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Abstract

Over the past half century economists have responded to the challenges of Allais [Eco
rica (1953) 53], Ellsberg [Quart. J. Econ. (1961) 643] and others raised to neoclassicism ei
bounding the reach of economic theory or by turning to descriptive approaches. While both o
strategies have been enormously fruitful, neither has provided a clear programmatic approa
aspires to a complete understanding of human decision making as did neoclassicism. There
ever, growing evidence that economists and neurobiologists are now beginning to reveal the p
mechanisms by which the human neuroarchitecture accomplishes decision making. Although
infancy, these studies suggest both a single unified framework for understanding human d
making and a methodology for constraining the scope and structure of economic theory. I
there is already evidence that these studies place mathematical constraints on existing e
models. This article reviews some of those constraints and suggests the outline of a neuroec
theory of decision.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

The history of economics has been marked by an iterative tension between presc
and descriptive advances. Prescriptive theories seek to define efficient or optima
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sion making which descriptive advances then invariably suggest do not accurately de
human behavior. The neoclassical revolution, and the period that followed it, were n
ception to this general paradigm. Working from the assumption that all of human beh
could be described as a rational effort to maximize utility, the neoclassical theorists l
succeeded in developing a coherent basic mathematical framework. What followe
ginning with the work of scholars like Allais (1953) and Ellsberg (1961), were a s
of descriptive insights which indicated either that humans were poor utility maximize
that the underlying assumptions of the neoclassical revolution were flawed.

Over the last two or three decades economists have responded to the descriptiv
lenge raised by these post-neoclassical studies by adopting one of two basic appr
Either they argue that rational decisions based on utility theory occur only under
conditions and that defining those conditions is of paramount importance (cf. Simon,
1983), or they argue that standard utility theory requires modifications, additions, or
approaches (cf. Savage, 1954; Kahneman and Tversky, 1979). The fundamental p
imposed by bounding rationality is that the resultant models have little or no pred
power outside of their bounded domains. The problem modified utility theories fa
that these newer models often fail to be parsimonious and often appear ad hoc or
constrained.

One recent trend in economic thought may reconcile this tension between pre
tive and descriptive approaches. There is some hope that it may yield an economic
that is both highly constrained and parsimonious while still offering significant predi
power under a wide range of environmental conditions. That trend is the growing in
amongst both economists and neuroscientists in the physical mechanisms by wh
man decisions are made within the human brain. There is reason to believe, some o
neuroeconomicscholars argue, that the basic outlines of the human decision making
tecture are already known and that studies of this architecture have already reveale
of the actual computations that the brain performs when making decisions. If this is
then a combination of economic and neuroscientific approaches may succeed in
ing a methodology for reconciling prescriptive and descriptive economics by prod
a highly predictive and parsimonious model based on the actual economic compu
performed by the human brain.

At this time there are, however, profound differences between the approaches ta
neuroscientists and economists interested in this problem. Neuroscientists tend to u
timate the complexity of actual human decision making and thus fail to take full adva
of the existing economic corpus, studying choice under conditions that economists
see as trivial. Indeed, to economists many of the recent neurobiological studies o
sion making seem to be more about reflexes than about economic behavior. Econ
in a similar way, often employ overly simplistic or outdated notions of brain function
are only weakly related to the modern consensus views held by neuroscientists. A
sult, many neurobiologists dismiss the work of economists as irrelevant to the study
human mind and brain. This often leads members of the larger economic community
ject neuroeconomics as irrelevant to advancing economic knowledge and it leads m
of the broader neuroscientific community to reject neuroeconomics as outdated or

simplistic.
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The primary goal of this paper is to attempt to resolve this discrepancy betwee
nomic and neuroscientific approaches to human decision making by demonstrati
scholars with primary expertise in economics, how neuroscientific experiments can b
as tools for developing real economic theories and models. After a brief introductio
paper reviews a series of empirical studies that many neuroscientists believe desc
basic architecture for decision making in both human and non-human primates. W
from an understanding of this architecture, we next describe an experiment aimed a
ing the neurobiological algorithm for calculating utilities in a two-alternative lottery t
The economic model derived from this physiological experiment is then used to p
the dynamic play-by-play behavior of real subjects engaged in the actual lottery tas
hope that presenting the material in this way will demonstrate that economic theory
used to guide neurobiological experiments which can, in turn, yield new economic
ries.

Along the way, we hope to explain three central points around which future dev
ments in neuroeconomics will likely have to be organized. First, we hope to explain
very profoundly our current neuroscientific and current economic theories of brain
tion differ and how these differences can only be reconciled if economists become fa
with the highly quantitative models of brain function that are at the core of contemp
neuroscience. Second, we hope to stress the importance, to economics, of evolutio
ology. Humans are unique organisms, but there is growing evidence that we are f
unique in the production of economical behavior than most working economists su
For example, monkeys can play mixed strategy equilibrium games with the same effi
as humans (Dorris and Glimcher, 2003) and birds can systematically alter the sh
their utility functions to adopt risk preferences appropriate for their environments (C
et al., 1980). There is now abundant evidence that our own economic behavior is e
from, and very closely related to, the economic behaviors of our animal relatives
may be the most critical point made in this paper because it calls into question the
sive assumption amongst economists that our decision making process is both a u
human faculty and a broadly rational faculty. Third and finally, we hope to show that
roscientific studies of economic behavior can be much more than efforts to locate a
region associated with some hypothetical faculty like ‘justice’ or ‘cooperation.’ Such
ies are valuable starting points, but have troubled some economists because they pro
predictive power with regard to economic behavior. We hope to demonstrate that n
conomic experiments can and will reveal the nature of the economic computations
perform.

1.1. The gap between economic and neuroscientific conceptualizations of the brain

The neoclassical revolution had two profound effects during the second half o
twentieth century: it largely revealed how a rational utility maximizer would behave
essentially proved that humans could not be viewed as efficient utility maximizers
all conditions. This insight led a number of economists, perhaps most notably Herb
mon (1997), to conclude that human decision makers could be viewed as rational
maximizers in only a bounded sense. Conditions do occur under which humans b

rationally but there are also conditions under which humans behave in a clearly irrational
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manner. One result of this insight has been a growing conviction in the economic
munity that human decision making can often be viewed as the product of two unde
processes, a bounded rational process well described by prescriptive economic the
an irrational process which is best described empirically.

During the last decade a number of economists have begun to suggest that the
processes, the rational and irrational, may be instantiated within the human brain
distinct mechanisms. Indeed, many have even suggested that irrational behavior
uniquely attributed to limitations intrinsic to the neural architecture while rational beh
can be viewed as the product of a conscious faculty that somehow transcends this b
cal limitation. Vernon Smith put this in his 2003 Nobel prize lecture, when explaining
irrational effects of context on decision making, “[t]he brain, including the entire ne
physiological system, takes over gradually in the case of familiar mastered tasks an
the equivalent of lightning chess. . . all without conscious thinking by the mind.” Smi
and others have argued that it is the mechanical processes of the brain itself which a
for the irrationality that bounds the rational processes of the conscious mind. Argu
more detail, Camerer et al. (2003) have suggested that human decision-making
viewed as the product of one cognitive and one affective (or emotional) system an
these two systems co-exist as independent entities within the neural architecture b
they have different evolutionary origins. These authors have even drawn on the e
neuroscientific literature to argue that each of these distinct modules for decision m
can be localized to distinct anatomical regions within the human brain. For exampl
suggest that “regions that support cognitive automatic activity are concentrated in th
(occipital), top (parietal) and side (temporal) parts of the brain.”

At the same time that this revolution has been occurring in economic circles,
roscientists interested in human decision making have begun to head in a surpr
different direction. The revolution that gave birth to modern neuroscience in the
part of the twentieth century argued that all of human behavior could be conceiv
as the product of two fundamentally distinct mechanisms: a sophisticated faculty tha
erned complex behavior and a simpler, cruder, mechanism that could produce re
but unavoidably simplistic, behaviors (Sherrington, 1906; Damasio, 1995; LeDoux,
Glimcher, 2003a). This simpler mechanism, which came to be identified with the not
a reflex, was widely believed to be tractable to neurophysiological analysis and form
core of our understanding of brain function during the first half of that century.

During the last several decades, however, ongoing empirical work has begun t
gest to many neuroscientists that this view of the neural architecture is no longer te
More and more biological evidence now suggests to neuroscientists an essentially
view of the neural architecture that is much more deeply rooted in evolutionary theor
this original dualistic conception. What is emerging in neuroscientific circles is the
that a surprisingly holistic (though multi-component) decision making process go
behavior (Parker and Newsome, 1998; Schall and Thompson, 1999; Glimcher, 2
The varied inputs to this decision making process, it is argued, have all been sha
evolution in order to yield a unified pattern of behavior that maximizes thereproductive
fitnessof organisms within the environments in which they operate (Maynard Smith, 1
Stephens and Krebs, 1986; Krebs and Davies, 1991). Evolution makes animals, th

entists argue, fitness maximizers. But critically, evolution performs this role on all parts of
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the organism simultaneously. Evolution yields a unitary organism, the global rationa
which is bounded by the requirements of the environment within which it evolved.

The economic capabilities of humans have, however, led many to conclude th
are fundamentally different from other animals in this regard, that we achieve ratio
through a distinct and uniquely human mechanism than stands apart from the mech
possessed by other animals. The mechanisms that other animals possess may ind
reside within our brains, but it is the irrational aspects of human behavior which
be uniquely attributed to this biological heritage. Quite compelling empirical data a
against this conclusion. First, it now seems clear that even animals with very small
can behave in a surprisingly rational manner under a broad range of conditions. This
to argue against the idea that in order to behave rationally humans would have nee
evolve some unique facility. Second, there is growing evidence that we share with ou
est relatives not just the ability to behave rationally, but we also share with them com
boundaries to our rationality. If this is true then it is both the rational and irrational w
we share with our nearest relatives, challenging the assumption that any of these
of behavior involve some uniquely human process. These data argue, in essence,
differ more in degree than in nature from our nearest living relatives.

1.2. Evolutionary biology and economics: rational choice in simpler brains

In 1982, D.G.C. Harper published an influential experiment on the rationality
which mallard ducks forage for food (Harper, 1982). Mallard ducks were an intere
choice because their avian lineage evolved from dinosaurs about 200 million yea
and thus they are animals with an evolutionary heritage very different from our own
ther, they are animals with extremely small brains, typically less than 5 grams in w
(In contrast, the human brain weighs about 1400 grams.) At an environmental level
ducks live in small groups of about 10–50 individuals and normally obtain food by fo
ing together at waters edge. Finally, as with all animals who must maintain very low
weights in order to fly, they store little energy internally and thus their ability to sur
and reproduce is well correlated with their ability to obtain food on a daily basis; at
amongst flighted birds, individuals who maximize the rate at which they obtain food
day maximize their long-term reproductive fitness (Krebs and Davies, 1991).

Harper’s experiment focused on the behavior of a particular flock of 33 mallard
wintered on the main pond in the botanical gardens of Cambridge University in 1979.
specifically interested Harper was foraging strategies. To examine that possibility, H
conducted a series of group decision-making experiments of a kind that will be fa
to most economists. At the beginning of each day two experimenters would approa
pond, each with a sack of bread-balls all having a particular size and weight. Stand
two separate locations the experimenters began throwing those bread-balls simulta
but at different rates. The job of each duck was simply to decide in front of which
perimenter to stand.On a typical day experimenter 1 would, for example, throw a 2
bread-ball once every 5 seconds while experimenter 2 would throw a 2-gram brea
once every 10 seconds. What Harper would measure was the moment-by-momen
sions of each duck, both while these conditions were held constant and when they ch

during a foraging period that lasted tens of minutes.
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If we treat the situation as a 33-duck Nash-type game and assume that the ducks
a standard concave utility curve for bread-balls, then a single Nash equilibrium em
under these conditions. Taking a locally linear approximation of utility for the rang
bread-ball sizes from 0 to 4 grams, then we can identify the precise Nash equili
and make quite specific predictions about what constitutes rational behavior for the
imals. Under these conditions the expected utility of standing in front of experimen
for any one duck should be equal to the probability of obtaining a bread-ball from
experimenter multiplied by the size of the bread-ball being thrown. If the likelihood
any individual, of obtaining a bread-ball is a linear function of the number of other d
standing before experimenter 1 (and Harper verified that it was) then the expecte
ity (EU) of standing in front of experimenter 1 is proportional to the bread per mi
thrown by experimenter one divided by the number of ducks standing in front of e
imenter one. At Nash equilibrium the EUs of standing before either experimenter
be equivalent, so if experimenter 1 were throwing a 2-gram bread-ball every 5 se
and experimenter 2 were throwing a 2-gram bread-ball every 10 seconds then equi
would be reached when two-thirds of the ducks stood in front of experimenter 1 an
other one-third stood in front of experimenter 2. Equilibrium would occur when the d
were probability matching.

