


How MT cells analyze the motion of visual patterns

Nicole C Rust1,2,4, Valerio Mante2–4, Eero P Simoncelli1,2,5 & J Anthony Movshon2,5

Neurons in area MT (V5) are selective for the direction of visual motion. In addition, many are selective for the motion of complex

patterns independent of the orientation of their components, a behavior not seen in earlier visual areas. We show that the

responses of MT cells can be captured by a linear-nonlinear model that operates not on the visual stimulus, but on the afferent

responses of a population of nonlinear V1 cells. We fit this cascade model to responses of individual MT neurons and show that it

robustly predicts the separately measured responses to gratings and plaids. The model captures the full range of pattern motion

selectivity found in MT. Cells that signal pattern motion are distinguished by having convergent excitatory input from V1 cells with

a wide range of preferred directions, strong motion opponent suppression and a tuned normalization that may reflect suppressive

input from the surround of V1 cells.

Analyzing visual scenes requires the visual system to integrate informa-
tion from many sources. It is widely believed that the complex of visual
areas outside the primary visual cortex (V1) performs such a synthesis,
based on a hierarchical elaboration of the information represented by
neurons in V1 (ref. 1). The analysis of visual motion is a particularly
useful case in point: the computation of complex object motion by
integration of simple object signals has been studied in both experi-
ment and theory2,3.

To analyze visual motion, the visual system first computes the
motion of oriented elements in visual scenes, by filtering the image
in both space and time4. This computation is represented by the
activity of neurons in V1 that are selective for both stimulus orientation
and direction5–7. Knowing the motion of a single component does not,
however, reveal the motion of the pattern containing that component,
because the components of a moving pattern can move in different
directions8. The visual system solves this problem by combining
motion signals from multiple V1 cells to compute pattern motion,
represented by the activity of a population of directionally selective
neurons in extrastriate area MT (V5)2,9,10.

Modeling the computation performed by pattern direction–selective
neurons in MT is a significant challenge. These neurons have nonlinear
response properties that are evident from a comparison of their
responses to single oriented gratings with those to plaids formed
from superimposed pairs of gratings. The motion of a plaid can be
constructed so that it is quite different from the motions of its
component gratings, yet pattern neurons in MTrespond with invariant
tuning to both kinds of pattern. Furthermore, whereas some cells in
MT are ‘pattern direction selective’, others exhibit a range of behaviors
including ‘component direction selectivity’ as seen in V1 (ref. 2). A
satisfactory model would account for this heterogeneity as well as for
pattern direction selectivity in its pure form.

Here, we explored a model in which MT cells linearly combine
signals from V1, which are themselves nonlinear. This is an elabo-
rated form of a linear-nonlinear (‘L-N’) model, of a kind that is
increasingly useful in sensory neuroscience. The power of L-N
models lies in their simplicity, the ease with which they can be
fit to data, and their ability to describe stimulus selectivity for a
wide variety of neurons (see ref. 11). For example, the responses
of V1 cells are well captured by a model that passes a stimulus
through a set of one or more suitable linear filters, followed by
a nonlinearity12–14.

Pattern direction selectivity in MT cells, however, is not a tractable
problem for an L-N model—linear models fail to account for pattern
direction selectivity3,15. Moreover, we know that the V1 cells that
provide inputs to MT are themselves nonlinear, so it is not reasonable
to lump them with their projection to MT into a single linear stage.
However, we do not need to abandon the entire L-N framework,
but instead can evaluate a model in which MT cells are described
by a linear filter that acts on signals from a population of direction-
selective V1 complex cells, rather than directly on the visual
stimulus3,15. The responses of such a cascaded L–N model reflect
both the computations performed by the MT cell and the computa-
tions performed by its afferents. To test this model, we developed a new
technique that allowed us to fit the cascaded L-N model to data from
individual MT cells. We show that the model captures the variety
of response properties observed in MT cells and provides an accurate
and parsimonious account of the motion computations performed
by cells signaling either component or pattern motion. The success of
this enterprise suggests that such cascaded models may prove useful
in accounting for the properties of other sensory neurons that are too
far removed from the input stimulus to be described using more
conventional approaches.
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RESULTS

Pattern and component direction selectivity

The challenge for an MT model can be understood by considering the
responses of MT cells to a set of stimuli consisting of sinusoidal gratings
moving in all directions and all the plaids that can be constructed by
additive combinations of these gratings (Fig. 1a). We measured
direction tuning curves for the responses of cells to gratings and to a
range of possible plaids (shown for two example cells in Fig. 1b). For
the component cell, the functions have two peaks, displaced from one
another by the angle of the plaid; for the pattern cell, all have similar
shapes and preferred directions. These responses are drawn from full
direction-interaction surfaces (shown in Fig. 1c for the same two cells).
These surfaces fully reveal the characteristic differences between com-
ponent and pattern cells. For the component cell, responses are
confined to a plus-shaped locus, representing all stimuli for which at
least one component is a grating moving in a direction close to the cell’s
optimum (here and hereafter rotated to 1801 for clarity). For the
pattern cell, responses are aligned parallel to a line with a slope of –1.
Such a line represents a family of plaids that share an axis of motion but
are composed of different combinations of grating directions (that is,
the family of stimuli in Fig. 1a). The component cell surface is roughly
what one would expect from the additive combination of the responses
to single gratings. The pattern cell surface cannot be approximated by
any additive combination of grating responses. Tracing the loci of
particular plaids across the surface plots reveals that the double peak of
the component cell tuning curves arises as the stimulus crosses the two
arms of the plus, whereas the single peak in each pattern cell tuning
curve corresponds to the unimodal core of the pattern cell’s response
surface (Fig. 1c).

