the vertical direction)VE the upper branch,VR the
lower branch, andVT the middle branch. During the plateau the trajectory drifts
along the surface’s upper branch, until it reaches the ”fold" whereVE andVT co-
alesce. This is when the downstroke occurs. Then, because the trajectory leaves
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the upper branch of the surface, we must revert to the fast time scale, stretch it,
and capture the inner solution (the time course ofV on the fast time scale of the
downstroke) by switching to the fast equations withh, n held at their values when
the fold is reached:h = hdown andn = ndown. Then, having described the tran-
sition of V from the fold down toVR(hdown, ndown), the trajectory drifts along
the surface’s lower branch according to the slow equation as the solution returns
to rest, say ifIapp = 0. If Iapp is positive and large enough then the ”rest" state
does not lie on the lower surface but rather on the middle surface, in which case
the trajectory reaches the knee of the lower surface and another upstroke occurs.
This process continues, cycle after cycle, converging towards the periodic orbit
of repetitive firing.

The procedure that we have described here is just the lowest order approxi-
mation to a series expansion of inner and outer solutions in the technique called
matched asymptotic expansions (see, e.g. [37]).

6.2. Appendix B. Stability of periodic solutions.

Here we discuss how one can determine the stability and characterize bifurcations
of the limit cycles. The idea is to reduce the problem to consideration of stability
of a fixed point of a special map, called the Poincare map (see, for example
[62,71]). Let us first define this map. Suppose we have a system

ẋ = f(x) (6.1)

and this system has a closed orbit (periodic solution)p(t). Let us choose a plane
S transversal to the vector field of the solutions in the neighborhood of a point
p∗ on the periodic solutionp(t), i.e. such that any solution that starts on the
plane has to come out of the plane, not along it. Then consider the mappingP
in the neighborhood ofp∗ in the plane defined in the following way. For every
point x0 consider the solution that starts atx0 and trace it until it hits the plane
again. The pointx1 at which the solution hits the plane is the image ofx0 under
P : x1 = P (x0). This map is the Poincare map. A closed orbit of the original
system corresponds to a fixed point of the Poincare map:p∗ = P (p∗). Now we
can consider its stability. Let us choose a small perturbation from the fixed point,
such that it still lies in the planeS: x = (p∗ + v) ∈ S, and then look at its image
underP and the deviation of the image fromp∗:

p∗ + v1 = P (p∗ + v) = P (p∗) + [DP (p∗)]v + O(||v2||),
whereDP (x) is the Jacobian matrix ofP , called the linearized Poincare map.
Remembering thatp∗ = P (p∗), and using linear approximation, we see that

v1 = [DP (p∗)]v.
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The stability of the solution is now determined by the matrixDP (p∗):
The closed orbit is linearly stable if and only if all eigenvaluesσj of DP (p∗)
satisfy|σj | < 1.
Intuitively, the condition|σj | < 1 assures that at every iteration ofP the deviation
from the fixed point decreases. The quantitiesσj are called Floquet multipliers.
Notice thatP operates in the subspace transversal to the solution vector field. If
one also considers perturbations along the periodic solution, for the autonomous
system the corresponding eigenvalue will always be equal to 1. This is due to
the time-invariance of the solutions of the autonomous system: a perturbation
of the solution along the periodic orbit does not alter the solution. For more
rigorous mathematical discussion the reader is referred to the dynamical systems
literature, for example [10,62,71].

In practiceP (x) andDP (x) are usually hard to compute. To avoid it, instead
of considering the perturbed solutions on their return toS, one can consider the
perturbed solutions at timeT , whereT is the period ofp(t) (see e.g. [10]). This
gives a new mappingP ′ that takes a neighborhood ofp∗ in S to a surfaceS′

which intersects withS atp∗. To characterize the linear approximation ofP ′ we
linearize the original equation 2.1 aroundp(s):

ẋ =
∂f

∂x

∣∣∣∣
p(s)

x,

then consider a set of solutions with initial conditionsX(0) = I (identity ma-
trix), and their image underP ′, X(T ). For stability of the pointp∗ and conse-
quently the periodic solutionp(s), eigenvalues ofX(T ) and ofDP (p∗) provide
equivalent information under the same technical conditions that allowP to be
well-defined.