Perhaps surprisingly, Harper found that this very accurately described the be
of the ducks under a wide range of conditions. At all of the rates and bread-ball
Harper explored, within about60 secondsof the start of bread-ball throwing, the pop
lation of ducks had assorted itself out at the Nash equilibrium solution. That mean
they achieved this solution after as few as 6 bread-balls had been thrown by one
experimenters. Further, when Harper and his assistants changed either their rate o
ing or the size of the bread-balls, the ducks re-assorted themselves, once again ach
rational equilibrium within about 60 seconds. The ducks as a group behaved in a pe
rational manner, in a manner that many economists would argue was evidence of a r
conscious process if this same behavior had been produced by humans operatin
simple market conditions like these.

But perhaps just as interesting as these observations on the behavior of the grou
Harper’s observations on how individual ducks behaved. Within the flock ducks ha
established pecking order and conflict between the ducks continually challenges a
news this order. Harper observed that this pecking order was evident within the flo
they foraged. Not all ducks obtained the same amount of bread (the likelihood of obt
any given bread-ball was proportional to rank) and ducks conflicted with each oth
access to the bread. Mechanisms of conflict, aggression and competition were op
while this rational solution was being achieved.

The ducks behaved rationally. Does the fact that it was ducks who behaved in th
make decisions of this type uninteresting to economists or irrelevant to studies of h
choice? Or do these results suggest that the classical models of rationality based in
theory could in principle be used by biologists to study brain function in non-human
mals? If such a study were undertaken could it tell us anything of interest to econo
To begin to answer those critical questions we need to re-examine two final issues
turning to the body of this paper, one issue in economics and one issue in neuros

First, we need to review the development of classical utility theory. Second, we need to ask
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how classical utility theory may be related to the neural architecture for decision m
that exists in animals ranging from ducks to humans.

1.3. Using neuroscience as an economic tool

Modern utility theory has its origins in the theory of expected value first propose
Pascal. He argued that the value of any course of action could be determined by mult
the gain that could be realized from that action by the likelihood of receiving that
This product, which we now call expected value, was presumed to represent a r
decision variable. While Pascal and his colleagues recognized that not all human d
making could be accurately described with expected value theory, they argued t
rational decision making should follow this prescriptive theory (cf. Arnauld and Nic
1996; Pascal, 1966).

By the mid-1700s, however, it was clear that the Pascalian approach did an ext
poor job of predicting human choice behavior under conditions of significant risk. D
Bernoulli made this point in 1738 (see Bernoulli, 1954). “To make this clear it is per
advisable to consider the following example: somehow a very poor fellow obtains a l
ticket that will yield with equal probability either nothing or twenty thousand ducats.
this man evaluate his chance of winning at ten thousand ducats? Would he not be ill-a
to sell his lottery ticket for nine thousand ducats? To me it seems that the answer is
negative.” Bernoulli argued for a model of rational decision making in which the likelih
of a gain was multiplied by the utility, rather than the value, of that gain. His notion
that gains were represented in the decision process by a roughly logarithmic func
value that also incorporated a representation of the chooser’s wealth.

Modern work has, however, made it abundantly clear that this theory also fal
short of the descriptive goal of predicting actual human behavior. For example,
(1953) demonstrated that human choice can be non-transitive, Kahneman and Tver
Kahneman et al., 1982) demonstrated that human choice behavior deviates widel
monotonicity, and most recently game theorists have even shown that under some
tions (cf. Guth et al., 1982) humans knowingly make choices that will result in losses
than gains. All of these experiments point out the limits of classical utility theory as a
for understanding human choice behavior. As a result many economists have propos
decision making is best viewed as involving the interaction of a utility-based mecha
and a second, perhaps less rational, process. The central argument that we will m
this paper is that current neurobiological data contradicts this view and instead su
a model of human and animal decision making more closely tied to the core insigh
Pascal and Bernoulli provided.

Utility theory proposes that decision makers must represent the desirability of
possible course of action using a common scale and that choosing is the process of s
the most desirable of these possible courses of action. Pascal had argued that des
should be computed as the product of value and likelihood of gain. Bernoulli had tak
important step forward by arguing that desirability involved a more complex comput
influenced by properties intrinsic to the chooser, like current wealth. Although Bern
clearly meant utility theory to be an objective and prescriptive model for decision ma

in this regard he came very close to introducing a subjective model (cf. Savage, 1954)
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for the decision making process. In Bernoulli’s model, two variables from the ext
world were modified by processes internal to the chooser and the product of these i
computations, expected utility, was then represented and used to make choices. A
there is still significant uncertainty about the precise form of that internal computa
current neurobiological evidence seems to strongly support this early claim. The bra
primates, almost certainly including humans, appear to represent a complex variable
under many circumstances closely parallels classical expected utility. In the final sta
decision making, the neural architecture seems to select the most desirable actio
amongst representations of the desirability of all available actions by a winner-ta
process.

This model, which will be developed at length below, does however depart from
classical economic theory in an important way. Neoclassical theory has always ma
famousas if argument: it isas if expected utility was computed by the brain. Mode
neuroscience suggests an alternative, and more literal, interpretation. The availab
suggest that the neural architecture actually does compute a desireability for each a
course of action. This is a real physical computation, accomplished by neurons, that
and encodes a real variable. The process of choice that operates on this variable the
to be quite simple; it is the process of executing the action encoded as having the g
desirability. Of course the challenge that this emerging view poses is thus to dete
exactly how this desirability is computed. It is this process which combines eleme
Bernoulli’s utility theory and other operators in an evolutionary context to achieve effi
decision making in the environments for which each species evolved.

While neuroscientists are only just now beginning to describe the computation
transduces objective measures from the outside world into this representation of de
ity, several factors are already becoming clear. First, under many conditions, cond
under which choice appears rational, this desireability encoded by the neurons of th
very closely approximates expected utility. Second, under conditions in which choic
havior is poorly predicted by rational choice models, these neural representation
encode the desireability of each course of action, although under these conditions
ability and expected utility are of necessity not identical. The available data sugge
the neural decision-making process is always rational with regard to these internal
sentations of desireability. When choosers deviate from rationality it is this physiolo
encoding of desirability, which we refer to asphysiological expected utility, that departs
from neoclassical theory.

Together, these observations raise an intriguing possibility which forms a central s
of this paper: the neural architecture may indeed compute and represent the physio
expected utility of many possible courses of action, much as neoclassical utility t
proposes. Evolution may have shaped the neural architecture to perform efficien
der many, but not all, environmental circumstances. When choosers are efficient
economic sense, that architecture accurately represents the expected utility of av
choices. When physiological and objective utility differ, it reflects inefficiency not in
mechanism that chooses, but in the ability of the neural architecture antecedent
choice mechanism to compute physiological expected utilities efficiently. In some
inefficiencies of these types will arise when the most complicated cortical mechanis

estimating likelihoods encounter problems that they did not evolve to solve. In other cases,
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inefficiencies will occur because simpler brainstem systems encounter problems th
did not evolve to solve efficiently. All of these biologically generated inefficiencies w
therefore bound rational behavior. The available evidence thus suggests a synthesis
ern economic and neuroscientific approaches. By biologically defining the mecha
which compute physiological expected utility we should be able to derive a mecha
cally accurate economic theory which is by necessity predictive.

In the following sections we hope to present a case study of this approach. Beg
with a physiological investigation of choice mechanisms, we will derive a mathem
description of the process by which a particular class of dynamic decision making
complished. Having derived an algorithm for choice under these conditions we wi
that surprisingly parsimonious model to predict the dynamic play-by-play choice beh
of individuals under novel conditions. The accuracy of those predictions will then be t
to assess this neurobiologically derived model. In essence, what we hope to do is
neurobiological techniques to develop a simple economic theory that is both testab
parsimonious.

2. The neuroscience of connecting sensation and action

2.1. Overview of sensory and motor neuroscience

During the second half of the twentieth century neuroscience made huge advanc
ticularly towards understanding both the structure and function of the sensory system
gather data about the outside world and the movement control systems through wh
behavioral responses are generated. For the most part, these studies provided the
upon which our current understanding of the human brain rests. These studies p
essentially, a core theory of brain function which, like the neoclassical approach in
nomics, organizes the ways scholars address almost all questions of neural func
order to understand how neurobiologists attempt to understand decision making, it is
fore necessary to know a little about the organizing principles of these input and o
systems.

2.1.1. Sensory systems
Tremendous progress has been made towards understanding all of our senses

brain system we understand best is the visual system. (For an introductory overview
visual system see the vision chapter in the excellent textbook by Rosenzweig et al. (
For a more detailed overview see the textbook by Squire et al. (2002)). Insights fro
study of this system organize neurobiological approaches not just to sensory syste
to brain function in general. The work of this system begins in the retina, a five
thick sheet of cells lining the inner surface of the eyeball like a sheet of photogr
film. At each location on this sheet lies a single photoreceptor, a cell which trans
individual photons of light into electrochemical signals that can be passed to the
These electrochemical signals are, in turn, passed by a class of retinal neurons calledretinal

ganglion cells, through the optic nerve which leaves the eyeball and connects to the neurons
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Fig. 1. The basic flow of information in the primate visual and eye movement systems shown superimpos
monkey brain. Vision: photons entering the eyeball activate neurons in the retina. That activity is relayed
the optic nerve to the lateral geniculate nucleus (LGN) of the thalamus. From there information passe
primary visual cortex (VI) and on to higher level visual cortices (V2, V3, V4, MT, etc.). These signals gain a
to movement control systems via a number of pathways, one of which involves the parietal cortex. One su
of the parietal cortex, the lateral intraparietal area (LIP) is known to be of particular importance. Move
movements of the eyes are controlled by many areas acting in concert. Of particular importance is th
intraparietal area (LIP) of parietal cortex. Activity in this area influences both the cortical frontal eye field
and the subcortical superior colliculus (SC). These areas in turn regulate the brainstem regions (BS) tha
the muscles that surround the eye.

of the lateral geniculate nucleus of the thalamuswhich lies inside the mammalian bra
(Fig. 1).

The lateral geniculate nucleus in humans and monkeys is a laminar structure, com
of six pancake-like sheets of neurons stacked one on top of each other. Each sheet re
topographically organized set of projections from one of the two retinae. This topogr
organization means that at a particular location in, for example, the second layer
lateral geniculate, all the neurons receive inputs from a single fixed location in one
two retinae. Because individual locations in a retina monitor a single location in v
space (like a single location on a photographic negative) each location in the genicu
thus specialized to monitor a particular position in space.

It has also been shown that adjacent positions within any given geniculate layer r
projections from adjacent positions within the referring retina. This adjacent topogr
mapping means that each layer in the geniculate forms a complete and topograp
organized map of the images that fall on the retinae. In this map, as in almost all stru
made of nerve cells, information is encoded by the level of electrochemical activity o
individual cells that make up the map. Geniculate neurons highly activated by light f
on the portion of the retina they monitor respond by producing pulses of electrical ac
calledaction potentials, at a high rate. In these neurons it is essentially the rate of a
potential generation that is used to encode properties like the contrast or brightne
location in the visual world. This set of organizing principles means that each layer
geniculate forms a complete and topographically organized screen on which are pro
as a pattern of action potentials, the visual images that fall on one of the retinae
activation of a particular neuron at a particular location within the geniculate map ind
that a visual stimulus has appeared at that location in the visual world.