To quantify this behavior, we compared each cell’s plaid responses to
idealized component and pattern predictions, by computing partial
correlations between actual and observed responses2. Figure 2a shows a
scatterplot of these correlations for our cells, transformed to Z-scores

using Fisher’s r-to-Z transformation16. Zp is the figure of merit for
pattern direction selectivity, and Zc is for component direction selec-
tivity. We took the difference between these scores as a ‘pattern index’,
which ranges from negative values indicating component-selective
behavior to positive values indicating pattern-selective behavior. The
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Figure 1 Component and pattern MT cell responses to plaid stimuli. (a) Example plaid stimuli. All plaids were constructed by superimposing two sinusoidal

gratings of equal contrast (contrast ¼ 1/6), moving at the same spatial and temporal frequency. Gray arrows show the motion directions of the two gratings;

black arrows show the motion direction of the plaid8. The angular separation between the two gratings (the plaid angle) is given below each stimulus. When the

plaid angle is zero, the gratings form a single grating with twice the contrast. (b) Direction tuning curves for example component (left) and pattern (right) cells,

collected for plaids with different plaid angles. Each colored tuning curve represents the response to a particular plaid. For the component cell on the left, the

functions have two peaks, displaced from one another by the angle of the plaid; for the pattern cell on the right, all have similar shapes and preferred

directions. Also shown is the half-contrast grating tuning curve (black dotted line). (c) Surface and contour plots of response as a function of the direction of

the two grating components. The colored lines in c indicate the loci of the particular plaids whose responses are shown in the same colors in b. Each direction-

interaction plot is symmetrical about the main diagonal (a plaid constructed from gratings 01 and 1201 gratings is equivalent to a plaid constructed from 1201

and 01 gratings). In the contour plots, contours begin at 20% of the maximum firing rate and subsequent contours indicate 10% increments.
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Figure 2 Quantification of neuronal responses to plaids. We compared each

cell’s response to idealized component and pattern predictions (Methods).

Briefly, the plaid response is quantified by computing the partial correlation

between the actual response of the cell and the component and pattern

predictions and taking its Z-score, Zp and Zc. Component predictions are

constructed by taking the linear superposition of two half-contrast grating

tuning curves shifted by an amount corresponding to the plaid angle and

subtracting the baseline response. For all plaid angles, the pattern prediction

is the half-contrast grating tuning curve. For most cells (n ¼ 39 of 50), Zp

and Zc were computed as the mean Zp and Zc for 601, 901, 1201 and 1501
plaids. For the remaining cells, Zp and Zc are computed based on the

responses to gratings and 1201 plaids. (a) Zp plotted against Zc for 50 cells.

Data for the five cells used as examples in subsequent figures are drawn in

gray. (b) The distribution of the difference between Zp and Zc (hereafter the

pattern index). The center bin of the histogram includes all cells classified

as ‘‘unclassed’’; cells with larger values are classified as pattern direction

selective and cells with smaller values as component direction selective.
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distribution of the pattern index is unimodal (Fig. 2b), suggesting that,
by this measure, MT cells form a single heterogeneous population.

The cascade model

To investigate the computation of component and pattern selectivity in
MT cells, we fit a relative of a previously published model3 to the
responses of individual MT neurons. The model (Fig. 3a) describes how
a stimulus comprised of one or more superimposed gratings is trans-
formed into the firing rate response of an MT cell. In the first stage of the
model, the stimulus is passed through a population of directionally
selective V1 neurons with equally spaced preferred directions. We
describe the direction tuning curves of these neurons with a set of
von Mises functions (circular Gaussians) of equal (but unknown) width.
The response of each model V1 neuron is divisively normalized, both by
the summed responses of the V1 population and by their own response
(the latter is equivalent to applying a compressive nonlinearity). Each
element is controlled by a variable that determines the strength of the
normalization. We refer to these as the untuned and tuned components
of normalization. As we consider in the Discussion section, these
components may correspond, respectively, to the suppression that arises
within the receptive fields of V1 cells17 and the suppression from the
surround18. The MT cell then computes a weighted sum of V1
responses; weights can be positive (excitatory) or negative (inhibitory).
The result is then transformed into a firing rate by an instantaneous
nonlinear function that captures the effect of spike threshold and other
nonlinear operations that take place after summation.

To specify the model for each MT neuron, we presented ‘hyperplaids’
made by random combinations of six gratings chosen (with replace-
ment) from a pool of 12 gratings of equispaced directions (Fig. 3b, left
column; Supplementary Video 1 online). Each hyperplaid was dis-
played for 160 ms and was immediately followed by another. Presenting
this random selection of directions in a compound stimulus is akin to
using a random selection of pixel values in a conventional spike-
triggered analysis6. To measure the neuron’s response, we counted the
number of spikes that occurred in a 160-ms window, delayed from the
stimulus transitions to take account of the neuron’s latency (Methods).
We then optimized the model parameters for each cell to maximize the
likelihood of the observed responses. We first selected an initial set of
values for the three V1 parameters and used these to compute the
responses of the V1 population to each stimulus (Fig. 3b, center). We
then determined the MT weighting function by linear regression of the
MT cell’s response against the model V1 responses. This procedure is
similar to reverse correlation procedures that are commonly used to
characterize L-N models. Finally, we recovered the MT nonlinearity,
which describes the relationship between the output of the MT linear
weighting function and the spikes. This process was repeated, searching
over the three V1 parameters and recalculating the MT weights and
MT nonlinearity.

