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Role of Models

• Descriptive (what?)
• eg: tuning curves, receptive field, LNP

• Mechanistic (how?)
• eg: compartmental models, Hodgkin-Huxley

• Interpretive/Explanatory (why?)
• eg: efficient coding, optimal estimation/decision, 

wiring length, metabolic cost, etc

- Dayan & Abbott
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Interaction with Experiments
• Fit existing data 
• Make predictions... 

- for other neurons, under other conditions
- of mechanisms not yet understood (e.g., HH)
- of behavior
- in other animals/species
- that can be tested with new experiments....

• Develop new experiments...
- to refine model
- to differentiate models
- with optimized stimuli, to characterize cells



Descriptive Response Models
(outline)

• Receptive fields and tuning curves

• Linear models

• Rate models

• Wiener/Volterra (polynomial) models

• LN models

• Poisson spiking

• Fitting/validating LNP models



- Dayan & Abbott



Rate coding



Receptive Fields

• Classical: A region of the retina (visual field) 
that must be stimulated directly in order to 
obtain a response in a neuron

- Sherrington (1906), Hartline (1938), Kuffler 
(1953)



Receptive Fields

• Classical: A region of the retina (visual field) 
that must be stimulated directly in order to 
obtain a response in a neuron

- Sherrington (1906), Hartline (1938), Kuffler 
(1953)

• Modern generalization: Kernel that captures 
those attributes of the stimulus that generate/
modulate responses.  Often assumed linear.



- Dayan & Abbott, after Hubel & Wiesel ‘62



Estimating firing rates

- Dayan & Abbott
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Polynomial Model
 (Volterra/Weiner Kernels)

const vector matrix 3-tensor

1 n
(20)

n3
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n2
(400)

# pars:

•  in practice, insufficient data to go beyond 2nd order

r(!x) = k0 + !k1 · !x + !x
T
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Low-order polynomials do a poor job of 
representing the nonlinearities found in neurons



  

-3 -2 -1 0 1 2 3
-50

0

50

100

150

ra
te

 (
sp

/s
)

stimulus projection

Low-order polynomials do a poor job of 
representing the nonlinearities found in neurons



  

-3 -2 -1 0 1 2 3
-50

0

50

100

150

ra
te

 (
sp

/s
)

stimulus projection

true response
linear model
quad model

Low-order polynomials do a poor job of 
representing the nonlinearities found in neurons



• Threshold-like nonlinearity => linear classifier
• Classic model for Artificial Neural Networks
      - McCullough & Pitts (1943), Rosenblatt (1957), etc

• No spikes (output is firing rate)

LN cascade model



LNP cascade model
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• Simplest successful descriptive spiking model

• Easily fit to (extracellular) data

• Descriptive, and interpretable (although not mechanistic)



  

Geometric view of  Poisson models
1D stimulus over time 
(e.g., flickering bars)

• 8 x 6 stimulus block
       = 48-dimensional vector



  

s1

s2
raw stimuli

spiking stimuli

Geometric picture



  

Neural response is captured 
by relationship between the 
distribution of  red points 
(spiking stim) and blue 
points (raw stim)

Expressed in terms of 
Bayes’ rule:

s1

s2

P(spike|stim)   =
P(spike, stim)

P(stim)

Cannot be estimated directly



ML estimation of LNP

[on board]
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the likelihood of the LNP model is convex
(for all observed data,                   ) 
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ML estimation of LNP
fθ(!k · !x)If               is convex (in argument and theta), 

and log              is concave, 
the likelihood of the LNP model is convex
(for all observed data,                   ) 

fθ(!k · !x)

{n(t), !x(t)}

[Paninski, ’04]

Examples: e
(!k·!x(t))

(!k · !x(t))α, 1 < α < 2



Simple LNP fitting
• Assuming:

- stochastic stimuli, spherically distributed

- spike counts in small time bins (0,1)

- neural response is such that mean of 
spike-triggered ensemble is shifted

• Reverse correlation gives an unbiased 
estimate of k [on board]

• For exponential f, this is same as ML

- Bussgang 52; de Boer & Kuyper 68



  

Computing the STA

s1

s2
raw stimuli

spiking stimuli



  

STA corresponds to a “direction” in stimulus space 



  

Projecting onto the STA

P
(

spike(t) | !k · !s(t)
)

= P
(

spike(t) & !k · !s(t)
)

/P (!s(t))



  

Projecting onto the STA



  

STA response

Projecting onto the STA



  

STA response

Projecting onto the STA



  

Projecting onto an axis orthogonal to the STA
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Projecting onto an axis orthogonal to the STA



was an accelerating nonlinearity typical of the great majority of
RGCs recorded. Some saturation was also evident at high values
of the generator signal; this was commonly observed with high
contrast stimuli. Were RGC light responses linear in the present
conditions, the functions in Figure 3, B and D, would be linear.
The departure from this prediction indicates that the nonlinear
second stage of the LN model captured a significant feature of the
light response that can create systematic errors in a more restric-
tive linear analysis of adaptation (see below).