These geniculate maps project, in turn, to theprimary visual cortex. Lying against the
back of the skull, the primary visual cortex, also calledarea V1, is composed of severa

million neurons. These neurons form their own complex topographic map of the visual
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world organized into roughly 1 square millimeter patches. Each square millimeter o
sue is specialized to perform a common basic set of analyses on the light that fal
specific region of the retina. Within these 1 mm by 1 mm chunks of cortex, individual
rons have been shown to be highly specialized in ways that allow many different an
to proceed simultaneously. For example, some neurons in each patch become acti
ducing action potentials, whenever a vertically oriented boundary between light an
falls on the region of the retina they monitor. Others are specialized for light-dark e
tilted to the right or to the left. Some respond to input exclusively from one retina, o
respond equally well to inputs from either retina. Yet others respond preferentially t
ored stimuli. Amongst neurophysiologists this complex pattern of sensitivities in are
or of receptive field properties, is of tremendous conceptual importance. It suggests
information coming from the retina is sorted, analyzed and recoded before being pas
to visual areas that lay farther along in the processing stream.

The topographic, orretinotopic,map in area V1 projects to a host of other areas wh
also contain topographically mapped representations of the of the visual world. Area
names likeV2, V3, V4 andMT construct a maze of ascending and descending projec
amongst what may be more than 30 mapped representations of the visual enviro
Each of these maps appears to be specialized, extracting specific types of informatio
the visual image. One of these areas, for example, forms a topographic map that e
the speed and direction at which visual images move across the retina. Others
information about the presence of faces or objects. This network of maps is the
hardware with which we perceive the visual world around us.

The most critical features of this brain organization are first, that incoming senso
formation is organized in a massively parallel topographic fashion and second tha
seems to be an orderly progression of information from the peripheral receptors to th
bral cortex where some of the most complex analyses are performed. Fortunately, m
the other sensory systems follow a very similar organizational plan. The sense of
for example, involves the passage of signals originating in the skin to a topograph
mapped nucleus in the thalamus. From there these signals pass to the topographic
ganizedsomatosensory area Iof the cortex and from there to higher order somatosen
areas in the cortex. Our understanding of the visual system therefore serves as a g
understanding how essentially all information about the outside world is gathered
brain.

2.1.2. Motor systems
Within neurobiology, studies of movement control areas, usually referred to collec

as the components of themotor system, are segregated into two main divisions: those
control systems that regulate movements of the body, hands, feet and mouth (the
tomuscular system) and those that move the eyes (the oculomotor system). As w
sensory systems, there seem to be strong parallels between the multiple motor sys
the brain and as in studies of the sensory systems, our core framework largely derive
studies of one system, in this case the oculomotor system. The oculomotor system h
vided especially fertile ground for study because of the simplicity of the mechanics
eyeball. While movements of the arm, for example, involve dozens of muscles and co

inertial moments, movements of each eye involve only 6 muscles and no detectable inertia.
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(For an introductory overview of the motor system see the motor chapters in Rosen
et al., 2002. For more detail see Squire et al., 2002.)

When an eye movement is produced, for example an orienting eye movement osac-
cadethat rapidly shifts the point-of-gaze from one location to another in the outside w
the six muscles that control the position of each eye are activated by six groups of n
that lie deep in the brainstem. Thesemotor neuronsare, in turn, controlled by two system
in the brainstem. One that regulates the horizontal position of the eye and one that re
the vertical position of the eye. These two control centers receive inputs from thesuperior
colliculuswhich lies just beneath the thalamus and the colliculus, in turn, receives its
cipal input from thefrontal eye fieldof the cerebral cortex. Like the visual areas descri
above, the superior colliculus and the frontal eye field are also constructed in topog
fashion. In this case, their constituent neurons form topographic maps of all possib
movements. Imagine a photograph of a landscape. Now lay a transparent coordina
that shows the horizontal and vertical rotation of the eye that would be required to
directly at any point on the underlying photograph. Both the superior colliculus an
frontal eye fields contain maps very like these transparent coordinate grids. Activat
neurons at a particular location in the frontal eye field produces activation in a corres
ing position in the superior colliculus which in turn activates the brainstem areas that
a saccade of a particular amplitude and direction to be executed. If this point of acti
were to move across the cortical map of the frontal eye field, the amplitude and dir
of the elicited movement would change in a lawful manner specified by the horiz
and vertical lines of the coordinate grid around which it is organized. The neurons
superior colliculus and the frontal eye field can thus be viewed as topographically
nized command arrays in which every neuron sits at a location in the map dictated
direction and length of the saccade it produces.

Studies of the arm movement or verbal movement systems are at a comparative
stage, but it seems fair to say that the basic features of these systems appear qu
lar at this level of analysis. Again, a few critical features of the nervous system se
emerge from this knowledge. First, outgoing signals are organized in a massively p
topographic fashion. Second, there seems to be an orderly progression of informatio
higher areas like the cortex down to lower areas that ultimately control the moveme
the muscles themselves.

2.2. Early studies of decision making

Over the course of the last 15 or 20 years a number of very influential studies, in
conducted in monkeys, have begun to examine the simplest possible connections b
these sensory and motor architectures. As such, these studies constituted the first
neural examination of decision making, albeit decision making of a very simple kind
frey Schall and his colleagues at Vanderbilt University conducted some of the first of
studies (cf. Hanes and Schall, 1996; Schall and Thompson, 1999), training thirsty
monkeys to stare straight ahead at a centrally located spot of light presented on a vid
play (Fig. 2). Shortly after the monkey began staring straight ahead eight secondary
appeared, arranged radially around the central fixation stimulus. Seven of those targ

peared in a common color and one appeared in a different color, anoddball. If the animal
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Fig. 2. The Oddball Task. In the original Schall experiments thirsty monkeys were seated staring at a cro
center of a blank display. Eight spots of light then illuminated, seven in one color and an eighth, the oddb
different color. The monkey had to decide where to look, and only if he looked at the oddball did he earn
reward. While monkeys made these decisions Schall and his colleagues monitored the activity of single
in the frontal eye fields.

Fig. 3. Platt and Glimcher’s Two-Choice Cued Lottery. Once again thirsty monkeys are seated staring at th
of a display. Red and green response targets, acting as buttons, then appear. At this point in the play th
green responses have widely divergent expected values which the monkey is expected to have learned
imposed delay the central spot changes color identifying one of the targets as the rational choice and
target as valueless on this trial. If the monkey looks at the target that is the same color as the central t
earns the appropriate reward.

looked at any of the 7 common color targets the play, or trial, ended immediately.
looked at the oddball, he received a drop of fruit juice as a reward.

Under conditions like these, we know quite a lot about both the sensory and

processes that must become active in the monkey’s brain. When the targets illuminate,
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we know that eight locations in the retinal, lateral geniculate and visual cortical
become active. One for each of the eight visual targets. These signals propagate
the visual system towards saccadic eye movement control centers like the frontal ey
and the superior colliculus. Only one of the 8 locations, however, represents the oddb
ultimately leads to activation of the eye movement control circuitry in those areas. S
is the translation, from 8 visual signals to one motor command, actually accompli
To answer that question Schall and his colleagues studied the activity of single nerv
in the saccadic movement maps of the frontal eye fields while monkeys performe
oddball detection task.1

Schall found that rate of action potential generation by neurons at each of the ei
cations in the frontal eye field map rose to an early peak shortly after the 8 targets
illuminated, but only after about 0.08 seconds was there evidence, in these neur
an underlying decision process in operation. At that point, neuronal action potential
rates continued to grow only in neurons at the one location encoding the oddball.
the level of activity at that location crossed an apparently fixed threshold value, the
ment was produced. This led Schall to suggest the existence of a decisional thres
each neuron in the topographic map of the frontal eye field and raised the possibili
the topographic map was constructed in such a way that only one local cluster of n
within the map could reach the decisional threshold at a time. The topographic map s
to serve as an organizational framework for imposing something like a winner-take-a
cision making strategy. Of course a winner-take-all strategy is critical because one
usefully look in two directions at once.

Where do the sensory signals that trigger the threshold activations of these neuron
inate and how, if at all, are these signals related to the more complex decisions that
subject of economic study? William Newsome and his colleagues at Stanford Univ
provided a critical set of data for answering that question (cf. Parker and Newsome,
They were initially interested in understanding how the brain generates the percep
motion so they began by training rhesus monkeys to watch a visual display that h
see as moving in an ambiguous fashion. They then asked their monkey subjects to
the direction in which the display appeared most likely to be moving. In these experi
the monkeys looked through a circular window at a cloud of white dots that appea
move against a black background for two seconds. Critically, whenever the dots app
not all of them moved in the same direction. During any given two second display, ma
the individual dots were moving in different, randomly selected, directions. Only a s
fraction of the dots actually moved in a coordinated direction and it was this coordi
direction of movement that the monkeys were trained to detect.

1 The technology for this kind of study is now in wide use with animals. Although quite safe, it is inv
and thus moral considerations preclude its use in humans. Single neuron studies of this type provide un
spatial and temporal resolution, a level of resolution critical for quantitative economic analysis and mo
Using much cruder techniques like brain scanning, essentially all of these insights have been shown to be
to understanding the human brain, but our quantitative understanding of these processes rests almost e
studies in animals. To understand even these simple decisions animal studies are thus a necessary sta

to which Schall and his colleagues turned.
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Newsome hypothesized that activity in one of the cortical visual areas might be mi
both necessary and sufficient for the perceptual experience we have when we see a
move, activity in that area might be the physical instantiation of the subjective expe
of seeing motion. Quite a bit was also known about the activity of individual neuro
this topographic map, the map in corticalarea MT. Each MT neuron was known to becom
active whenever a visual stimulus moved in aparticular directionacross the portion of th
visual world scrutinized by that cell’s location in the MT topographic map. Each ne
thus had an idiosyncraticpreferred directionand because each neuron prefers motio
a different direction and because many neurons work together to encode motion a
location in the visual world, the population of neurons in area MT could, in princ
discriminate motion in all possible directions at all visible locations.

In a series of experiments Newsome and his colleagues (Newsome et al.,
Salzman et al., 1990) were able to demonstrate that area MT forms a topograph
of the visual world in which the strength of motion in the visual world is encoded by
rate at which each neuron in the map fires action potentials. In principle this map
provides, in Newsome’s task, instantaneous and independent estimates of the stren
direction of motion at all locations in the visual world. If, for example, the animals w
rewarded for correctly determining whether the spots they were watching tended t
rightwards or leftwards, the activity in area MT encodes the information used by th
mals to perform the task.

In a series of subsequent experiments and simulations Newsome and his co
Michael Shadlen (cf. Shadlen et al., 1996; Shadlen and Newsome, 2001) sought
tend these observations by trying to determine how the signal originating in area M
actually analyzed and used by the animal to produce eye movements that would
tently yield juice rewards in this environment, presumably by triggering the approp
eye movement in the motor map of the frontal eye fields. It was known that neurons i
MT are functionally connected to maps in the posterior parietal cortex (Fig. 1) whic
themselves connected to the maps in the frontal eye fields. This led Shadlen to propo
while the monkeys stared at the moving dot display, neurons in the posterior parietal
mathematically integrated the output of neurons in area MT with respect to time, yield
new topographical map that encoded a time averaged estimate of motion direction
location in the visual world. And critically, it was this time averaged estimate that sh
have served as the critical decision variable in the task that their monkeys had been
The precise conditions of the task they employed defined this as the optimal strate
analyzing the visual motion. In other words, they proposed that the map in area MT
topographic connections to the posterior parietal cortex which extracted a decision v
from the MT activity and passed this decision variable, presumably topographically,
frontal eye fields. In their model, which was developed formally (Shadlen et al., 1996
neurons of the posterior parietal cortex thus served as topographically organized a
lators that could be used to trigger topographically aligned neurons in the frontal ey
map, thus generating the saccade most likely to be reinforced.