Model predictions of responses to plaids and gratings

We used the optimized model for each cell, without further parameter
adjustment, to predict the results of the independently measured
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Figure 3 The cascade model and its characterization. (a) A stimulus is first passed

through a population of 12 direction tuning curves with direction preferences spaced in

301 steps. The instantaneous response of each V1 neuron is divisively normalized. V1

parameters for each neuron include the bandwidth of the V1 direction tuning curve and

strength of two normalization components, one tuned for direction and one untuned. In

the MT stage, the outputs of the model V1 cells are linearly combined according to the

MT linear weighting function. Linear weights can take on positive or negative values,

corresponding to excitatory or inhibitory influences of the V1 neuron’s response on the MT cell. The signal is then transformed into a firing rate via an

instantaneous nonlinear function. (b) To recover the components of the model, we presented a sequence of stimuli containing random combinations of 6

gratings, chosen with replacement from a pool of 12 gratings drifting in different directions. Arrows indicate the grating components randomly selected on a
particular trial; longer arrows indicate the selection of more than one grating drifting in the same direction. After 160 ms, another set of 6 randomly selected

gratings was immediately presented. The second column shows the trial-by-trial V1 population response to the random grating stimulus. Plots show the

responses of the set of 12 V1 neurons, ordered according to preferred direction. The third column displays a hypothetical spike train of an MT cell in response

to the random grating stimulus. The spikes were shifted by the latency of the cell’s response (Dt) and the number of spikes occurring in a 160-ms bin counted.

We then fit the cascade model to these spike count data, using procedures described in Methods.
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responses to gratings and plaids. Figure 4
shows the actual and predicted responses for
five example cells, ordered from the most
component selective (Fig. 4a) to the most
pattern selective (Fig. 4e). Comparing the
actual responses with the predictions reveals
that the cascade model captures all the main
features of these responses. The model predicts
the plus-shaped direction-interaction surfaces
for the component and intermediate cells
(Fig. 4a–c), and the attenuation or absence
of these responses from the pattern cells
(Fig. 4d,e). The asymmetric component
response seen in some cells (for example, in
Fig. 4b) is correctly captured. The model
predicts the negative-diagonal alignment of
the ‘core’ of the response surface for pattern
cells, which indicates that they respond only to
plaids whose pattern motion direction is simi-
lar to the preferred direction of the cell. Within
this core response, the pattern cells were tuned
for the same direction at all plaid angles and the
direction tuning curves collected at different
plaid angles had the same bandwidth; the cas-
cade model has this behavior as well (Fig. 4d,e).
Finally, the cascade model captures the two
peaks in the surface plot for the intermediate
and pattern cells (Fig. 4c–e); these indicate a
more vigorous response to some plaids than to
preferred gratings of the same contrast.

We then compared the pattern index
observed for each of our cells with the index
predicted by the cascade model (Fig. 5). As
suggested by the examples (Fig. 4), the cascade
model is a good predictor of the full observed
range of selectivity for pattern motion.

Recovered elements of the cascade model

The success of the cascade model’s predictions
suggests that this relatively simple model cap-
tures the computation of pattern motion by
MT cells, and also the variety of behaviors
shown by different cells. Which aspects of the
model determine where a cell will fall on the
continuum from component to pattern selec-
tivity? We examined the internal elements of
the recovered cascade model (Fig. 6) for our
five example cells. The direction tuning curves
(first column) indicate the selectivity deter-
mined by the model for the V1 stage. We
visualize normalization strength (second col-
umn) as a function of the direction of a grating
for a cell preferring 1801, and resolve it into an
untuned component (dashed line) and into
the contributions of both the tuned and untuned components together
(solid line). We also obtained the recovered MT linear weighting
functions for each cell (third column) and the output nonlinearities
for the MT stage (fourth column).

Comparison of the models for the different cells (Fig. 6) suggests
that some elements of the cascade model covary with the pattern
index. The tuning bandwidth of the V1 input cells shows no consistent

covariation with the pattern index (Fig. 6, first column). The overall
strength of normalization at the preferred direction does not
vary systematically across the example cells, but the relative strength
of the tuned component of normalization increases with pattern index
(Fig. 6, second column). The distribution of the excitatory MT linear
weights is narrow for component cells, and becomes broader and
develops more profound inhibition for cells with higher pattern index
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Figure 4 Comparison of actual and model-predicted responses to plaids for five example cells. (a–e)

Neurons are ordered according to their pattern index, from the most component-like (a) to the most

pattern-like (e). The first column shows the actual responses of the cell to gratings of 1/6 contrast (blue)

and 1201 plaids (red). The second column shows the direction-interaction surface. Here and hereafter,

response magnitude for the direction-interaction surfaces is indicated by a combination of a gray-level

image whose lightness indicates response and a set of overlaid contour lines. The right two columns

show the responses predicted by the cascade model. The cell whose data are shown in a is the example

component cell shown in the left column of Figure 1b,c. The cell whose data are shown in e is the

example pattern cell shown in the right column of Figure 1b,c. In columns 2 and 4, the lowest contour

corresponds to 20% of the difference between the minimum and maximum firing rates, and subsequent

contours correspond to increases of 10%.
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(Fig. 6, third column). Finally, the MT nonlinearity seems similar
across all the examples (Fig. 6, fourth column).