Response nonlinearity in RGCs does not depend
on contrast
To examine temporal contrast adaptation, RGC light responses
were characterized as above using random flicker stimuli of low
and high contrast. Thus, the stimulus that controlled the state of
adaptation was simultaneously used to probe light responses in
that state. Because the slowest known component of contrast
adaptation operates over tens of seconds (Fig. 2) (Smirnakis et
al., 1997; Kim and Rieke, 2001), responses from the first minute
of recording (more than three slow adaptation time constants)
(Fig. 2) at each contrast level were excluded to confine analysis to
the steady state.

Figure 4A shows low and high contrast STAs from a represen-
tative OFF cell. The corresponding nonlinearities are shown in
Figure 4B. Because the units of the generator signal in the LN
model are indeterminate, the linear filter in each condition is
known only up to a single, arbitrary scale factor. However, the
linear filters obtained with different contrasts can be meaning-

fully compared if scaling the amplitude of the high contrast linear
filter, and consequently scaling the abscissa of the high contrast
nonlinearity, brings the nonlinearities for low and high contrast
into register, as is shown in Figure 4D (see Materials and Meth-
ods for details). This superposition of nonlinearities in high and
low contrast implies that the changes in visual signaling caused by
contrast adaptation were attributable to changes in the linear
filter, shown in Figure 4C.

Figure 3. Characterization of light response in one ON cell (A, B) and
one OFF cell (C, D) simultaneously recorded in salamander retina. A, C,
The spike-triggered average L-cone contrast during random flicker stim-
ulation is plotted as a function of time relative to the spike. This is
proportional to the linear filtering of recent visual inputs. B, D, Spike rate
is shown as a function of the estimated generator signal (stimulus
weighted by linear filter), averaged over many time points during stimu-
lation. Vertical (horizontal) error bars indicate the SE of spike rate
(generator signal) for each such average; most error bars are smaller than
the symbols. Smooth curve is a parametrized form of the cumulative
normal distribution, shifted and scaled to fit the data. Stimulus: 33 Hz
binary random flicker, 34% L-cone contrast.

Figure 4. Effect of contrast adaptation on light responses in salamander
RGCs. A, STAs for a single OFF cell obtained with low (17%, black
trace) and high (34%, gray trace) contrast stimulation. Stimulus: 33 Hz
L-cone binary random flicker. B, Corresponding nonlinearities for low
contrast (E) and high contrast (!). Error bars represent !1 SEM (see Fig.
3). C, Linear filters: the low contrast STA, and the high contrast STA
scaled by 0.35, are shown with black and gray lines, respectively. The high
contrast filter obtained with linear analysis is shown with a dashed gray
line. For comparison with the low contrast filter, this was scaled so that its
peak divided by the peak of the low contrast filter equals the ratio of the
peaks of the high and low contrast filters obtained with linear analysis. D,
Superimposed nonlinearities from four repeats of low contrast stimula-
tion, and three repeats of high contrast stimulation with abscissa scaled by
0.35. E, Peak sensitivity (solid black) and time to zero crossing (dashed
gray) of the linear filter relative to the first low contrast filter for alter-
nating low and high contrast stimulation. F, Fractional change in peak
sensitivity and time to zero (relative to low contrast) for 24 simulta-
neously recorded cells including the cell in A–E.

9908 J. Neurosci., December 15, 2001, 21(24):9904–9916 Chander and Chichilnisky • Contrast Adaptation in Primate and Salamander Retina

input strength

- Chander & Chichilnisky 01
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LNP summary
• LNP is the defacto standard descriptive model, 

and is implicit in much of the experimental 
literature

• Accounts for basic RF properties
• Accounts for basic spiking properties (rate code)
• Easily fit to data
• Easily interpreted
• BUT, non-mechanistic, and exhibits striking 

failures (esp. beyond early sensory/motor) ...



• Symmetric nonlinearities and/or multi-
dimensional front-end (e.g., V1 complex cells)

LNP limitations 
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LNP limitations 