In a series of elegant experiments Shadlen and his colleagues went on to test this
esis and were able to verify the accuracy of many of their predictions. They were eve

to demonstrate that the activity of neurons at each location in one of the areas of the poste-
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rior parietal cortex,area LIP, was tightly correlated with the log of the likelihood that t
eye movements encoded at that location would yield a reward (Gold and Shadlen, 2

2.3. Summary

These results suggest that the simplest kind of connection between sensation an
can be described as a process by which topographic parallel representations of sign
the outside world are used to trigger behavioral responses in topographically org
output maps, perhaps through the intermediate representation of a simple decision v
(see Glimcher (2003a) for a more in depth survey of this work). This much is un
troversial. Also uncontroversial is that these sensory-motor connections do not con
decision making in the economic sense. Neoclassical variables like value and ex
utility, which are central to formal rational decision making, do not occur in a very c
fashion during these experiments. One possibility that this raises is that these are pr
the kinds of crude and primitive processes that are responsible for economically irra
behavior. Rational choice models may break down, be bounded, because mechanis
these “take over.” But there is an alternative hypothesis. These mechanisms may b
more complicated than they appear from the experiments that have already been pre
Indeed, these experiments may reveal only the tip of the neurobiological iceberg
tinguishing between these two hypotheses is, fortunately, an empirical problem. W
begin to ask whether these circuits and this general model can account for more c
cated classes of decision making by examining these same neurons under conditio
more closely approximate the kinds of rational choice that are of interest to econom

3. Economic studies of decision making in the brain

Ever since Pascal, economic analysis has focused on two variables which play
portant role in rational choice: the likelihood of realizing a gain or loss and the magn
of that gain or loss. Certainly other variables are important determinants of behavi
example the time at which the gains will be realized, but magnitude and likelihood a
always influence rational choice. Do these variables influence the neural circuits w
already described? One of the first experiments to address that question system
was conducted in 1999 by Platt and Glimcher. In that series of studies we asked w
the neurons in area LIP which Shadlen and his colleagues had examined might
topographical map of either the magnitude or likelihood of gain associated with pa
lar eye movements. Shadlen’s results had strongly suggested that the neurons in a
connected stimulus and response during simple perceptual decision making, and
rate of action potential generation in these neurons might encode some kind of de
variable. We hoped to verify this hypothesis by constructing an experiment in which
keys could make one of two possible movements while we systematically varied eith
likelihood or magnitude of gain associated with each movement. This would allow
determine whether the neurons in area LIP carried signals that might be useful fo

economic decision making.



P.W. Glimcher et al. / Games and Economic Behavior 52 (2005) 213–256 229

entral
as re-
h trial,
get, or
of the
artic-
ount

ments
these

nd of
ghest
roduce
ed for
task.
l of

play
d and,
e the
tively.
ment
alue of
0 ml.

d to the

t pre-
ly and
ded:

ative
in the

o 0, the
ximum

he trial.
that the
trial from
at LIP
ude
, animals

details).
In that experiment, thirsty monkeys were trained to stare straight ahead at a c
visual stimulus (Fig. 3) while two eye movement targets, which served the same role
sponse buttons serve in a typical economic task, were illuminated. At the end of eac
or play, monkeys would have to choose whether to look at the left target, the right tar
to do nothing. Immediately before they had to make that decision, however, the color
fixation light would change, identifying one of the two targets as valueless on that p
ular trial. The critical manipulation was that on sequential blocks of 100 trials the am
of juice that the monkeys would earn for each of the leftwards and rightwards move
was systematically manipulated. Finally, while the monkeys made decisions under
varying conditions, the activity of single neurons in area LIP was recorded.2 Each neuron
was examined while 5–7 different reward magnitude conditions were presented.

At a theoretical level, these subjects faced an exceedingly simple task. At the e
each play the color of the fixation light indicated what movement had both the hi
expected value and expected utility and a rational chooser would be expected to p
that movement. We recognized, however, that expected utilities could be comput
each response early in each play, before the color of the fixation light simplified the
Consider a block of 100 plays during which a leftward movement would yield 0.1 m
juice and a rightward movement would yield 0.3 ml of juice. At the beginning of each
there was a 50% chance that a leftward movement would be identified as reinforce
similarly, a 50% chance that a rightward movement would be reinforced. At that tim
expected value of the two movements would be 0.05 ml and 0.15 ml of juice respec
Then, after the fixation light changes color identifying, for example, the leftward move
as rewarded, the expected values change. After that point in the play the expected v
the leftward movement is 0.1 ml and the expected value of the rightward movement is
We hoped to determine whether these early estimates of expected value were relate
activity of neurons in area LIP.

What we found was that the activity of LIP neurons was a surprisingly, though no
cisely, linear function of these values (Fig. 4). More precisely, we found that both ear
late in a play the firing rate for neurons associated with the leftward movement enco

LeftReward

LeftReward+ RightReward
= FiringRate. (1)

Early in each play the firing rates of all LIP neurons were correlated with the rel
expected value of their movements with regard to other possible movements. Late
play, after the relative expected values of all but one movement had been reduced t
neurons encoding the reinforced movement rose to a fixed firing rate near the ma
for these neurons.

2 To economists it may seem very odd that the color of the fixation light was changed at the very end of t
This was essential, neurobiologically, because it allowed us to retain control over the actual movement
animal produced. The color change allowed us to disassociate the movement produced at the end of the
the expected utility of the targets during the early part of the trial, allowing us to rule out the possibility th
activity was directly controllingmovement productionrather than abstractly encoding the likelihood or magnit
of gains that influence movement choice. In subsequent experiments, some of which are discussed below
were required to make decisions without the aid of this color change (see Platt and Glimcher (1999) for

Those results confirmed the conclusions described here.
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Fig. 4. The firing rate of a neuron in area LIP is correlated with relative expected value. Early in the play
the expected value of each of the two possible movements is non-zero, firing rate is a roughly linear fun
[Reward1 ÷ (Reward1 + Reward2)]. After the cue indicates that the value of Reward2 = 0, firing rate elevates
These results, and other described in the text, suggested that firing rates in area LIP may encode either th
expected value or the relative expected utility of movements.

What this suggested was that something very close to an economic choice v
was indeed being carried by the firing rates of these neurons. We next had the m
perform the same task in a way that would let us determine whether the likelihood
gain influenced LIP firing rates. To do that, we held the magnitude of the juice re
constant for both leftwards and rightwards movements across a series of blocks and
the likelihood that at the end of each play the left or right movements would be reinfo
Thus on a block of trials in which both movements yielded 0.15 ml of juice but there
an 0.8 probability that the right movement would be reinforced and an 0.2 probabilit
the left movement would be reinforced, the expected values of the two movements e
each play would be 0.12 and 0.03 ml, respectively. Under these conditions the early
rates of the neurons were again a roughly linear function of these values. Specifica
firing rate of a neuron associated with the leftward movement was a linear functi
the probability that the leftward movement would yield the juice reward. Together,
results suggested an interesting possibility, that the topographic map in area LIP e
something like the relative expected value, or perhaps even the relative expected ut
each possible eye movement under the conditions we had been studying.

If these neurons encoded relative expected utility under these simple conditions
happens when behavior deviates from prescriptive economic theory, what happen
choice is only weakly related to expected value? Does some other less rational syste
control of decision-making while these neurons continue to encode prescriptive eco
variables? The neurons in this area had been originally identified as a link in a very s
sensory-motor behavior, the kind of brain system that might have been expected to a
for the bounds of rationality. Instead, in this experiment we had gathered evidenc
these neurons might carry a signal that could be predicted by prescriptive theory.
exactly do neurons in area LIP encode and how are they related to rational and irr
choice? To answer this question we next turned to an experiment more like those em

by experimental economists.
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3.1. Game theory and parietal maps

Our first goal in this next set of experiments (Dorris and Glimcher, 2004) was t
havioral task which engaged humans in voluntary decision making and which coul
be employed in a neurophysiological setting with monkeys. To this end, we had bo
man and animal subjects play the role of the employee in the classicinspection game(cf.
Kreps, 1990). The general form of the 2×2 payoff matrix for this game is shown in Fig.
We selected the inspection game because the payoff matrix can be easily adjusted
any mixed strategy equilibrium. We accomplished this exclusively, in our version o
game, by varying the cost of inspection to the employer (Fig. 5, left panel, variable I)
that at equilibrium the probability of shirking for the employee ranged from 10 to 90
randomly ordered sequentially presented blocks of trials.

Rational decision-makers should choose the option with the highest expected uti
each play. If both subjects act rationally, then a mixed strategy equilibrium will be rea
when the expected utility for each choice is equal for both players.

Thus at Nash equilibrium for the employee:

EU(S) = EU(W) (2)

whereEU(S) is the expected utility for choosing to shirk,EU(W) is the expected utility
for choosing to work. Ifp(I) is the probability of the employer inspecting and 1− p(I) is
the probability of the employer not inspecting when at equilibrium (and we assume,
initial analysis, that utility can be approximated as a linear function),W is the wage paid
by the employer to the employee, andC is the cost of work to the employee then the pay
matrix (Fig. 5) expands to

p(I) ∗ 0+ (
1− p(I)

) ∗ W = p(I) ∗ (W − C) + (
1− p(I)

) ∗ (W − C); (3)

solving forp(I):

p(I) = C/W. (4)

Similarly for the subject acting as the employer, at Nash equilibrium (again assu
for the initial analysis a linear utility function) the expected utility for inspecting is eq
to the expected utility for not inspecting. Solving forp(S):

p(S) = I/W (5)

Fig. 5. The Inspection Game. Left panel shows the game in normal form.W = wage earned by the employe
C = cost of working for employee,V = value of work to employer,I = cost of inspection to employer. Righ
panels show representative payoffs yielding mixed strategy Nash equilibria when a linear utility function

sumed.
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wherep(S) is the probability of the employee shirking when at equilibrium.
Because the employee payoffs remained the same for all blocks of trials,p(I) for the

employer should remain constant at 50% at all equilibria. Between blocks,p(S) for the
employee varied from 10 to 90% in 20% steps and was manipulated by varying th
ployer’s cost of inspection from 0.1 to 0.9 in steps of 0.2 (see Eq. (5)).

3.1.1. Human vs. human
In the first set of experiments, pairs of human subjects were placed in separate

and played a repeated version of the inspection game. They were not aware of the
of their opponent. It was another human in this case but could also have been a d
computer algorithm (see below). All subjects were naive to the nature of the payoff m
and the game and were simply instructed to “make as much money as possible.” Fr
point of view of the employee, on each trial, it was necessary to use a mouse to
one of two unlabeled buttons on a computer screen that corresponded to either wor
shirking. After each play the payoff was presented on the screen along with a cum
total of earnings over the last 10 trials. The first block of 50 trials was a practice sess
a 50% shirking rate Nash equilibrium. Afterwards, 5 separate unsignaled Nash equil
blocks of 150 trials each were played in a randomized order over the course of two 1.
sessions.3 A total of 8 subjects were tested. At the end of each session, subjects wer
their cumulative earnings which were typically about $35 US.

The equilibrium equations presented above gave us a crude prescriptive theory o
subjects would do, and their actual behavior provided descriptive data. Our task a
rophysiologists would be to determine which, if either, of these two approaches pre
the activity of neurons in area LIP. To begin to do that we compared the observed
of “working” and “shirking” with the rates predicted at equilibrium, once again assum
linear utility over the range of values we examined.

Figure 6 shows a 20-trial running average of the behavior of a human employee p
a human employer during two sequentially presented blocks. Although both players
free to choose either of two actions on every trial, we found that the overall behavior
human subjects was surprisingly well predicted by game theory given our simple
assumption. The gray lines show the unique Nash equilibrium solution for each b
Note that the employee quickly reached, and then fluctuated unpredictably around
prescriptively defined equilibrium shirk rates.

To examine equilibrium behavior in greater detail we quantified, for each subjec
probability of shirking during the last half of each block. We then plotted this shirk
against the predicted equilibrium rate (Fig. 7, Eq. (4)). We found that the responses
mans closely tracked these prescriptively defined shirk rates at behavioral equilibriu
rates above 40%. When, however, our prescriptive theory predicted rates below abou
we observed that subjects shirked more than predicted. There may be a temptation
clude that this deviation reflects a non-linearity in the true underlying utility function. W
the underlying utility function for money to be significantly concave over the range o
measurements, as might be expected, then shirk rates would have decreased rat

3 Block switches were unsignaled in order to keep the human task as similar as possible to the mon

described below.
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Fig. 6. Dynamic behavior of humans and monkeys playing the inspection game. Black lines plot a 20-play
average of the employee’s behavior during two equilibrium blocks. Grey lines plot Nash equilibrium so
during both blocks assuming a linear utility curve.