We examined the variation of model parameters with pattern index
for the population. Three parameters determine the properties of the
V1 stage (Fig. 7a–c); the other two represent the fractions of the V1 cell
population that send strong excitatory and inhibitory weights to MT
(Fig. 7d,e). Inspection of these scatter diagrams suggests that three of
the parameters—the V1 tuned normalization
component (Fig. 7c) and the MT excitatory
and inhibitory weights (Fig. 7d,e)—are
related to the pattern index. We used multiple
linear regression to establish the reliability of
these correlations. The five model parameters

together account for 58% of the variance in the pattern index. The most
significant predictors were the fraction of excitatory (Po 0.0001) and
inhibitory (P ¼ 0.004) weights. The strength of tuned normalization
approached, but did not achieve, significance as a predictor
(P ¼ 0.069), and the V1 bandwidth and untuned normalization
showed no reliable relationship with the pattern index (P ¼ 0.286
and P¼ 0.686, respectively). When we restricted the regression analysis
to the three V1 parameters (Fig. 7a–c), they accounted for 17% of the
variance (a significant fraction: P ¼ 0.033), with the strength of tuned
normalization being the only individually significant predictor
(P ¼ 0.023). We did not observe a systematic relationship between
the pattern index and any aspect of the nonlinear function that converts
the output of the MT linear stage into a firing rate (data not shown).

We conclude that, in a statistical sense, variations in the distribution
of the feedforward MTweights in the model carried the greatest weight,
but that variation in the parameters of the V1 stage made a significant
contribution to the model’s ability to account for the range of behavior
of MT cells.

The increase in the fraction of excitatory weights with the pattern
index (Fig. 7d) suggests that the convergence of excitatory input from
V1 cells of different direction preference increases systematically with
the pattern index. Consistent with this, we found a positive correlation
between direction bandwidth and pattern index for a population of MT
cells recorded in this laboratory for a different study (r¼ 0.38, n¼ 183,
P o 0.0001). The nature of V1 normalization signals also varied with
the pattern index: pattern cells relied on a stronger tuned normalization
signal in their inputs from V1 than did component cells (Fig. 7b,c).
Although the distribution of excitation and inhibition differed for
component and pattern cells, there was no consistent variation in the
total strength of the inhibitory input with pattern index (data not
shown). This suggests that inhibition is an important factor in
determining the responses of all MT cells.
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Figure 6 Recovered models for five example MT

neurons, corresponding to the same cells whose

data are shown in Figure 4. (a–e) The first column

shows the prenormalized direction tuning curve

for the V1 neuron with a 1801 direction

preference (all V1 neurons have the same

direction tuning bandwidth). The next column

illustrates the strength of the normalization signal,

ranging from 0 (no normalization) to 1 (maximal

normalization). Solid lines indicate the strength

of the concatenated tuned and untuned

normalization components (a1 + a2, Methods).

Dashed lines indicate the normalization strength

for the untuned normalization component alone

(a2). The third column illustrates the MT linear

weights recovered for each cell. The final column

shows the nonlinear function that converts the
output of the MT linear weights into a firing rate

response. The dots indicate computed, binned

values for illustration purposes; the dark line

indicates the exponential function that was fit to

the unbinned data points (Methods). An MT linear

output of zero corresponds to balanced excitatory

and inhibitory input to the cell.
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Inspection of the standard deviations (error bars in Fig. 7) of
bootstrap estimates for the model parameters for each cell (Methods)
reveals that the parameter values chosen by the model are well
constrained by the data. We also asked whether each element of the
V1 stage of the model was needed to account for MT response
properties. We constrained each model parameter in turn (by fixing
the V1 bandwidth at an average value, by removing the untuned
normalization, by removing the tuned normalization, and by removing
the normalization altogether) and fit each constrained model to the
data for all cells. Each constraint decreased the quality of the fit for a
majority of cells—the constrained models were unable to capture the
full range of variation in the behavior of MT cells.

How the cascade model computes pattern motion

To understand how the different factors in the cascade model combine
to create pattern direction selectivity, we examined the direction-
interaction surfaces at partial stages of the computation (Fig. 8a–e).
The response surface for an un-normalized V1 cell—a simple motion
energy detector4—has the basic ‘plus’ configuration of component cells
and varies only in breadth of tuning (shown by the thickness of the
‘arms’: Fig. 8a–e, first column). When the two normalization compo-
nents are included in the V1 response (Fig. 8a–e, second column), the
peak response at the intersection of the plus—the response to a double
contrast grating drifting in the preferred direction—is reduced relative
to that at the arms (which contain one grating drifting in the preferred
direction and a second in a different direction). The difference in the
two sets of plots (column 1 versus column 2) can be attributed almost
entirely to the tuned normalization component—the untuned
component primarily rescales the response. Note that although this
saturation in V1 is crucial in conferring the response properties of
MT cells (see also Fig. 8f), normalization in V1 does not by
itself produce pattern-like behavior at the V1 stage. The distribution
of excitatory weights in the forward projection to MT also influences
the response (Fig. 8a–e, third column). The plus configuration can
still be discerned in all five plots, but the broad tuning of the
pattern cells (Fig. 8d,e) shows where the core of the final response
surface will lie. Adding the inhibitory weights in the forward projection
to MT further shapes pattern selectivity (Fig. 8a–e, fourth column).
This has little influence on the shape of the response surface in
the component and intermediate cells (Fig. 8a–c), but attenuates
or abolishes the arms of the plus in the pattern cells, more or
less strictly confining responses to the central region of the direction-
interaction surface.

The role of normalization in V1 in conferring the response
properties of MT pattern cells is not easily seen in this representation.
We therefore explored (for the example cell of Fig. 8e) a different
dissection designed to illustrate the contribution of each of the
three factors that determine pattern direction selectivity (Fig. 8f).
The excitation that arises jointly from the un-normalized V1 tuning
and the convergence of excitatory feedforward projections together
combine to give the range of excitatory input for the cell (first column).
The inhibition creates selectivity for preferred plaids by eliminating
responses to plaids moving in other directions (second column).
This tuning surface shows many of the characteristics of pattern cells,
but crucially fails to be invariantly tuned for direction—observe,
for example, that tuning for gratings (along the unity diagonal) is
broader than tuning for plaids (along other diagonals). The invariance
is conferred by tuned normalization signals in V1, which have a
negative diagonal structure (third column)—this surface represents
the denominator in the normalization equation. The effect of division
is thus to suppress responses along this main diagonal, reducing
the tuning width for gratings and creating an enhanced response to
plaids over gratings (fourth column). Recall that this normalization
signal within V1 fails to produce pattern-like responses from V1 cells
(Fig. 8a–e, second column), because the tuning bandwidths of
excitation and inhibition in V1 are matched and the normalization
can therefore only modify the height of the response peak, but
not its shape.