➡ Subspace LNP



Classic V1 models
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Figure 1: Multicell encoding model and parameter fits. a, Model schematic for two coupled neu-
rons: each cell has a stimulus filter (receptive field), post-spike filter, and “coupling filters” that
capture dependence on recent spikes in other neurons. Filter outputs are summed, passed through
an exponential nonlinearity, and generate spikes via an instantaneous (Poisson) spike generator. b,
Mosaics of 11 ON and 16 OFF retinal ganglion cell receptive fields (RFs), tiling a small region of
visual space. Ellipses represent 1 SD of a Gaussian fit to each RF center, and gray lines indicate an
underlying 4x4 lattice of stimulus pixels. (c-d), Paramaters fit to an example ON cell. c, Temporal
and spatial components of center (red) and surround (blue) filter components; the outer product of
these components gives center and surround spatiotemporal filters, whose difference is the full stim-
ulus filter. d, Exponentiated post-spike filter, which effectively multiplies the spike rate following a
spike at time zero. (Relative spike rate drops to zero following a spike and recovers with a slight
overshoot before settling to 1). e, Connectivity diagram and coupling filters (below) from other cells
in the network. Black filled ellipse is the cell’s RF center, and blue and red lines show connections
from neighboring OFF and ON cells (with coupling strength indicated by line thickness). Below,
exponentiated coupling filters show the multiplicative effect of a neighboring spike on instantaneous
spike rate. (f-h), Analagous plots for parameters of example OFF cell.

spiking history of other cells (Figure 1a). It is this functional coupling that allows the model to
capture response correlations above and beyond those induced by the stimulus, as it stochastic
spiking in one cell is able to influence the spiking activity in other cells on multiple timescales.

We fit the model to a population of 27 parasol retinal ganglion cells (RGCs), stimulated with
120-Hz spatiotemporal binary white noise (spatial flicker), recorded in vitro from a small patch of
macaque retina. The cells’ receptive fields (RFs), which can be divided into ON and OFF classes
based on the sign of their light responses, form two complete mosaics over a small region of visual
space (fig. 1b). The full model consists of stimulus and spike-history filters for each cell, plus
a total of 27 · 26 = 702 coupling filters (2 for each pair of cells), fit using maximum likelihood,
which is tractable due the model’s simple and well-behaved (i.e. log-concave) likelihood function
[8]. Using a likelihood-based “pruning” procedure, we were able to reduce the number of coupling
filters to a minimal sufficient set, which reduces the model’s computational complexity and provides
an estimate of the network’s functional connectivity [7] (see Methods).
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rons: each cell has a stimulus filter (receptive field), post-spike filter, and “coupling filters” that
capture dependence on recent spikes in other neurons. Filter outputs are summed, passed through
an exponential nonlinearity, and generate spikes via an instantaneous (Poisson) spike generator. b,
Mosaics of 11 ON and 16 OFF retinal ganglion cell receptive fields (RFs), tiling a small region of
visual space. Ellipses represent 1 SD of a Gaussian fit to each RF center, and gray lines indicate an
underlying 4x4 lattice of stimulus pixels. (c-d), Paramaters fit to an example ON cell. c, Temporal
and spatial components of center (red) and surround (blue) filter components; the outer product of
these components gives center and surround spatiotemporal filters, whose difference is the full stim-
ulus filter. d, Exponentiated post-spike filter, which effectively multiplies the spike rate following a
spike at time zero. (Relative spike rate drops to zero following a spike and recovers with a slight
overshoot before settling to 1). e, Connectivity diagram and coupling filters (below) from other cells
in the network. Black filled ellipse is the cell’s RF center, and blue and red lines show connections
from neighboring OFF and ON cells (with coupling strength indicated by line thickness). Below,
exponentiated coupling filters show the multiplicative effect of a neighboring spike on instantaneous
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spiking history of other cells (Figure 1a). It is this functional coupling that allows the model to
capture response correlations above and beyond those induced by the stimulus, as it stochastic
spiking in one cell is able to influence the spiking activity in other cells on multiple timescales.

We fit the model to a population of 27 parasol retinal ganglion cells (RGCs), stimulated with
120-Hz spatiotemporal binary white noise (spatial flicker), recorded in vitro from a small patch of
macaque retina. The cells’ receptive fields (RFs), which can be divided into ON and OFF classes
based on the sign of their light responses, form two complete mosaics over a small region of visual
space (fig. 1b). The full model consists of stimulus and spike-history filters for each cell, plus
a total of 27 · 26 = 702 coupling filters (2 for each pair of cells), fit using maximum likelihood,
which is tractable due the model’s simple and well-behaved (i.e. log-concave) likelihood function
[8]. Using a likelihood-based “pruning” procedure, we were able to reduce the number of coupling
filters to a minimal sufficient set, which reduces the model’s computational complexity and provides
an estimate of the network’s functional connectivity [7] (see Methods).
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➡ Recursive models (GLM) [paninski]
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[Truccolo et al ‘05;
Pillow et al ‘05]
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• Responses depend on spike history, other cells

• White noise doesn’t drive mid- to late-stage 
neurons well

LNP limitations 
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➡ Recursive models (GLM) [paninski lecture]



• Symmetric nonlinearities and/or multi-
dimensional front-end (e.g., V1 complex cells)

• Responses depend on spike history, other cells

• White noise doesn’t drive mid- to late-stage 
neurons well

LNP limitations 

➡ Subspace LNP [movshon lecture?]

➡ Recursive models (GLM) [paninski lecture]

➡ Specialized “afferent” stimuli [movshon lecture]
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