Fig. 7. Plot of equilibrium behavior for humans and monkeys. During the last half of each block of pla
computed the average rates of shirking (±S.E.M.) for our three groups during a total of 5 equilibrium conditio

increased at these lower points. A more plausible explanation is either that this de
reflects some sort of sampling strategy that maximizes the ability of players to detect

switches, or reflects an irrationality. In either case, what we had obtained were behavioral
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measures during voluntary choice and at least some of these measures were well p
by our prescriptive theory.

The implications of the measurements poorly predicted by our prescriptive theory
however, uncertain. As with almost all experimental economic data, this either ind
an inadequacy in our prescriptive theory or a frank irrationality in our subjects. As p
ologists, however, our goal would be to engage this deviation from our prescriptive t
using a neurobiological approach.

3.1.2. Human vs. computer
A second set of experiments were then conducted which were identical to the h

versus human experiment except that the role of the employer was played by a
dardized computer algorithm (see http://www.cns.nyu.edu/glimcher/inspection_gam
MATLAB code of complete algorithm). That was critical because methodological
straints imposed by single neuron recording experiments essentially precluded our
a real opponent against the monkeys. Briefly, the computer algorithm worked by tra
two variables of the employee’s behavior:

(1) the history of employee’s choices to give an estimate of the overall probability th
employee would shirk (p(S)),

(2) the employee’s repetition rate (repactual), that is, how often a subject repeated the
sponse of the previous play.

We calculated the expected repetition rate (repexpected) for a given proportion of shirking
assuming the probability of a response on each trial was controlled by a random p
independent of previous choices:

repexpected=
(
p(S) ∗ p(S)

) + ((
1− p(S)

) ∗ (
1− p(S)

)); (6)

the difference in therepactual from repexpectedwas used to bias the computer’s estimate
p(S) for the upcoming trial

p(S)corrected= p(S) + λ(repexpected− repactual) (7)

in whichλ was set to 0.1.
The variablep(S)corrected represents an estimate of the probability of the emplo

shirking on the current play given his past proportion of shirking and allows the algo
to exploit any dependency of upcoming behavior on actions taken during the previou
The variablep(S)correctedwas substituted forp(S) in calculating the relative expected uti
ties of inspect and no inspecting (for the computer employer) on the upcoming play w
in turn, was used to guide the computer’s choice. In addition, anexploration bonuswas
added which gradually increased as the algorithm continued to produce a single res
This was necessary so the computer employer did not maintain a fixedp(I) calculation
(and thus fixed expected utility calculation) after every work trial, but rather continu
search for a maximally efficient behavior throughout the changing conditions of the e
iment.

Of course, the computer employer would be deterministic if it always chose the o

with the highest expected utility on every trial. If a human or monkey subject had sufficient
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precision in a play-by-play estimate ofp(S), they could then accurately predict the actio
of the algorithm. In order to incorporate stochasticity into the actions of the algorithm
employed a decision-rule which converted relative expected utility into a response
ability. When inspecting and not inspecting had equal values, the decision rule ran
selected the inspect and no inspect options with equal likelihood. As the expected ut
one response increased, the probability that the more valuable response would be
increased gradually.

Eight additional human subjects again played this version of the inspection game
ing five 150 trial blocks over 2 sessions. As in the first experiment they were not a
of the nature of their opponent and were simply instructed to “make as much mon
possible.” Blocks of plays were presented exactly as before and subjects were pa
cumulative earnings which were again about $35 US.

Figure 6 shows a 20-trial running average of the dynamic behavior of a human em
playing the inspection game during a typical session. The gray lines show the uniqu
equilibrium solutions. Just as when playing a human employer, our human subjects q
reached and then fluctuated around, the shirk rates associated with the two sequ
presented Nash equilibrium states studied in this session.

During the last half of each block, once subjects had reached a stable state, we ag
termined the average shirk rate and plotted this against the equilibrium shirk rate pres
by a linear utility function (Fig. 7, Eq. (4)). As was the case in the preceding experim
these human subjects tended to deviate from the prescribed solution by over-shirkin
shirk rates of 10 or 30% were predicted at equilibrium (p < 0.05,t-test against zero assum
ing unequal variance). Our standardized computer opponent thus elicited behavior fr
employees that was statistically indistinguishable from their behavior when playing a
human employers (two-way ANOVA,F = 0.22,p > 0.05, d.f.= 1).

3.1.3. Monkey vs. computer
We then trained monkeys to play a version of the inspection game against our

puter employer and assessed whether their behavior was comparable to that of h
In monkey experiments, thirsty animals competed for a water reward delivered afte
play and indicated their choices on each play with a saccadic eye movement dire
one of two eccentric visual targets. Plays began with the illumination of a centrally lo
yellow fixation target. Once subjects were looking at this target two eccentric targets
illuminated, a redshirk target that was positioned so that the neuron under study was a
when the monkey picked that target and a greenwork target that appeared opposite to t
red target. Halfway through each play, the fixation point blinked and when it reapp
yellow the subject had 0.75 seconds to select and execute a response.

As Fig. 6 indicates, the dynamic behavior of monkeys playing this game appear
markably similar to the behavior of humans. At the beginning of each block monkeys
like humans, quickly reached and then fluctuated unpredictably around the shirk ra
sociated with the Nash equilibrium states. When we examined the equilibrium beha
the monkeys we found that it too appeared to be very similar to the equilibrium beh
produced by humans, even deviating from the prescriptive predictions in a similar m
As Fig. 7 indicates, just like humans, during the inspection game the monkeys track

Nash equilibrium solutions (again assuming linear utility) and deviated from those solu-
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tions when shirking rates of 30% or less were prescribed (p < 0.01). Two monkeys were
studied while they played 8 sets of 100–200 trial blocks. Although the behavior of
keys and humans was statistically differentiable during the 70 and 90% Nash equil
blocks, monkeys appeared to provide a surprisingly accurate model of humans ove

3.1.4. The physiological basis of strategic decision making
Having thus established that humans and monkeys play this strategic game in a

similar fashion both when their behavior is predicted by the equilibrium equations we
using and when it was not, we were able to move on to our neurophysiological que
How is LIP activity related to choice during strategic decision making? One of N
(1951) fundamental insights was that at a mixed strategy equilibrium the desirability
actions in equilibrium must be equivalent. This means that during the inspection gam
expected utilities of working and shirking must be equal at equilibrium.

For the purposes of the foregoing analysis we had assumed a linear utility functio
were able to thus prescriptively define a rational equilibrium. Our descriptive data
cated that this rational equilibrium did a fair job of predicting the behavior of our sub
under some conditions but failed under others. One could, of course, extend this pa
prescriptive approach by incorporating a more realistic utility function and adding to
a learning algorithm that might even predict the over-shirking observed at low shirk
Our enhanced prescriptive theory would then better account for our descriptive ob
tions.

If, however, the neurons in area LIP are the substrate upon which actual choice
erated and that choice is generated at equilibrium by a process similar to the one
envisioned, then we might be able to take an alternative approach. The Nash appro
gues, essentially, that equilibrium occurs when the desirability of working and shirkin
equal. Economists define those desireabilities as rational when they are well predic
the expected utility of prescriptive theory. But rational or not, those desireabilities m
well be represented at some point in the neural architecture. What we were trying
termine was whether the quantitative desirability of an action is encoded by the activ
neurons in area LIP not just for some categories of behavior, rational or irrational, b
behavior in general. If our economic approach was sound, then at behavioral equil
the desirability of working and shirking should have been equivalent. If our neurobiolo
approach was sound, then at behavioral equilibrium the level of neuronal activity asso
with working and shirking should also have been equivalent. This should be true rega
of whether choice is rational or not. Put another way, if LIP encodes a physiological
of expected utility and thisphysiological expected utilityis the actual substrate from whic
choice is produced, then rational behavior could be defined as occurring when presc
theory accurately predicts this physiological expected utility.

To begin to test the validity of this schema we began by repeating the Platt and Gli
experiment described in the preceding section on our game playing monkeys. Dur
first block of plays highlighted in grey (Fig. 8), when a movement to the red target wa
structed it yielded 0.25 ml of juice and when a movement to the green target was inst
it yielded 0.5 ml of juice. In the second block of trials, the payoffs associated with
target were reversed. Before the change in fixation point color indicated which mov

would be rewarded, the neuron responded more strongly if the red target (which would



P.W. Glimcher et al. / Games and Economic Behavior 52 (2005) 213–256 237

unning
rey, no
and 0.33,
a of 50,
hirked.

ese as
ex-

r, and
ential
forced
rk tar-
cted
ns of

ses of
rded
ick-
ioral
by our

ghly
brium
l firing

t to the
rget is

rate
is the

s they
Fig. 8. Behavior of a monkey and an LIP neuron during the inspection game.The black line plots a 20-trial r
average of the behavior of the monkey across six blocks of plays. In the first two blocks, highlighted in g
game was played but rather fixed expected values were presented. (Relative expected values of 0.66
respectively.) Blocks 3–6 presented 4 sequential payoff matrices corresponding to Nash mixed equilibri
10, 70, and 30% shirking. Grey dots plot the firing rate of the neuron on each play in which the monkey s

serve as the shirk target later in the session) yielded a larger reward. We refer to th
instructed trials, and this difference in firing rate was typical of our population in this
periment as it was in the Platt and Glimcher experiments (Fig. 8;p < 0.01, pairedt-test
for visual and delay epochs,N = 20).

Figure 8 examines the relationship between physiological expected utility, behavio
firing rate for this neuron. The lower axis plots the play numbers during which 6 sequ
blocks were presented. In the first block, instructed trials were presented which rein
a movement to the shirk target with twice as much juice as a movement to the wo
get, a relative expected value4 of 0.66. The second block presented a relative expe
value of 0.33. Blocks 3–6 presented inspection trials in which the dynamic interactio
the two players should have maintained a relative desireability for the two respon
near 0.5. The solid gray lines initially plot the probability of the red target being rewa
during the first two instructed blocks followed by the predicted equilibrium rate of p
ing the red (shirk) target during the four inspection trial blocks. At a purely behav
level, the animal seemed to closely approximate the response strategies predicted
simple prescriptive model. Initially the probability of picking the red target was rou
50% during the instructed blocks and then shifted dynamically to each of the equili
strategies in the subsequent 4 inspection trial blocks. The gray dots plot the neurona
rate after target onset. Note that when the relative expected value of a movemen
red target is high, firing rate is high. When the relative expected value of the red ta
low, firing rate is low, and when the animal is engaged in a strategic conflict the firing
associated with this same movement is fairly constant at an intermediate level. This
specific result that would be expected if LIP neurons encode the desireability, that i
4 [Value of Red Target÷ (Value of Red Target+ Value of Green Target)].
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instantiate the physiological expected utility, of movements into their neuronal res
fields.

3.2. Encoding shirk targets versus work targets

For a subset of 20 neurons we also examined the effects of reversing the location
work and shirk targets during 50% shirking rate Nash equilibrium blocks of the inspe
game. This effectively changed both the probability of being rewarded and the mag
of that reward associated with the target monitored by our neuron, while the relative
iological expected utility of working and shirking should have remained at equilibr
Firing rates should differ across blocks if they reflect either of these individual dec
variables but they should remain constant if they reflect physiological expected utility
firing rates were indistinguishable, a finding consistent with the hypothesis that LIP
rates encode the physiological expected utility of choices (p > 0.05, pairedt-test,N = 20,
for all 6 epochs).

3.3. Encoding relative versus absolute desirability

In order to test the hypothesis that LIP neurons encode therelative desireability of
movements rather than the absolute expected value (or utility) of movements, we
ined 18 neurons while monkeys completed a block of trials in which the magnitu
both working and shirking rewards was doubled. If LIP activity is sensitive to the abs
desireability of the response encoded by the neuron, cells should fire more for blo
which the rewards are doubled. If, however, LIP activity is sensitive to the relative d
ability of choices the firing rate should be the same for both blocks of trials. We foun
there was no change (p > 0.05, pairedt-test,N = 18, for all 6 epochs) in the firing rat
of LIP neurons when absolute reward magnitude was doubled. This, and the result
our other experiments, further support the possibility that LIP neurons encode the r
physiological expected utility of a movement.

3.4. Summary

These data make a relatively simple suggestion. Map-like structures in the brai
encode, quantitatively, the relative desireabilities of all possible courses of action.
maps may form something like a final common path for decision making. If that is
then it is these maps, some of which have already been identified physiologically,
are actually the subject of economic theory.