Coming back to the Hodgkin-Huxley equations, let us write them in the form

ẏ = f(y; Iapp),

wherey(t) corresponds to the column vector(V, m, h, n)t and assume that there
is a periodic solutionp(t), stability of which we would like to compute. Linearize
the equations aroundp(t):

ẏ =
∂f

∂y

∣∣∣∣
p(t)

y. (6.2)

The Floquet multipliers can now be found by numerical integration of 6.2
with conditionY (0) = I and computation of the four eigenvalues ofX(T ). This
was first done for the Hodgkin-Huxley equations in [57], where they also studied
dependence of periodic solutions on temperature (see Section 2.4.2) . It was also
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shown [57] that for some parameter values (e.g. at temperatureTemp = 6.3◦C)
Floquet multipliers cross the unit disk atσ = −1, which gives birth to secondary
(unstable) periodic orbits in a period-doubling bifurcation [71].

References

[1] Adams W.B and Benson J.A. (1985) The generation and modulation of endogenous rhythmic-
ity in theAplysiabursting pacemaker neurone R15,Prog. Biophys. Mol. Biol., 46: 1-49

[2] Alving B. (1968) Spontaneous activity in isolated somata of Aplysia pacemaker neurons,J.
Gen. Physiol., 51: 29-45

[3] Bertram R., Butte M.J., Kiemel T., and Sherman A. (1995) Topological and phenomenological
classification of bursting oscillations,Bull. Math. Bio.,57: 413-439

[4] Booth V. and Rinzel J. (1995) A minimal, compartmental model for a dendritic origin of
bistability of motoneuron firing patterns,J. Comp. Neurosci., 2: 299-312

[5] Butera R.J., Rinzel J., and Smith J.C. (1999) Models of respiratory rhythm generation in the
pre-Botzinger complex: I. Bursting pacemaker neurons,J. Neurophys., 82: 382-397

[6] Canavier C.C., Clark J.W., and Byrne J.H. (1991) Simulation of the bursting activity of neu-
ron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters.J.
Neurophysiol., 66: 2107-2124

[7] Chay T.R. and Keizer J. (1983) Minimal model for membrane oscillations in the pancreatic
beta-cell, Biophys. J., 42: 181-190

[8] Chub N. and O’Donovan M. (1998) Blockade and recovery of spontaneous rhythmic activity
after application of neurotransmitter antagonists to spinal networks of the chick embryo.J.
Neurosci., 18: 294 -306

[9] Chub N. and O’Donovan M.J. (2001) Post-episode depression of GABAergic transmission in
spinal neurons of the chick embryo.J. Neurophysiol., 85: 2166-2176

[10] Coddington E.A. and Levinson N. Theory of ordinary differential equations, McGraw-Hill,
New York, 1955

[11] Cole K.S., Guttman R., and Bezanilla F. (1970) Nerve excitation without threshold,Proc. Nat.
Acad. Sci., 65: 884-891

[12] Connor J.A., Walter D. and McKown R. (1977) Neural repetitive firing: modifications of the
Hodgkin-Huxley axon suggested by experimental results from crustacean axons,Biophys. J.,
18: 81-102

[13] Connors B.W. and Gutnick M.J. (190) Intrinsic firing patterns of diverse neocortical neurons,
Trends Neurosci., 13: 99-104

[14] Cook L.D., Satin L.S., and Hopkins W.F. (1991) Pancreaticβ-cells are bursting, but
how?,Trends Neurosci., 14: 411-414

[15] Cooley J., Dodge F., and Cohen H. (1965) Digital computer solutions for excitable membrane
models,J. Cell Comp. Physiol., 66: 99-108

[16] Del Negro, C. A., Hsiao, C.-F., Chandler, S. H., and Garfinkel, A. (1998) Evidence for a novel
mechanism of bursting in rodent trigeminal neurons,Biophys. J., 75: 174-82

[17] Doiron B., Laing C., Longtin A., and Maler L. (2002) Ghostbursting: a novel neuronal burst
mechanism,J. Comp. Neurosci., 12: 5Ű25
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