DISCUSSION

MT cells respond selectively to the direction of moving stimuli. Some
respond selectively to pattern motion, whereas others represent the
motion of stimulus components. We have shown that this range of
behavior can be captured by a cascade model consisting of two L-N
stages representing V1 and MT. Unlike models of visual processing that
represent the transformations from stimulus to input in a single linear
stage, the cascade model explicitly represents an intermediate non-
linearity that represents the behavior of V1 neurons. The properties of
this nonlinear stage are consistent with the properties of V1 cells that
project to MT (ref. 10), and the model as a whole captures the main
variations in response that are seen in MT cells.

We have also achieved an important practical advance by developing
a new method to fit the cascade model to data from individual neurons.
A number of other researchers have developed methods to fit L-N
models to the outputs of a preprocessing stage based on spectral
energy19–21, but these are limited by the preprocessing stage, whose
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Figure 7 Relationship between the recovered cascade model parameters and pattern index. (a) The V1 direction tuning curve bandwidth, before normalization.

The break in the axis indicates the model V1 cells whose tuning bandwidths are narrower than the resolution tested by these experiments and thus

unconstrained by the fit. (b) Strength of the untuned normalization signal, measured by the fit weight a1 (Methods). (c) Strength of the tuned normalization

signal, measured by the fit weight a2 (Methods). (d) The fraction of robustly excitatory weights in the recovered MT linear weighting function (those that

exceeded 20% of the peak recovered weight). (e) The fraction of robustly inhibitory weights in the recovered MT linear weighting function (those whose

magnitude exceeded 20% of the peak recovered weight).
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form is fixed. Our model is of course also limited, but we tried to ensure
that our preprocessing stage reflected the behavior of direction-selec-
tive V1 complex cells as accurately as necessary, by including two forms
of divisive normalization in the preprocessing. More significantly, we
did not assume a fixed form, but explicitly fit the properties of the
preprocessing stage in recovering the model. This had a considerable
impact on our conclusions—analysis showed that variations in the
properties of MT neurons depend importantly on the particular
properties of the neurons that provide their inputs. For example,
analysis of the cascade model confirms an earlier proposal15 that the
tuned component of V1 normalization is essential for generating the
pure form of pattern direction selectivity (Fig. 8f).

Interpreting the cascade model

What physiological mechanisms do the ele-
ments of the cascade model represent?
Throughout this paper, we have freely used
terms with specific anatomical and physiologi-
cal meanings to name elements of the cascade
model. And yet our model is, at heart, a
functional model that does not aspire to com-
plete anatomical and physiological accuracy. It
is rather intended to capture, in the least
complex possible way, the essential neural
computations that lead to the observed selec-
tivity of MT cells.

The first stage of the model is of V1. Its
essential elements—direction selectivity and

normalization—are well-known characteristics of V1 neurons, and we
have made the model faithful to these properties of V1 cells. But we
simulate V1 with only 12 neurons, which represent the many thousands
of V1 neurons that project to any particular site in MT (ref. 22). We also
recognize, of course, that MT receives inputs from other cortical areas,
notably V2 and V3, as well as from a number of subcortical sources22,23.
Little is known about the properties of these input neurons, though
neither in V2 nor in V3 is pattern direction selectivity more prevalent
than in V1 (refs. 24,25). Moreover, it seems that most or all nonstriate
inputs to MT depend on V1 for their function26,27, suggesting that
encapsulating all our inputs in a V1 stage is not unreasonable. We also
recognize that some of the properties important to the creation of
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Figure 8 Dissection of the elements of the

cascade model that create particular kinds of

selectivity for the motion of plaids. (a–e) Each

column shows the direction-interaction surface

response at one stage of the cascade model, for

the same five example cells of Figures 4 and 6,

ordered by pattern index. The first column shows

the response of a version of the V1 stage of the
model, without normalization, equivalent to the

square root of the response of an energy model4.

The second column shows the response of the V1

stage when normalization is included. The third

column shows the response that would be

obtained if this V1 stage projected to the MT stage

using only the excitatory feedforward weights. The

fourth column shows the effect of adding the

feedforward inhibitory weights. The full model

predictions (which differ from the fourth column

by the addition of the MT nonlinear processing

stage) are shown for these cells in Figure 4.

(f) Plots illustrating the role of V1 normalization in

the computation of pattern motion for the fifth

example cell. The first panel shows the combined

effects of the V1 tuning bandwidth and the

distribution of MT excitatory weights, without

normalization. The second panel demonstrates the

effect of including the MT inhibitory weights. The
third panel illustrates the distribution of the V1

normalization signal across the direction-

interaction surface. The final panel shows the

effect of adding the normalization signal at the

V1 stage. This is like dividing the response due

to convergent excitation and inhibition (panel 2)

by the normalization signal (panel 3). Only in

this final panel is direction-invariant pattern

selectivity seen.
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pattern direction selectivity that we attribute to V1 may be represented
even more strongly in other extrastriate areas providing input to MT.