If this is true, what leverage does this knowledge give economists? Is neurob
relevant to economics or does it simply push back the problem of studying beha
responses to a biological measurement that adds no particular insight? To answer th
tion one needs to develop a slightly more complete model of the neural decision m
process that this hypothesis implies. One can then ask whether the physiological p

provides opportunities for economic insight.
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4. A utility-theory based neurobiological model of decision making

The concept that emerges from the preceding data is that the brain employs a
eye movement desireabilities to generate the most utile eye movement via well unde
brainstem circuitry. In our model of this process (Fig. 9), area LIP forms a map o
possible eye movements. Each neuron in the map encodes the relative desireabi
particular eye movement. The instantaneous action potential generation rate by any
thus encodes the relative physiological expected utility of that movement. The nat
the inputs to these neurons are, at this point in time, uncertain. In the brain, inputs m
in the form of independent maps of expected reward magnitude and reward likelihoo
project into area LIP from the frontal cortices, and relative physiological expected ut
might be calculated within area LIP from these inputs. Alternatively, expected utility c
be calculated elsewhere and passed to area LIP where a local normalization simply c
these values intorelative physiological expected utilities. Any number of input schem
are possible at this point, but for the purposes of this initial model the output of LIP
focus and is presumed to encode the product of an evaluative process that yields
physiological expected utilities.

The output of the LIP map is passed to the frontal eye fields. We know from the
of Schall and his colleagues (see introduction for details) that once a single region
frontal eye field map is driven over a threshold level of activity, the map of the sup
colliculus generates an eye movement having the appropriate length and direction
model, the physiological expected utility map in LIP thus drives the serially arranged
of the frontal eye fields and colliculus towards a winner-take-all state. For biophysica
sons, only one of the regions in each of these aligned and interconnected topograph
can be active above threshold, which effectively constrains the decision making sys
produce one movement at a time. (An important constraint since the eyes can only

Fig. 9. Model of the Decision-Making Process. Area LIP is presumed to form a map of relative desirea
of all possible saccadic eye movements, a map of relative physiological expected utility. The LIP map r
as inputs estimates of the desireabilities of all possible saccades. This input is contaminated by intrins
which can impose stochastic patterns on behavior under some conditions. The input utility estimates are
and used to normalize the map so that it represents relative physiological expected utility. The output of
passes serially to the frontal eye fields and superior colliculus which filter the output imposing a winner-t

outcome. This winner-take-all outcome is finalized in the colliculus by a biophysically imposed threshold.
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in one direction at a time.) The interaction between the utility representation in are
and the movement execution circuitry in the frontal eye fields and superior colliculus
forces a convergence to a single output, the single output associated with the high
pected utility.

Such a system could account for much of the decision making we have obser
humans and animals, and it is consistent with the available neurobiological data,
is unclear how such a system could account for the kinds of stochastic behavior th
often observed during strategic games. In the inspection game, for example, we s
mixed strategy equilibria and found that both humans and monkeys were highly sto
tic under those conditions. A Markov chain analysis that searched for patterns of wo
and shirking in our data suggested that our subjects were being highly stochasti
closely related study, Barraclough et al. (2002) made a similar observation. In their e
ment, monkeys played matching pennies against an intelligent opponent thousands o
and their data indicated that the monkeys adopted almost perfectly stochastic strate
therefore seems reasonable to ask whether our basic model can be extended to acc
behavioral stochasticity during mixed strategy equilibria.

One known source of stochasticity at the neuronal level is the mechanism by
synaptic inputs give rise to action potentials in cortical neurons. Abundant evidence
cates that when cortical neurons are repeatedly activated by precisely the same stimu
neurons do not deterministically generate action potentials in precisely the same p
Instead, the pattern of stimulation delivered to cortical neurons appears to determin
the average firing rates of those neurons, the instant-by-instant dynamics of action po
generation are highly variable and appear to defy precise prediction (Tolhurst et al.,
Dean, 1981). The available data suggests that this moment-by-moment variation, th
all variance in cortical firing rate, is related to mean firing rate by a roughly fixed con
of proportionality that has a value near 1.07 over a very broad range of mean rates (T
et al., 1981; Dean, 1981; Zohary et al., 1994; Lee et al., 1998), and this seems to be
essentially all cortical areas that have been examined including parietal cortex (Lee
1998). This has led to the suggestion that action potential production can be descr
something like a Poisson process, a probabilistic operation at the root of neuronal c
tation.

More recently, there have been several efforts to identify the biophysical sour
this Poisson-like stochasticity. Mainen and Sejnowski (1995) sought to determine w
the process of action potential generation, the biophysical mechanism that conve
analogue input voltages that cells receive into action potentials, was the source
variability. Their work led to the conclusion that action potential generation is quite
terministically tied to membrane voltage, and thus that this process was not a sou
intrinsic action potential variability. Subsequent studies have begun to suggest that
instead be the process of synaptic transmission which imposes a stochastic pattern o
cal action potential production (for review, see Stevens, 1994). The actual dynamic p
of membrane voltage which controls action potential generation deterministically
duced by synaptic transmission, a process that now appears to be irreducibly sto
All of these data suggest that the precise pattern of activity in cortical neurons is sto
tic. The dynamics of exactly when an action potential is generated seems to dep

truly random physical processes.
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Shadlen et al.’s (1996) study demonstrated that relating neuronal firing rates to b
ior required a knowledge of two critical parameters; the intrinsic variance in instanta
firing rate evidenced by each cortical neuron (the Poisson-like variability of the a
potential generation process) and the correlation in action potential patterns (impo
the cortical microcircuitry) between the many neurons that participate in any neural
putation (the inter-neuronal cross-correlation). Shadlen and colleagues demonstra
both of these properties contribute to the unpredictability evidenced by behavior. Th
ability in the firing rate of each neuron contributes to the unpredictability of behavio
producing an initial stochasticity in the neuronal architecture and the degree to whic
stochasticity influences behavior depends on how tightly correlated are the firing pa
of the many neurons in a population.

To make this insight clear consider a population of 1000 neurons, all of which fire a
potentials with the same mean rate and which have the same level of intrinsic vari
but are generating action potentials independently of each other. The members o
a population would be generating moment-by-moment patterns of action potentia
were completely uncorrelated; the only thing that they would share is a common un
ing mean firing rate. Because of this independence, globally averaging the activity
of these independent neurons would allow one to recover the underlying mean rate
instant. Thus if, for example, 1000 neurons in the real LIP map represented each
ment (which is not an unreasonable number) and the firing rates of those neuron
sufficiently uncorrelated, decisions produced by the outputs of the map could deter
tically reflect physiological expected utility encoded in the average firing rate. Con
as an alternative, a circuit in which a population of 1000 LIP neurons encoding a
movement all fire with the same mean rate, and have the same level of intrinsic varia
but in which each of the 1000 source neurons were tightly correlated in their activit
terns. Under these conditions, it is the stochastic and synchronous pattern of activity
by all of the neurons in the population encoding a particular movement that is availa
areas like the frontal eye fields, rather than the underlying mean rate. In a highly corr
system of this type, the output at any moment is irreducibly stochastic. Of course the
just two extreme examples. Many levels of correlation between neurons are possib
each would provide areas like the frontal eye fields with a slightly different level of ac
to the underlying mean rate, and a different level of intrinsic randomness.

As a result of these speculations and data that appear to support them (Zohary
1994; Britten et al., 1996; Parker et al., 2002), if the LIP map does encode the
tive physiological expected utility of all available eye movements, the instant-by-in
representation of those utilities would be necessarily stochastic. Consider the acti
area LIP during the inspection game. Under conditions in which the relative physiolo
expected utility of working is much higher than shirking, the map, although stoch
provides an output that always leads to working. As working and shirking approac
same relative physiological expected utility, however, the behavior becomes more an
stochastic until, at equilibrium, the behavior is completely dominated by the neurona
chasticity. Under those conditions it is the neuronal variance which generates the de
A model of this type thus generates a smooth transition from determinate to stocha
sponding as a function of relative expected utility of exactly the type called for by g

theory.
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These data and this model seem to suggest a stochastic decision making proc
can account for a broad range of choice behavior. We began this neurobiological inv
tion, however, hoping to account for simple, crude, reflexive kinds of decision making
kinds of processes that we might expect to occur when, as Vernon Smith put it, “the
takes over.” Instead what we seem to have found is a system that can at least parti
count for rational decision under a broad range of conditions. If that is so, then two c
questions remain. First, what brain areas are responsible for computing the physio
expected utilities that appear to be represented in area LIP? Second, what happen
subjects behave irrationally?

Knowing what we do about the neural basis of decision making, and presuming
model of this general type explains that process, then we can begin to answer thes
tions empirically: The output of the evaluative systems of the brain are represented in
like LIP. These representations are used by the stochastic decision making archite
produce behavior. It is these representations, and their generation, which form the
of most of economic theory. With this knowledge in hand it seems that we really can
to perform experiments that might yield mechanistic explanations of economic beh
that tie classes of decisions to the underlying hardware.

5. Extending the model

Over the past ten years significant progress has been made towards understan
neurobiology of primate learning mechanisms. Of particular value have been stud
two groups of neurons in the primate brain; neurons in theventral tegmental areaand
neurons in thesubstantia nigra pars compacta. Both of these clusters of nerve cells a
chemically distinct from the cells around them; they all employ the chemicaldopamineas
a neurotransmitter for communicating with their targets, the neurons whose firing rate
influence (Fig. 10). Both of these groups of neurons are relatively small, consisting o
a few thousand neurons. Both groups send their output fibers, or axons, long distan
these axons, in a manner unusual in the primate brain, terminate throughout the c
cortex and other structures including the basal ganglia. (For a review of this literatur
Schultz, 2002.)

For decades it has been known that these neurons and the dopamine they rele
a critical role in brain mechanisms of reinforcement. Many of the drugs currently ab
in our society mimic the actions of dopamine in the brain. This led many research
believe that dopamine neurons directly encoded the rewarding value of events in th
side world. Wolfram Schultz and his colleagues, however, made a critical observatio
widely altered how these neurons were viewed. When an animal sits passively in a
environment these neurons produce action potentials at a fixed rate of about 3 per
(3 Hz). This is the resting state of these neurons. Schultz and his colleagues measu
activity of these neurons while quite thirsty monkeys sat passively and listened to
which was followed by a tiny squirt of fruit juice into their mouths. When this paired
sentation was repeated dozens of times, they found that the dopamine neurons of bo
continued to produce action potentials at their resting rate following the delivery of

a curious result because we can assume that fruit juice is reinforcing to thirsty monkeys.
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Fig. 10. Dopamine neurons of the substantia nigra pars compacta (SNpc) and Ventral Tegmental Area
These brainstem neurons project throughout the frontal, temporal and parietal cortices as shown here on
brain. When an action potential is generated in the SNpc or VTA it propagates outward to the synapses a
of these nerve cells. There, the electrochemical impulses cause the neurochemical dopamine to be relea
synapse. Dopamine then alters the electrochemical activity of the neuron on the far side of that synapse.

Next, without warning, Schultz doubled the magnitude of reward delivered to the mo
for a series of trials. In response to the first of these unexpectedly large reinforce
the dopamine neurons responded with a dramatic increase in the rate at which the
generating action potentials. The firing rate of these neurons immediately after the
was delivered increased from 3 per second to about 80 per second for a duration o
a tenth of a second. On the second trial of this group, the firing rate of the neuron
still elevated, but not as strongly. And as the new magnitude of reward was repeat
magnitude of the sudden increase in firing rate was reduced until, after 10–30 trials,
returned entirely to the 3 Hz resting state, or baseline. Next, without warning Schult
sented a series of trials in which the magnitude of juice reward was reduced to the o
level. On the first of these trials the dopamine neurons responded with a transient de
in firing rate which, after many repetitions, also eventually returned to baseline.

