Sensory decoding models

Eero P. Simoncelli
CNS / Courant

Computational Modeling of Neuronal Systems
Spring, 2010
Stimulus Neural response

“Encoding” Transform and represent sensory information
Stimulus Neural response Behavior

“Encoding” Transform and represent sensory information

“Decoding” Extract encoded information for estimation/decision/action

psychometric function

p(v |v)

P(v > v2)

estimation stage
decision stage
the scientist’s perspective

\[P(\text{spikes} \mid \text{stim}) \]
The organism receives sensory responses, and must make judgements about the stimulus, remember it, or act on it.
• basic SDT
• likelihood from populations
(next week: Movshon lecture)
ML decoding

For neurons with homogeneous tuning curves $f_k(x)$ and independent Poisson spiking, ML gives:

$$\frac{\partial}{\partial x} \log p(N_k|x) = \sum_k N_k \frac{\partial}{\partial x} \log f_k(x) = 0$$
In the special case of Gaussian tuning curves, ML estimate is simply a sum of the peak locations of each tuning curve, weighted by the number of spikes

\[
\hat{x} = \frac{\sum_k N_k x_k}{\sum N_k}
\]
In the special case of von Mises tuning curves (exponential of cosine), ML estimate is angle of a vector computed as the weighted sum of unit vectors in the peak direction of each tuning curve, weighted by the number of spikes

\[\hat{\theta} = \angle \sum_k N_k u_k \]
“vector” decoding
[Kalaska, Caminiti Georgopoulous, 1983]

A sum of vectors, weighted by firing rate, predicts arm movement...
Visual motion

• Physiology: “motion pathway” heavily studied; arguably the strongest extrastriate success story.

• Perception: Human motion perception heavily studied. Humans are adept at tasks which require motion processing.

• Provides a rich source of visual information for prediction, depth perception, material properties, etc [Gibson, 1950]
Optic flow

[Gibson, 1950]
Fig. 1. Three different motions that produce the same physical stimulus.

Note that in all three cases the appearance of the moving grating, as seen through the window, is identical: the bars appear to move up and to the left, normal to their own orientation, as if produced by the arrangement shown in Fig. 1A. The fact that a single stimulus can have many interpretations derives from the structure of the stimulus rather than from any quirk of the visual system. Any motion parallel to a grating's bars is invisible, and only motion normal to the bars can be detected. Thus, there will always be a family of real motions in two dimensions that can give rise to the same motion of an isolated contour or grating (Wohlgemuth, 1911, Wallach, 1935; Fennema and Thompson, 1979; Marr and Ullman, 1981).

Figure: Movshon, Adelson, Gizzi, Newsome, 1985

“Aperture Problem”
Intersection-of-constraints (IOC)

Fig. 4. A single grating (A) and a 90 deg plaid (B), and the representation of their motions in velocity space. Both patterns move directly to the right, but have different orientations and 1-D motions. The dashed lines indicate the families of possible motions for each component.

[Adelson & Movshon, 1982]
Movshon, Adelson, Gizzi & Newsome, 1985
Visual motion ambiguity
Simple plaid perception = IOC

[Adelson & Movshon, 1982]
Simple plaid perception = IOC

[Adelson & Movshon, 1982]
IOC failure

[Stone et al. 1990]
The “Thompson effect”

Contrast affects perceived speed

[Thompson ‘82]
Helmholtz (1866)

Perception is our best guess as to what is in the world, given our current sensory input and our prior experience [paraphrased]
Helmholtz (1866)

Perception is our best guess as to what is in the world, given our current sensory input and our prior experience [paraphrased]
Helmholtz (1866)

Perception is our best guess as to what is in the world, given our current sensory input and our prior experience [paraphrased]
Bayesian perception

world

measurement

noise!

observer

estimate

memory
Bayesian perception

world

measurement

noise!

memory

observer

\[P(m|v) \]

likelihood

P(m|v)
Bayesian perception

\[P(m|v) \quad P(v) \]
Bayesian perception

world

observer

measurement

estimate

no noise!

prior

probability

P(m|v) P(v)
Bayesian perception

\[P(m|v) \times P(v) \sim P(v|m) \]
Bayesian perception

world

measurement
noise!

observer

estimate

prior

probability

v

\[v \]

\[\hat{v} \]
Bayesian perception

world

observer

measurement

noise!

prior

estimate

probability vs. v

probability vs. \hat{v}
Some Bayesian perceptual models

- Shading/lighting [Kersten 90; Knill, Kersten, Yuille 96; Mamassian, Landy, Maloney 01]
- Motion [Simoncelli 93; Weiss et al. 02; Stocker & Simoncelli 06]
- Surface orientation [Bülthoff & Yuille 96; Saunders & Knill 01]
- Color constancy [Brainard & Freeman 97]
- Contours [Geisler, Perry, Super 01]
- Sensory-motor tasks [Körding & Wolpert 04]
Brightness Constancy

• Assume translational motion (locally)

• Differential approximation (Taylor series)

\[\nabla I \cdot \vec{v} + I_t = 0, \quad \nabla I = [I_x, I_y] \]

• Insufficient constraint, so combine over a neighborhood (space and/or time):

\[\min \sum (\nabla I \cdot \vec{v} + I_t)^2 \]

[Fennema & Thompson ‘79; Horn and Schunck ‘81]
With noise...

• Additive Gaussian noise in temporal derivative:

\[\vec{\nabla} I \cdot \vec{v} + I_t = n \]

• Likelihood (combined over neighborhood):

\[P(\vec{\nabla} I, I_t|\vec{v}) \propto \exp[- \sum (\vec{\nabla} I \cdot \vec{v} + I_t)^2 / 2\sigma^2] \]

[Simoncelli, Adelson, Heeger ‘91]
With prior...

• Simplest prior choice: Gaussian (preference for slow speeds)

\[P(\vec{v}) \propto \exp\left[-||\vec{v}||/2\sigma_p^2\right] \]

• Posterior:

\[P(\vec{v}|\vec{\nabla}I, I_t) \propto \exp\left[-||\vec{v}||/2\sigma_p^2 - \sum(\vec{\nabla}I \cdot \vec{v} + I_t)^2 / 2\sigma^2\right] \]

[Simoncelli, Adelson, Heeger ‘91]
Idealized illustration of ambiguities
Idealized illustration of ambiguities

Bayesian posteriors
(Gaussian noise, Gaussian prior)
stimulus

[Simoncelli & Heeger, ARVO ‘92]
Stone et al. 1990

Model

Subject

Log Contrast Ratio

Perceived Direction Bias (degrees)

[Simoncelli & Heeger, ARVO ‘92]
stimulus

[Simoncelli & Heeger, ARVO '92]
Ferrera & Wilson, 1991

Perceived Speed (relative to IOC)

Plaid angle (degrees)

- Subject2
- Model
- Cosine

[Simoncelli & Heeger, ARVO ‘92]
Stone & Thompson, '90

max contrast 70%
max contrast 40%

Stone et al, '90

Bias(degrees)

Feature motion
Normal motion

Lorenceau et al, '92

Percent correct

Yo & Wilson, '92

Direction (degrees)

Burke & Wenderoth, '93

Judged plaid direction

Bowns, '96

Plaid component separation (degrees)

Percentage in VA direction

[Weiss, Simoncelli, Adelson, '02]
Credits

• Bayesian Plaid motion modeling: Edward Adelson, David Heeger, Yair Weiss

• Reverse-engineered prior/likelihood: Alan Stocker