We attribute two normalization mechanisms to V1, an untuned
component that is widely accepted17,28,29 and a tuned component that
may seem unfamiliar. Each has an important role in the cascade
model’s account of the variation of properties among MT cells
(Fig. 6). As a confirmation of the physiological plausibility of our
model, we computed the contrast of a preferred-direction grating that
produced the half-maximal response for each model V1 neuron, as a
measure of the combined strength of the tuned and untuned normal-
ization components. The simulated values fell within the range
previously reported for V1 cells (reported range 0.01–0.4 (ref. 30),
mean 0.193; model values: 0.01–0.26, mean 0.03). We used cross-
orientation suppression to assess whether the relative contributions of
the tuned and untuned normalization components were reasonable.
Cross-orientation suppression is the reduction in response that occurs
when an orthogonal grating is superimposed on a preferred grating. In
normalization models like ours, this behavior arises because the
orthogonal grating reduces the response by adding to the untuned
normalization signal. We quantified this suppression as the ratio
between the response to a plaid and that to a preferred grating.
Simulated values from our model V1 neurons (0.56–1.0, mean 0.90)
matched the range of the values we obtained by analysis of unpublished
data for the cells collected in a study of V1 cells projecting to MT
(ref. 10; range 0.56–1.04, mean 0.79).

We justify the unfamiliar tuned normalization mechanism by recal-
ling that our stimuli were all large, matched in size to the receptive
fields of the MT cells studied. Such stimuli would engage the suppres-
sive surround mechanisms that have been well documented in V1;
these act in a divisive fashion and are selective for both orientation and
direction31,32. Moreover, selective surround suppression is often strong
in directionally selective V1 neurons33. We therefore suggest that our
tuned normalization mechanism represents the action of this surround
mechanism. This interpretation is also consistent with the suggestion
that pattern selective neurons in MT get input from ‘‘end-stopped’’ cells
in V1 (refs. 34–38), because these are the cells with the strongest
surround suppression and our tuned normalization mechanism is
strongest in pattern cells (Figs. 6 and 7).

The feedforward excitation in the cascade model has a direct
interpretation in terms of the projections of V1 cells to MT, which are
excitatory39. The individual direction tuning bandwidths fit to the V1
cells in our model are within the ranges of bandwidths based on data
from antidromically identified MT-projecting V1 cells (fit 10–291; data
11.2–73.81). A robust response to a large angle plaid (for example, 1501)
requires excitatory input in the direction of each of the component
gratings (for example, ± 751). This is not likely to arise from V1 cells
tuned for the cell’s preferred direction, but rather from the convergence
of V1 cells tuned for different directions. However, broadly tuned
excitatory input alone would result in broadly tuned plaid direction
tuning curves, which are not seen in pattern cells. In our model, this is
prevented by strong inhibitory feedforward input, which contributes
directly to pattern selectivity (Fig. 8). As there is no known anatomical
substrate for feedforward inhibition, we must postulate that it arises
either from inhibitory local-circuit neurons in MT or from motion-
opponent inhibition in V1 (N.C.R., N.J. Majaj, E.P.S. & J.A.M., Soc.
Neurosci. Abstr. 657.10, 2002). We did not include directional inhibition
in the V1 stage of the cascade model, and this omission might manifest
itself in a physiologically implausible but functionally reasonable way.

More generally, we included only mechanisms required to predict
the steady-state responses of component and pattern cells to plaid
stimuli, and omitted a number of mechanisms known to exist in both

V1 and MT, including adaptation40, spatial integration (N.J. Majaj,
M. Carandini, M.A. Smith & J.A.M., Soc. Neurosci. Abstr. 674, 1999),
dynamical modulation41 and MT contrast gain control42,43. Our model
here seeks to identify the physiological mechanisms that have a role in
computing pattern motion, without necessarily providing a robust
account of all the response properties of these cells.

Cell classes and model continua

The first accounts of pattern direction– and component direction–
selective cells in MT suggested that the two cell types might be
distinct2,44,45, though the evidence on that issue was equivocal. Viewed
through the lens of the cascade model, we see that the diversity of MT
cell behavior can be captured by a single parametric model, variations
of which generate everything from pure component to pure pattern
selectivity. This unification is reminiscent of recent re-examinations of
the classical distinction between simple and complex cells in V1 (ref. 5).
It emerges that conceptually similar variations in the parameters
of a single underlying model can account for the range of
behaviors from purely simple to purely complex46–48. Such models
serve a valuable purpose in accounting for the range of response
properties in a particular area with a single underlying computational
form. They do not invalidate the idea that separate classes of cells
may be identified on other grounds, such as anatomical location or
projection, but they give support to the idea that seeking a unified
account of the functions of individual cortical areas is a worthy and
attainable goal.

METHODS
Recording methods. We prepared adult macaque monkeys (Macaca fascicularis

and Macaca nemestrina) for recording as described previously32. We main-

tained anesthesia with an intravenous infusion of 4–30 mg per kg (body weight)

per h of sufentinil citrate in lactate dextrose-saline (4–10 ml per kg body weight

per h). We also infused vecuronium bromide (Norcuron, Organon: 0.15 mg per

kg body weight per h) to prevent eye movements. The monkey was artificially

ventilated, and body temperature was maintained with a themo-

statically controlled heating pad. We continuously monitored vital signs

(heart rate, lung pressure, electroencephalogram (EEG), electrocardiogram

(ECG), body temperature, urine flow and osmolarity, and end-tidal PCO2).

Gas-permeable contact lenses protected the corneas, and supplementary lenses

chosen by direct ophthalmoscopy made the retinas conjugate with a screen 80–

180 cm distant. At the end of the experiment, the monkey was killed with an

overdose of sodium pentobarbital, and perfused with 0.1% phosphate-buffered

saline (PBS) followed by 4% paraformaldehyde. Confirmation that recording

sites lay within MT was made through histological identification of electrolytic

lesions in Nissl- and myelin-stained frozen 40-mm sections. We conducted all

experiments in compliance with the US National Institutes of Health Guide for

the Care and Use of Laboratory Animals and with the guidelines established by

the New York University Animal Welfare Committee.

