Modeling decisions

Note: many slides based on talk by Phil Holmes, Princeton
Moving dots decision task: Left or right?

Example of two-alternative decision task

Newsome, Movshon, Zohary, Shadlen, Gold, Britten … '90s and '00s

- Behavioral measures: reaction time (RT) distribution, error rate (ER).
- Neural measures: fMRI (humans), direct recordings in visual processing and motor areas (monkeys: MT, LIP, FEF).
Statistical hypothesis testing: discrimination among alternatives

Consider increments of time Δt_i

\[i = 1 \quad 2 \quad \ldots \quad \ldots \ldots \]

\[\Delta t_1 \quad \Delta t_2 \quad \ldots \ldots \ldots \]

- w_i = random string drawn from 2 distributions $p_1(w), p_2(w)$ representing i’th increment of evidence for hypotheses 1, 2 resp.

 e.g. w_i = ‘fraction of right-going dots observed’ over Δt_i

Task: given $\{w_i\}$, Was hyp. 1 or 2 true?
Partial (optimal) solution to "static" problem:
Max. likelihood based on a ‘single’ time interval

\[p_1(w_i) \quad \text{Choose H}_1, \text{“left”} \]
\[p_2(w_i) \quad \text{Choose H}_2, \text{“right”} \]

\[e.g. \, w_i = \text{‘fraction of right-going dots observed’} \, \text{over Delta } t_i \]
What about the DYNAMIC problem: decision?

Consider increments of time Δt_i

\[i = 1 \quad 2 \quad \ldots \ldots \]

\[\Delta t_1 \quad \Delta t_2 \quad \ldots \ldots \]

- w_i = random string drawn from 2 distributions $p_1(w), p_2(w)$ representing i’th increment of evidence for hypotheses 1, 2 resp.

Sequential Probability Ratio Test (SPRT): Wald, 1947

See review, Gold and Shadlen 2001

Consider the likelihood ratio

\[R_n = \prod_{i=1}^{n} \frac{p_1(w_i)}{p_2(w_i)} \]
SPRT: Fix thresholds \(Z_1 < 1 < Z_2 \) and continue observing as long as

\[
Z_1 < R_n < Z_2.
\]

As soon as

\[
R_n \leq Z_1 \Rightarrow \text{declare hyp 1 true,}
\]

or

\[
R_n \geq Z_2 \Rightarrow \text{declare hyp 2 true.}
\]

"Random walk"

\[
R_n = \prod_{i=1}^{n} \frac{p_1(w_i)}{p_2(w_i)}
\]
SPRT: Fix thresholds $Z_1 < 1 < Z_2$ and continue observing as long as $Z_1 < R_n < Z_2$.

As soon as

\[R_n \leq Z_1 \Rightarrow \text{declare hyp 1 true,} \]

or

\[R_n \geq Z_2 \Rightarrow \text{declare hyp 2 true.} \]

Let $E_j(N) =$ expected no. obs needed to declare hyp j true with specified error probabilities a_j, $j = 1, 2$.

Theorem (Wald, Barnard) Among all fixed sample or sequential tests, SPRT with error probabilities a_j minimises $E_j(N)$.

There are formulae for Z_j in terms of a_j.
Take logarithm to make SPRT an ‘additive’ test in time

\[x_n = \log(R_n) = \log \prod_{i=1}^{n} \frac{p_1(w_i)}{p_2(w_i)} = \sum \log \frac{p_1(w_i)}{p_2(w_i)} = \sum \delta I_i \]

E.g. If \(p_j \) are normal distributions,

\[p_j(w) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(w - \mu_j)^2}{2\sigma^2} \right], \]

a short calculation shows that:

\[E(\delta I_i) = \frac{(\mu_1 - \mu_2)^2}{\sigma^2} \overset{\text{def}}{=} A, \text{ if } w_i \text{ drawn from } p_1. \text{ (opposite sign if from } p_2) \]

\[\text{Var}(\delta I_i) = |\mu_2 - \mu_1| \overset{\text{def}}{=} D. \]

"Random walk"
Take logarithm to make SPRT an ‘additive’ test in time

\[x_n = \log(R_n) = \log \prod_{i=1}^{n} \frac{p_1(w_i)}{p_2(w_i)} \] (1)

\[= \sum \log \frac{p_1(w_i)}{p_2(w_i)} = \sum \delta I_i \] (2)

Choose H_1, “left” Choose H_2, “right”

Choose H_1, “left” Choose H_2, “right”

mean \sim n
std dev \sim \sqrt{n}
Take logarithm to make SPRT an ‘additive’ test in time

\[x_n = \log(R_n) = \log \prod_{i=1}^{n} \frac{p_1(w_i)}{p_2(w_i)} = \sum \log \frac{p_1(w_i)}{p_2(w_i)} = \sum \delta I_i \]

E.g. If \(p_j \) are normal distributions,

\[p_j(w) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(w - \mu_j)^2}{2\sigma^2} \right], \]

a short calculation shows that:

\[E(\delta I_i) = \frac{(\mu_1 - \mu_2)^2}{\sigma^2} \overset{\text{def}}{=} A, \text{ if } w_i \text{ drawn from } p_1. \text{ (opposite sign if from } p_2) \]

\[Var(\delta I_i) = |\mu_2 - \mu_1| \overset{\text{def}}{=} D. \]

Continuous time limit of random walk is **DRIFT-DIFFUSION MODEL**

\[\frac{dx}{dt} = \pm A + \sqrt{D} \eta(t) \quad \leftarrow \text{ noise term} \]

(e.g. “-A” if draw from \(p_2 \), i.e. hyp. 2)
4.1. Behavioral Evidence for DD process

[Ratcliff, 1978; Ratcliff et al 1999], SPRT Used by Laming 1968. With 5-7 adjustable parameters, can match individual subject RTs well.
4.1. Behavioral Evidence for DD process

[Ratcliff, 1978; Ratcliff et al 1999], SPRT Used by Laming 1968. With 5-7 adjustable parameters, can match individual subject RTs well.
4.1. Behavioral Evidence for DD process

[Ratcliff, 1978; Ratcliff et al 1999], SPRT Used by Laming 1968. With 5-7 adjustable parameters, can match individual subject RTs well.
4.2. Neural Evidence for DD process

LIP and FEF neural spike rates vs. time - evidence for crossing fixed threshold prior to response (saccade).