Based on these observations Schultz argued that the dopamine neurons seeme
code the difference between the reward that an animal expected to receive and the
that an animal actually received (Schultz et al., 1997). In the syntax of the reinforce
learning literature, the neurons appeared to encode areward prediction error(Sutton and
Barto, 1998). At a neurocomputational level what Schultz suggested was that the dop
neurons probably received an input that encoded, as a firing rate, the magnitude of
ward that the animal expected to receive after the tone. The dopamine neurons we
presumed to receive an input that encoded the magnitude of reward that the anima
ally received. The surfaces of these neurons were then presumed to employ well und
biophysical mechanisms to compute the mathematical difference between these two
the reward prediction error, and to transmit this value to their target neurons in the
and basal ganglia via the neurotransmitter dopamine.

In an elegant series of subsequent experiments Schultz has essentially valida

initial proposal and has even demonstrated that several interesting properties of human and
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animal learning can be predicted by the activity patterns of these neurons. More for
these available data point strongly towards the hypothesis that the dopamine neuron
a reward prediction error, at least in the conditioning tasks that Schultz and his colle
have explored.

5.1. Mechanisms for computing physiological expected utilities

Given what we already know about economic decision making, the implications o
dopamine data for economics may be significant. If these neurons do encode the
prediction error of learning theory, then the exact computational properties of thes
rons may explain how some physiological expected utilities are computed, or learne
mechanism of satisficing, under some conditions, may be the mathematical compu
that these neurons evolved to perform.

In order to test that hypothesis, we (HMB and PWG) recently began to charac
the computations that the dopamine neurons perform while animals engage in a
rewarded task. In that experiment, thirsty monkeys stared straight ahead at a yello
of light and waited for a second yellow spot of light to appear directly above it. Once
spot of light appeared it remained illuminated for 4 seconds. The monkey was free,
time during that 4 seconds period, to look towards the second light, and when the m
chose to look determined how much juice he earned.

The 4 seconds interval was divided into 16 logarithmically scaled subintervals, th
of which was 0.01 seconds long and the last of which was 0.8 seconds long. Befo
first play of each day we would randomly select 4 sequential intervals from these 1
assign rewards to them without indicating this assignment in any way to the monkey
monkey made his movement during the first of the reinforced intervals he received
milliliters of juice, if during the second 0.24 ml of juice, if during the third 0.26 ml of ju
and if during the fourth 0.28 ml. If he made his movement at any other time he rec
no reward. Finally, irrespective of when he looked and what juice he earned, the
4 seconds interval elapsed before a new play began. These reward contingencies p
for a minimum of 90 trials after which there was a fixed 5% chance, on each subse
trial, that the reward contingencies would be secretly changed. When the reward c
gencies did change, a new group of four sequential intervals were randomly selec
reinforcement.

Under these conditions, the task of an efficient monkey is simply to learn when to
in order to maximize juice intake. The monkey begins (Fig. 11) the session with a
random set of movements and then gradually learns when to move. At an unpred
time the rewarded intervals are switched and the monkey responds by learning th
time which yields a maximal reward.

The dopamine data gathered by Schultz suggests that the monkeys may acco
this goal, at least in part, with the dopamine neurons of the ventral tegmental are
the substantia nigra pars compacta. This raises the interesting possibility that a beh
experiment like this one could be used to extract the algorithm that the dopamine n
use to compute the reward prediction error.

We therefore began by recording the activity of dopamine neurons during this e

mental task. On each play we quantified the firing rate of the dopamine neuron we were
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Fig. 11. Behavior of a monkey during the dopamine experiment. The black line plots the play-by-play
selected by the subject. The colored bars indicate the unsignaled intervals during which a juice reward
earned.

studying immediately after the reward was (or would have been) delivered. On a t
day a monkey would be presented with a series of about 600 plays and would enc
about 5 reward contingencies. At the end of the day we would then have a complete
of the rewards that the subject had received and the firing rates of the dopamine neu
each of those plays. We began by making one simplifying assumption, that the alg
the monkey employed in this task was linear. Though perhaps unjustified, this was
sential first step because it allowed us to use linear regression to extract the comp
that the neurons were performing. We therefore computed a linear regression on th
rates, asking what combination of the preceding 20 rewards best accounted for th
rate of the neuron on each trial. What we found was remarkably simple and rema
like the hypotheses of reinforcement learning theorists. Given our assumptions, th
rons could best be described as subtracting from the reward magnitude received
current play an exponentially weighted average of the rewards received on the pre
8–10 plays. Expressed as an iterative computation:

Firing Rate= Reward Prediction ErrorT

= α(Current Reward− Reward Prediction ErrorT −1). (8)

From this value, the reward prediction at timeT − 1 could then be used to derive a ne
reward prediction. In sum, what we found was a descriptive algorithm for learnin
ward contingencies that was measured mechanistically. We derived an equation
dopamine neurons that we hoped could be used to predict economic behavior unde

circumstances.
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5.2. Using neural data to build economic models

The real test of whether these neurobiological data are of any use to econom
whether they can be used to develop or refine economic models. As a result, with Bra
we undertook to model a simple and well described behavior that both humans and a
show using the neurally derived algorithms that the preceding experiments had d
The behavior that we sought to model was a simple choice between two alternativea or
b, which had different values that could change unpredictably.

We modeled the chooser as a two stage process based on the neural data we ha
acquired (Fig. 12). The first stage of our model learned a physiological value for ea
the two choices using an exponentially weighted average of exactly the type com
iteratively by the dopamine neurons (Eq. (8)) and the second stage employed a d
process modeled after our understanding of area LIP and its targets.

The first stage thus consisted of two estimators,A and B. Whenever the animal se
lected optionA, the reward earned by the monkey was used to iteratively comp
weighted average of the value of that action. Formally, we used the equation d
from the dopamine neurons to do this, leaving the exponential weighting paramete
An identical module computed the physiological expected utility of theB response and
was required to use the same exponential weighting parameter employed forA. The
decision process then compared these two physiological expected utilities and s
tically selected the response having the higher physiological expected utility. For

Fig. 12. Neuroeconomic model of probability matching. The model computes an exponentially weighted a
of the gains obtained on prior executions of each possible response. This weighted average is presum
computed iteratively based on the reward prediction error signal carried by dopamine neurons. This w
average yields a physiological expected utility (PEU) for all movements which are then fed to the physio
expected utility map in Area LIP. In area LIP physiological expected utilities are normalized to relative
iological utilities. Finally, the intrinsic variance of cortical neurons in LIP ensures that the relative PEU
encoded with weak stochastic variance. (See Fig. 9 for additional details.) Subsequent levels of process

a winner-take-all extraction of the most desirable movement from the LIP map.
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the decision rule used a sigmoidal function to convert the difference in value o
two movements to a probability of choosing each movement. The slope of the sig
which we refer to as thestochastic transfer function, was left as the second free p
rameter in this model and can be loosely thought of as encapsulating the level o
chasticity in the LIP decision circuit. We left this as a free parameter because th
growing evidence that the stochasticity of a neuronal population like LIP may be
able and may be set dynamically to maximize task performance (Barraclough et al.,
Dorris and Glimcher, 2004).

In order to generate a behavioral dataset for comparison with the physiologically d
model, we had monkeys perform a simple 300–700 play two-alternative lottery bas
the matching law experiments developed by Herrnstein (1961, 1997). On each pla
visual targets appeared, one to the left and one to the right of fixation. Animals had
1 second to select one of these two targets. Before each play there was a fixed pro
that each of the two targets would bearmedwith a reward. For example, there might be
0.1 probability that the right target would be armed before each play and a 0.2 prob
that the left target would be armed before each play. Targets were always arme
0.25 ml of juice and data were gathered during a period when we had reason to belie
the monkeys’ thirst was at a fairly constant level. Critically, as in the original Herrn
experiments, the arming was cumulative. Once a target was armed it remained arm
it was chosen in a subsequent play. Staddon and Motheral (1978) and Staddon
amongst others, have shown that under these conditions matching the probability o
response to the probability of each reward is a nearly optimal solution (at a molar
and a number of researchers have shown that a wide variety of primate species, in
humans, show probability matching behavior under these conditions (Schrier, 196
Villiers and Herrnstein, 1976; De Villiers, 1977; Bradshaw and Szabadi, 1988).

As in the earlier neurophysiological experiment, we also instituted unpredictable
shifts during which the arming probabilities changed. Blocks were a minimum of 90
in length after which there was a 0.05 probability that the targets would be change
new randomly selected probability of arming. On a typical day we were able to exa
3–7 blocks of 90–125 plays.

Figure 13 shows the average behavior of the monkey subjects who demonstrate a
mate probability matching. More precisely, the probability that they will pick the left ta
is a linear function of the relative likelihood that the left target will be armed. The s
of the line is, in fact, expected to be slightly less than 1 to allow for over sampling o
probability reinforcements in order to maximize detection of block shifts (cf. Sutton
Barto, 1998) and this is exactly what we observed.

What we hoped to determine was not, however, anything about the global avera
havior of our subjects during probability matching. What we hoped to model was the
dynamics of the choice behavior by using our neurobiologically derived model. To do
we ran the model described above against exactly the same behavioral contingenc
a real monkey had encountered on a particular day and asked how closely the b
of the model predicted the behavior of the monkeys. In essence, we asked the m
make a one-step-ahead prediction of what the monkey would do under these con
Figure 14 shows a typical example of that prediction. The exponential averaging ra

the steepness of the stochastic transfer function were determined with a maximum likeli-
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Fig. 13. Monkey behavior on the two-alternative lottery. Subjects must select, on each play, between tw
natives with different, although cumulative, independent probabilities of yielding 0.25 ml of juice. The su
probability of making either response is a linear function of the ratio of reward rates. This has been show
an efficient strategy under these conditions. The experiment replicates earlier matching law studies of
and monkeys.

Fig. 14. Dynamic one-step-ahead prediction of the model shown in Fig. 12. Black line plots a 20 trial m
average of a subject’s choice behavior during three consecutive unsignaled blocks of plays. Red line p
dynamic behavior of the model.

hood nonlinear iterative fit. The vertical dashed lines show the 3 sequential blocks o
examined in this particular experiment. Notice that the model does a remarkably go
of capturing the dynamics of the real monkey.

The model we developed here would, of course, behave irrationally under some
tions. The computational process it employs does not directly compute expected u
but approximates them with a weighted average. As a result, if one were to obser
the monkeys rationally probability matched under some circumstances and irrational
sisted in probability matching under other conditions where this was inefficient, there
be no need to postulate different mechanisms for these two classes of behavior. Inste
might be able to propose a single identified mechanism for both classes of behavio

at heart, is the central goal of the neuroeconomic approach.
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5.3. Summary

Prescriptively, one can certainly define a rational strategy for a chooser who enco
these environmental conditions. Indeed, a number of psychologists and economis
presented analyses that specify rational behavioral responses to these conditions (F
1972; Staddon, 1980). At a descriptive level, one can also gather data demonstratin
how behavior under some conditions is well predicted by prescriptive models and
demonstrating ways in which observed behavior differs from the rational choice m
The advantage of the prescriptive model is its parsimony and efficiency, the advant
the descriptive model is its predictive power. The model presented in the preceding s
is in some ways a hybrid of these approaches. It begins by identifying the mechanis
rational choice and then builds from there to empirically identify the algorithms act
used to achieve choice behavior. While the model itself may be fairly unremarkabl
intermediate representations that it employs are not artificial constructs that may lac
simony, but instead the intermediate constructs aspire to represent real neural syste

It is also, of course, important to recognize that this is one of the simplest possible
els of this type. Neuroeconomics is in its infancy and the sophistication of the mode
employ reflects this fact. For example, we know that this model does a poor job o
dicting the behavior of either our monkeys or our human subjects during the insp
game. Clearly, this algorithm does not describe how physiological expected utilitie
computed during strategic games. We do not yet know how the dopamine neurons r
during strategic games, an observation that suggests that one way to begin to und
the dynamics of strategic decision-making would be to study the dopamine neurons
those conditions. Indeed a number of important experiments like this one suggest
selves, all experiments that can be done and which will constrain mechanistic explan
of choice behavior.

6. Generalizing neuroeconomic results to complex behaviors

Perhaps one of the most critical questions that these experiments raise is wheth
findings about decisions expressed by eye movements will generalize to more co
behavioral responses. Will future neurobiological studies reveal similar algorithms f
control of hand movements? How would hand movement and eye movement syste
teract and what can this tell us about how verbally expressed decisions are generate
even more important, how would tasks that require several sequential and inter-rela
cisions be represented in this architecture? These are absolutely critical questions
which we only have the first hints of understanding, but they are so critical to the long
significance of these results that we turn next to engage these issues.