We recorded from well-isolated single neurons in MT with quartz-glass

microelectrodes (Thomas Recording). We identified activity in MT from the

vigorous direction-selective response of isolated neurons and unresolved back-

ground activity. All receptive fields were centered between 21 and 201 from the

fovea. Recorded signals were amplified, band-pass filtered, and fed into a time-

amplitude window discriminator. Spike arrival times and stimulus synchroni-

zation pulses were stored with a resolution of 0.1 ms.

Visual stimulation. Stimuli were presented on a gamma-corrected monitor

with a refresh rate of 100 Hz and a mean luminance of 33 cd m–2. Stimuli

were generated by an Apple Macintosh G5 workstation and presented to each

cell’s preferred eye; the other eye was covered. On encountering a cell, we first

optimized sinusoidal grating stimuli for direction, spatial frequency, temporal

frequency (drift rate) and size. Thereafter, we presented all stimuli at optimal

spatial and temporal frequency within a circular window confined to the classical

receptive field32. All stimuli were presented in randomly interleaved blocks.
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Analysis of neuronal response. To measure visual latency, we presented stimuli

in a continuous stream, in which each randomly selected stimulus was displayed

for 160 ms and was immediately followed by the next stimulus. Responses

to these stimuli were estimated by counting spikes in a 160-ms window shifted

in time from the stimulus stream by the cell’s response latency (Dt, Fig. 3b).

We estimated latency for each cell by choosing the latency that maximized

the modulation of the direction tuning curve, as measured by the variance

of its 12 constituent values16. For the 50 cells reported here, we recovered

latencies of 54–147 ms with a mean of 88 ms. Our latency values were

slightly larger than those reported earlier16 because we used a lower contrast

(0.16 versus 0.5).

To quantify MT cell responses to plaids, we used standard methods to

compute the partial correlation of the actual response to plaids with the

predictions of idealized models of pattern and component direction selectivity

(rp and rc, respectively)2,16. All grating components were displayed at 0.16

contrast. The predicted response of the pattern model was the grating tuning

curve at 0.16 contrast. The predicted response of the component model was

computed as the sum of two direction tuning curves generated in response to a

0.16-contrast grating, each shifted by an amount appropriate for the plaid

angle, with the baseline subtracted. To stabilize the variance of these correla-

tions and to permit us to combine them across conditions, we converted the

values to Z-scores16. For all cells, we computed Zp and Zc—the Z-transforms of

rp and rc—from the responses to gratings and 1201 plaids. For 39 of the 50 cells,

we collected full direction-interaction surfaces like the ones shown in Figure 1c,

and we computed Zp and Zc as the mean Zp and Zc for 601, 901, 1201 and 1501

plaids. We computed a pattern index as Zp – Zc. For model-predicted

responses, we computed the pattern index from Poisson-simulated spike counts

for each trial, with total number of trials equal to the number acquired

experimentally. This ensured that any bias in the pattern index resulting from

trial-to-trial variability was approximately matched for actual and model-

predicted estimates.

To estimate the variability in the pattern index for each cell, we per-

formed a bootstrap analysis49. On each iteration of the bootstrap, we

estimated the pattern index for a set of trials randomly resampled, with

replacement, from the full set of experimental conditions, and equal in number

to the full set. For each cell, we performed 100 such bootstrap estimates

and took the standard deviation of the estimates as the variability of the

pattern index.

To test the cascade model, we fit a simplified two-stage feedforward model to

data from individual MT neurons (Fig. 2a). The model describes the trans-

formation from a stimulus of superimposed drifting gratings (of varying

orientation, but with the same spatial and temporal frequency) into the firing

rate of an MT cell. The model presented is based on a previous model of

motion processing in MT (the ‘‘SH model’’, ref. 3), but differs in several

important ways. First, the SH model is designed to operate on spatiotemporal

image intensities, whereas the current model is restricted to inputs that are

mixtures of 12 sinusoidal gratings of a fixed spatial and temporal frequency.

Second, the SH model includes (untuned) divisive normalization in the MT

stage, whereas the present model has only a static nonlinearity. Finally, the SH

model includes only untuned normalization in V1.

To characterize the model, we used a modified ‘reverse correlation’

approach. We stimulated MT neurons with hyperplaids made from the sum

of six gratings randomly selected (with replacement) from a pool of 12 gratings,

each with a spatial and temporal frequency chosen to match the preferences of

the cell and drifting in 1 of 12 directions. The initial phase of each grating was

randomized. Each hyperplaid was displayed for 160 ms after which the next

stimulus was immediately displayed. Single-frame images of example stimuli

are shown on the left of Figure 3b.

We parameterize the stimulus with a matrix, Sðym; tiÞ; whose ith row is a

vector whose entries indicate the contrast of each of 12 gratings (at orientations

ymÞ that constitute the stimulus displayed during the interval starting at time ti.

These stimuli were first processed with a population of 12 model V1 cells,

each with a direction tuning curve centered on one of the grating directions.