[Roitman + Shadlen ’02]
Neural basis of decisions: Shadlen, Schall, Newsome, Movshon, Gold, et al

- Task: saccade in the direction of movement
- MT: encode direction of movement
- LIP: Integrate noisy evidence

From: Schall, 2001; Shadlen & Newsome, 1996
Goal:

decide which of I_1 or I_2 is larger, i.e. compute $I_1 - I_2$
• ASIDE – where does noise come from?
Neural representation of incoming information fluctuates in time

mechanism 1: sensory scanning

```
ABABABBBBB
ABABBBBABAB
ABAABBABAAB
BBABABABABB
BABABABABABA
BBABBBABABA
```
Neural representation of incoming information fluctuates in time

mechanism 2: stimulus itself fluctuates

30% coherent

5% coherent

Bill Newsome
Neural representation of incoming information fluctuates in time

mechanism 3: *intrinsic fluctuations due to finite-size effects*

internal dynamics of neural populations are noisy …

(Wang, 2002)

<table>
<thead>
<tr>
<th>spikes in pop 1</th>
<th>spikes in pop 2</th>
</tr>
</thead>
</table>

(AND may be correlated: Zohary et al, Science 1996)
Back to problem at hand …

Goal:
decide which
of I_1 or I_2
is larger, i.e. compute
$I_1 - I_2$
Back to problem at hand …

$$I_1 = I_+ \text{ (+noise)}$$

$$I_2 = I_- \text{ (+noise)}$$

Time (i)

Would like to interpret as SPRT

$$p_1(w_i) \quad p_2(w_i)$$

$$w_i$$, increment of input over $$\Delta t_i$$

Issue: input is TWO-D.

Follow Gold/Shadlen, TINS 2001 to resolve.
Dynamics?

- Think of neural “units…” described by firing rates y which approach equilibrium rates $f(input)$ with time constant τ_m.

$$\tau_m \frac{dy}{dt} = -y + f(input)$$
Two inhibiting neural populations

Firing rates \((y_1, y_2)\) of competing neural pops... approach \(f(\text{input})\) with time constant \(\tau_m\).

\[
\tau_m \frac{dy_1}{dt} = -y_1 + f(-\beta y_2 + I_1(t))
\]

\[
\tau_m \frac{dy_2}{dt} = -y_2 + f(-\beta y_1 + I_2(t))
\]
Two-alternative choice task

Firing rates \((y_1, y_2)\) of competing neural pops...

Decision 1 or 2 made when firing rate \(y_1\) or \(y_2\) crosses threshold

\[
\begin{align*}
I_1 & \quad g & \quad input \\
I_2 & \quad \text{sensory evidence} & \quad \text{inhibn.} \\
\end{align*}
\]

\[
\begin{align*}
y_1 & \quad \text{noise} & \quad \text{inhibn.} \\
y_2 & \quad \text{noise} & \quad \text{crossing decision thresholds along the way.}
\end{align*}
\]
Two-alternative choice task

Firing rates \((y_1, y_2)\) of competing neural pops...

\(y_1\) \(\rightarrow\) inhibn. \(\rightarrow\) noise

\(y_2\) \(\rightarrow\) inhibn. \(\rightarrow\) noise

input \(\rightarrow\) sensing evidence

\(I_1\) \(\rightarrow\) g \(\rightarrow\) input

Decision 1 or 2 made when firing rate \(y_1\) or \(y_2\) crosses threshold

approach functions of their inputs,

crossing decision thresholds along the way.
Firing rates \((y_1, y_2)\) of competing neural pops...

\[
\begin{align*}
\frac{dy_1}{dt} &= -y_1 + f (-\beta y_2 + I_1 + \eta(t)) \\
\frac{dy_2}{dt} &= -y_2 + f (-\beta y_1 + I_2 + \eta(t))
\end{align*}
\]

Linearize:
\[
\begin{align*}
\frac{dy_1}{dt} &= -y_1 + g \ast (-y_2 + I_1 + \eta_1) \\
\frac{dy_2}{dt} &= -y_2 + g \ast (-y_1 + I_2 + \eta_2)
\end{align*}
\]

Subtract:
\[
\frac{dx}{dt} = -x + g \left(x + I_1 - I_2 \right) + g\eta(t)
\]

TUNE GAIN to \(g = 1\), define drift \(A = I_1 - I_2\)
\[
\frac{dx}{dt} = A + \eta(t)
\]

recover SPRT, optimal decision strategy
Firing rates \((y_1, y_2)\) of competing neural pops...

\[
\frac{d x}{d t} = -x + g(x + I_1 - I_2) + g\eta(t) \quad (1)
\]

TUNE GAIN to \(g = 1\), define drift \(A = I_1 - I_2\)

\[
\frac{d x}{d t} = A + \eta(t) \quad (2)
\]

recover SPRT, optimal decision strategy