6.1. Generalizing to humans

Over the last four years several research groups have begun to employ brain sc

technologies to search for area LIP in the human brain. Fortunately, an area has been



250 P.W. Glimcher et al. / Games and Economic Behavior 52 (2005) 213–256

move-
ologue
mongst
in the

e hy-
me of

onance
g and
2001;
y that

to the
seems
kers to

areas
2001;
f arm
h region
7) and
y, the
nd the

lready
ximally

in front
sits in
in or-
vement

dic eye
pressed

ell em-
ists it

simple
o begin
aking

look at
ted over

nts for
identified in the intraparietal sulcus of humans that is active before saccadic eye
ments. Work by Sereno et al. (2001) suggests that this area is the human hom
of area LIP. Perhaps even more encouraging is that it appears to be located a
a cluster of human movement-related areas that seem very similar to the areas
monkey intraparietal sulcus. A number of groups are now beginning to test th
pothesis that these areas participate in human decision making by replicating so
the monkey experiments we have described here using functional magnetic res
imaging, a brain scanning technique, in humans. Their results are very promisin
very similar to the available monkey literature (Sereno et al., 2001; Paulus et al.,
Connolly et al., 2002). While it is much too soon to be certain, it does seem very likel
the results we have described in monkeys will generalize to humans when it comes
control of saccadic eye movements. What about the control of arm movements? This
particularly important because most economic experiments ask human decision ma
respond by pressing buttons.

6.2. Generalizing to arm movements

We now know that in both monkeys and humans there are one or more brain
in parietal cortex adjacent to area LIP (Colby and Goldberg, 1999; Sereno et al.,
Connolly et al., 2002) that seem to play a critical role in the control of several types o
and hand movements. The best studied of these areas is probably the parietal reac
(Snyder et al., 2000), which has been described in both monkeys (Snyder et al., 199
humans (Connolly et al., 2002) and which lies very near to area LIP. In the monke
parietal reach region is active before monkeys make movements with their hands a
patterns of activity in this area seems to very closely parallel the patterns of activity a
described in area LIP. Each neuron in the parietal reach region seems to become ma
active before a reach to a particular location in the extrapersonal space immediately
of a subject. Snyder and colleagues, for example, have shown that when a monkey
front of a set of illuminated buttons and must decide which of those buttons to press
der to receive a reward, neurons in the parietal reach region seem to encode the mo
that the monkey is about to make just as neurons in LIP encode upcoming sacca
movements. Together these observations suggest that decision making, whether ex
by eye movement or hand movement, and whether in monkeys or humans, may w
ploy the same basic neural architecture. That is encouraging, but to many econom
still seems unlikely that these kinds of systems which make decisions about such
responses can be related to decisions about pension funds or market investments. T
to determine whether the kinds of insights we have already gained about decision m
can be generalized to explain much more complicated behavior one needs next to
the neural architecture by which complicated sequences of responses are genera
much longer periods of time.

6.3. Generalizing to behavioral sequences

In the case of movements produced with the skeletal muscular system, moveme

walking, bidding at auction, or even to some extent for speaking, three areas play a critical
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role in movement generation and these areas seem roughly analogous to the fron
field and superior colliculus: the primary motor cortex, the premotor cortex and the
plementary motor area. The primary motor cortex is the final common pathway for o
to the spinal circuits that control the arm and hand musculature directly. This area, i
receives projections from the premotor cortex and the supplementary motor area. B
premotor cortex and the supplementary motor areas receive projections from the p
areas we have examined here, but appear to perform different functions. The premo
seems to initiate simple single response movements of the type we have been dis
and it seems likely that when the parietal reach region triggers a movement it does
the premotor cortex. In contrast, when complex sequences of movements are pr
over an extended period the supplementary motor cortex seems to play a privilege
Under these conditions neurons in the premotor cortex are surprisingly silent and
specialized neurons in the supplementary motor area seem to generate the comple
iors that are composed of many independent movements (Tanji, 2001). While it is n
clear what form economic decision making will take in these areas, it seems plaus
assume that the same organizational principles will obtain; the parietal cortex may
very similar role in the control of these movements. While we have no idea how hu
make decisions about when to invest in their 401 k plans, the act of making that inves
involves an activation of the supplementary motor area, amongst other things.

6.4. Coordinating multiple brain areas in human decision making

Perhaps the most critical point that can be made when considering how these man
areas interact is to note that these multiple areas appear always to be both highly in
nected at an anatomical level and well coordinated at a physiological level. To ma
level of that coordination clear consider a simple eye movement task in which a m
subject will decide to look at the single red target presented amongst 7 green targe
presentation of these 8 visual stimuli leads to the transient activation of 8 groups of n
in the parietal cortex, in the frontal eye fields and in the superior colliculus. Over the c
of a few tenths of a second all three of these areas quickly suppress activity associat
the 7 green targets while activity associated with the red target is enhanced. Thes
distinct but heavily interconnected areas converge together towards a single solution
may be strong interactions between these areas, and there may even be circumst
which the areas initially provide conflicting signals (Curtis and D’Esposito, 2003) bu
areas largely converge together in order to ultimately activate the motor system at th
of the brainstem and spinal cord. There is no doubt that one of the principle chall
facing neuroeconomists will be to learn how this complex coordination is achieve
how these areas differ. Unfortunately, we know almost nothing about how to answer
questions today so any schema would be purely speculative.

7. General summary

One of the most critical points that we hope to have made to an economic audie

that there is no evidence that hidden inside the brain are two fully independent systems, one
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rational and one irrational. There is, for example, no evidence that there is an emo
system, per se, and a rational system, per se, for decision making at the neurobio
level. There is no evidence that some sort of primitive system exists which can wres
trol of the motor system from a more recently evolved (or uniquely human) system
neurobiologists this is a central point. This is such an important point, and one in wh
much acrimony has arisen between neurobiologists and economists that it requires
elaboration.

Recently, a number of economists have begun to suggest, at a psychological lev
human decision making can be broken down into two categories; typically rationa
irrational. At a formal economic level there really can be no challenge to this argume
least since Herbert Simon argued for satisficing this has been widely accepted in eco
circles, and since rational and irrational decision making are defined at the economi
this is an irrefutable point. These economists go on to argue that there is subjective p
experience that rational decision making can, at least under some conditions, be vie
the product of conscious introspection. Because of a widespread belief amongst
public that conscious experience resides uniquely in the cerebral cortex (a belief th
have its roots in the relatively recent evolutionary origin of that organ and a lay conv
that conscious experience is unique to humans) these economists speculate that rat
cision making must therefore be the product of the cerebral cortex. These economist
to further speculate that irrational decision making must therefore be the product of
other brain system. Typically, these economists argue that this other brain system m
evolutionarily more ancient because, it is presumed, animals with less complicated n
systems cannot possibly engage in the kinds of efficient rational decision making s
by economists. Based on recent neurobiological work which suggests that brain s
associated with emotion have a relatively ancient evolutionary origin, these econ
suggest that irrational behavior is the product of these ancient emotional systems
the brain.

What we cannot stress strongly enough is that the vast majority of evolutiona
ologists and neurobiologists reject this view. There are probably two principle re
that biologists reject this dualist view of the nervous system; one neurobiological an
behavioral. First there is no neurobiological evidence that emotional and non-emo
systems are fully distinct in the architecture of the primate brain. Second, there is
idence that rational and irrational behavior are the product of two distinct brain sys
one of which is uniquely rational and one of which is uniquely irrational.

7.1. Conclusion

One of the critical persistent issues in economics has been an inability to reconc
rational choice model at the core of modern economics with the fact that humans a
product of a 600 million year evolutionary lineage. We all recognize that non-huma
imals have limited mechanical and neural capacity. Fish that live in total darkness
neither eyes nor the neural architecture for vision. We all accept that even our c
living relatives, the great apes, face fundamental conceptual limitations that are pro
not apparent to them. But it has long been the central premise of economic thoug

humans are different from all of these other organisms. That humans rely on a more funda-
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mentally rational neural machinery and that this machinery, which economists pres
subjectively experienced as consciousness and which they often assume is mechan
located within the cerebral cortex, endows us with nearly perfect rationality.

In the last half century a number of influential economists have begun to challeng
assumption. These economists have argued that we must begin to recognize that o
lutionary heritage influences the actions that we take. Many of the decisions that we
they argue, may be inefficient because of that evolutionary history. Surprisingly, how
many of these same economists argue that an efficient model of human behavior w
to be two-tiered. There is, these economists accept from classical economic theory
damentally rational conscious decision maker within our skulls. This is, they presum
evolutionary development unique to our species which has arisen within the very
past. But there is also a second more ancient and mechanistic system, and when in
decision making occurs it can be attributed to the activity of this evolutionarily an
mechanism.

For many neurobiologists studying the mechanisms by which choice is accompl
this seems to be an oddly dualist approach to the physiology of mind. In the seven
century Descartes proposed that all of human behavior could be divided into two pri
classes and that each of these categories of behavior could be viewed as the pro
distinct processes. The first of those classes Descartes defined as those simple pre
behaviors which both humans and animals could express. Behaviors which pred
linked sensory stimuli with motor responses. Their simple deterministic nature sugg
to him that for these behaviors the sensory to motor connection lay within the ma
body, making those simple connections amenable to physiological study. For the s
class, behaviors in which no deterministic connection between sensation and acti
obvious, he followed Aristotle’s lead, identifying the source of these actions as the ra
but nonmaterial, soul.

Over the last several decades neurobiologists have begun to broadly reject thi
istic formulation for several reasons. First because there seems to be no physio
evidence that such a view can be supported and second because it seems to fl
face of evolutionary theory which forms the basis of modern biology. Instead, what s
to be emerging is a much more synthetic view in which economic theory can serve
core for a monist approach to understanding the behavior not just of simple organism
survive in narrowly defined environments but also for understanding the most comple
generalist of extant species, homo sapiens.

In sum, neuroeconomics seeks to unify the prescriptive and descriptive approac
relating evolutionary efficiencies to underlying mechanisms. Neoclassical economi
the utility theory on which it is based provide the ultimate set of tools for describing
efficient solutions; and evolutionary theory defines the field within which mechanis
optimized by neoclassical constraints; and neurobiology provides the tools for eluci
those mechanisms.

Over the past decade a number of researchers in both neuroscience and econom
begun to apply this approach to the study of decision making by humans and an
What seems to be emerging from these early studies is a remarkably economic view
primate brain. The final stages of decision making seem to reflect something very

like a utility calculation. The desireability, or physiological expected utility, of all available
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courses of action seem to be represented in parallel. Topographic maps of the physio
expected utilities of movements or actions seem to be the substrate upon which de
are actually made.

These representations, in turn, seem to be the product of many highly coordinate
circuits. Some of these brain circuits, like the dopamine neurons of the ventral tegm
area and the substantia nigra pars compacta, are already beginning to be describ
algorithms by which these circuits compute the economic variables from which phys
ical expected utilities are derived are now under intensive study. Indeed, several o
mechanistic studies are even now being used to make economic predictions about
havior of human and non-human primates both when that behavior follows, and w
deviates from, the prescriptive neoclassical model. Studies like these seem to be e
ing the mechanisms by which satisficing is accomplished and a critical advantage
approach to irrational behaviors is that once mechanism is understood, satisficing
become broadly predictable. In essence, neuroeconomics argues that it is mechanis
can serve as the bridge between the prescriptive and descriptive approaches that d
economics.

As early as 1898 the economist Thorstein Veblen made this point in an essay e
“Why is economics not an evolutionary science?” He suggested that in order to u
stand the economic behavior of humans one would have to understand the mechan
which those behaviors were produced (Veblen, 1898). More recently, the biologist W
(1998) and the economists Zak and Denzau (2001) have made a similar point. A
that a fusion of the social and natural sciences is both inevitable and desirable, Wils
suggested that this fusion will begin with a widespread recognition that economic
biology are two disciplines addressing a single subject matter. Ultimately, econom
a biological science. It is the study of how humans choose. That choice is inescap
biological process. Truly understanding how and why humans make the choices th
do will undoubtedly require a neuroeconomic science.
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