The direction tuning curve for the nth model V1 neuron is described by a von

Mises function:

dnðymÞ ¼ eb�cosðym�pnÞ;

where pn (equal to 30n deg) is the direction preference of the nth model V1

neuron and b controls the the direction bandwidth (common to all model V1

neurons). The direction tuning curves are then normalized to unit area:

dn
0ðymÞ ¼

dnðymÞP
k

dnðykÞ

The trial-by-trial linear response of each model V1 neuron is computed by

taking the inner product of the stimulus and the neuron’s direction tuning curve:

LnðtiÞ ¼
X

m

dn
0ðymÞSðym; tiÞ

This linear V1 response is then subjected to two stages of instantaneous gain

control. The linear responses are squared and normalized by the pooled,

squared linear responses of all cells3,28:

PnðtiÞ ¼
LnðtiÞ2

P
k

LkðtiÞ2 +s2
1

We refer to this as the ‘untuned’ normalization, but this component does in

fact have a small ‘tuned’ component that arises when the fringes of neighboring

V1 tuning curves overlap, thereby contributing doubly to the untuned normal-

ization term15. In our initial explorations of the model, we found that this

untuned normalization stage was not sufficient to account for the plaid

responses of strongly pattern-selective cells. Specifically, a model with only this

form of normalization did not exhibit stronger response to plaids than gratings,

such as seen in Figure 4c–e. We therefore incorporated an additional tuned

normalization component in the V1 response15 via a self-normalization stage

(equivalent to a static nonlinearity):

VnðtiÞ ¼
PnðtiÞ

PnðtiÞ+s2

The tuned and untuned normalization may be combined algebraically to

describe V1 responses as resulting from a single stage of weighted normal-

ization with three positive constants (see also Fig. 5, column 2):

VnðtiÞ ¼
LnðtiÞ2

a1LnðtiÞ2 + a2
12

P
k

LkðtiÞ2 + a3
�L
;

where �L is the mean squared contrast of the hyperplaid stimuli. The response of

a model MT cell is based on a linear combination of the responses of the 12 V1

neurons:

QðtiÞ ¼
X

k

wkVkðtiÞ

Finally, the output of this linear stage is transformed into a firing rate via a

static nonlinear function: M(ti) ¼ f (Q(ti)).

Recovering the cascade model for individual cells. In total, the cascade model

has 17 parameters: 3 V1 parameters, 12 MT linear weights and 2 parameters for

the MT nonlinearity. For each individual cell, we fit these parameters by

maximizing the likelihood of the observed responses. Rather than search over

all the parameters simultaneously, we performed the optimization in a nested

fashion. At top level, we searched over the set of V1 parameters. For each

choice of V1 parameters, we optimized the MT linear weights, and for

the combined choice of V1 parameters and MT weights, we optimized the

MT nonlinearity.

We found it advantageous for fitting purposes to re-parameterize the V1

normalization constants using spherical coordinates:

a1 ¼ cos2ðf1Þ cos2ðf2Þ

a2 ¼ cos2ðf1Þ sin2ðf2Þ

a3 ¼ sin2ðf1Þ+ e
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where f1 represents the elevation and f2 represents the azimuth. The squaring

ensures that all three constants are positive, and the small positive constant

e is chosen to set a lower bound of 0.01 on the semisaturation contrast for

cells in V1.

For each set of V1 parameters, we solved for the MT linear weights wk using

multivariate linear regression (this is equivalent to reverse-correlation after

whitening the V1 afferent inputs to the MT linear stage). Specifically, we

minimized the error expression:

Eð~wÞ ¼ V~w � Rk k2 + l ~wk k2

Here, we use vector/matrix notation: ~w is a vector containing the MT linear

weights wk, V is a matrix whose rows contain the V1 population output at

each time after the mean V1 response is subtracted, and R is a vector containing

the recorded MT responses (spike counts) over time, after subtracting the

mean spike count. The second term is a regularizer, with l a small constant

chosen to avoid instability that could occur when portions of the input space

are not well-covered by the V1 responses (sometimes referred to as ‘‘ridge

regression’’). The optimal linear weights can be computed in closed form using

the expression:

~w ¼ ðVTV +lIÞ21VTR

where T indicates the transpose, –1 indicates the inverse, I the identity.

For the MT nonlinearity, f(), we assumed an exponential form for the

nonlinear function MðtiÞ ¼ AeBQðtiÞ where Q(ti) is the output of the MT linear

stage. A model of this form guarantees that the regression solution used for the

linear weights is also the solution that maximizes the likelihood50. In addition,

we found empirically that an exponential nonlinearity provided a good

description of the data. The parameters [A,B] of the exponential nonlinearity

are chosen to maximize the likelihood of the spiking responses given the MT

linear responses Q(ti).

We used a simplex algorithm (the Matlab function ‘fminsearch’) to search

the space of V1 parameters [b,f1,f2], to minimize the negative log likelihood

(NLL) of the observed responses under a Poisson spiking model with rate

M(ti). Specifically, we minimized the expression:

NLLðb;f1;f2Þ ¼ �
X

i

RðtiÞ logðMðtiÞÞ �MðtiÞ

Although the error surfaces corresponding to different model parameter

combinations were quite smooth, we were concerned that our fits might

converge to local rather than global minima. To reduce this possibility, we

sampled the error surface for each cell in evenly spaced increments and used the

global minimum as the starting point for each search. We also compared this fit

with fits started from three other arbitrarily chosen parameter combinations. Fits

converged to different solutions for only a few cells; in all cases, starting from the

global minimum of the estimated error surface produced the smallest error.

To estimate the variability in the model parameters and predictions resulting

from the fit for each cell, we performed a bootstrap analysis similar to that

described for the calculation of the pattern index. On each iteration of the

bootstrap, we fit the model to a data set resampled, with replacement, from the

original dataset, preserving the total number of trials. We used the fit of the

intact data set as the initial starting point for the fits on each bootstrap

iteration. Finally, we computed the model-predicted pattern index, as described

above, from the simulated data arising from the parameters of each fit. We

performed 500 such bootstrap estimates for each cell and estimated the

variability of each parameter as the standard deviation about the mean.

Note: Supplementary information is available on the Nature Neuroscience website.
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