RL part 2
Levels of analysis

Marr’s (1982) hierarchy:

- **Computation**
 - interpretation: why?

- **Algorithm**

- **Implementation**
 - simulation: how?
Levels of analysis

Marr’s (1982) hierarchy:

Computation
interpretation: why?
eg expected utility theory

Algorithm

eg R/W learning

Implementation
simulation: how?
	eg dopamine, BG loops

\[\delta_t = r_t - V_t \]
Markov Decision Processes (MDPs)

• Sequential decision tasks
 – Like a maze
 – [state, action] → [reward, new state]
 – Can be stochastic

• Want to choose actions to optimize

\[
E \left[\sum_{\tau=t}^{\text{end}} r_\tau \right] \quad \text{or} \quad E \left[\sum_{\tau=t}^{\infty} \gamma^{\tau-t} r_\tau \right]
\]

where the expectation is over stochasticity in transitions & reward deliveries
Online policy learning

The task:

World: You are in state 34.
Your immediate reward is 3. You have 3 actions.

Robot: I’ll take action 2.

World: You are in state 77.
Your immediate reward is -7. You have 2 actions.

Robot: I’ll take action 1.

World: You’re in state 34 (again).
Your immediate reward is 3. You have 3 actions.
Choice in unknown MDPs

- General facts:
 - Algorithms exist that can asymptotically choose optimally
 - Very few guarantees during learning (explore/exploit, e.g. Kearns & Singh, 1998)
 - Only one special case really nailed (the Gittins index for n-armed bandit)
Markov Decision Processes

Sequential decision tasks

- Difficulty is optimizing long-term quantity
- ‘Credit assignment problem’
- Use prediction to simplify

As before:
1. Predict long-term value of action in state: ‘Q(s,a)’
2. Choose based on this
TD learning

What to do at A?
Define:
\[
Q(s_t, a) = E \left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots \right]
\]
\[
= E \left[r_t + \gamma Q(s_{t+1}, a_{t+1}) \right]
\]

So:
\[
\delta_t = r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \text{ should equal 0}
\]

2, if we went left

Q(B, right or left) eg 5

Use in R/W update rule as before:
\[
Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \eta \delta_t
\]
Behavior

TD *caches* values V or Q

Divorced from representation of specific outcome (like food)
 - This is a computationally simple approximation to explicit planning (about which, more later)

This approximation has *weird* consequences
 - e.g. should be blind (without retraining) to *changes in outcome value*
 - Satiety, illness etc.
Animals behave in accord with TD, sometimes

- Experiments, lesions suggest two parallel decision paths
- Broadly, striatum associated with TD and PFC with planning
- Lots more behavioral data on when the systems trade off
Lesions

- With lesion of dorsolateral striatum (also its DA input) rats acquire normally but never habitize

- Prefrontal areas, also dorsomedial striatum produce opposite pattern: even undertrained rats are habitual

Yin et al 2004
Some questions

(Daw, Niv, Dayan 2005)

• What is this second decision system?

• Why would there be two?

• How would you choose between them?
‘Model based’ RL

What would Bayes do?

1) Figure out which MDP obtains (‘world model’)
 • ie, being Bayesian, identify distribution over MDPs
 • P(state_{t+1}|state_t, action_t); P(r_t|state_t)
 • Easy! (just counting: Beta & Dirichlet distributions)

2) Solve it
 • ie compute Q(s,a): expected reward for actions in state
 • with respect to uncertainty in transitions, rewards, MDP
 • dynamic programming – explicit search through trajectories of states (cf Colin’s games, think of chess)
 • Hard!
Shortcuts

simplification #1: certainty equivalent
still asymptotically optimal
Shortcuts

simplification #2: pruning
not asymptotically optimal
Model-based RL

Advantage:
Statistically optimal use of experience (in principle)

Disadvantage:
Computationally prohibitive
In practice, pruning introduces error
This error persists even given infinite data

Psychology:
- cognitive model
- “goal-directed” behaviour

Neuroscience:
- prefrontal cortex & planning
- lesions implicate broader network (BLA, OFC?, etc)
approach 2: Model-free RL

- we’ve already seen:
 Temporal difference learning: Sample intermediate state value (‘bootstrapping’)

\[
Q(s_t,a_t) \leftarrow r_t + Q(s_{t+1},a_{t+1})
\]
Model-free RL

Advantage:
- Computationally simple
- Asymptotically optimal

Disadvantage:
- Sampling & bootstrapping are statistically inefficient when data are scarce

• Psychology:
 - Habitual behaviour

• Neuroscience:
 - Dopamine / TD, basal ganglia, addiction
Model-free vs model-based

- Two **different** shortcuts for obtaining the **same** quantities
 - Cached values sampled model-free from experience
 - Computed values from search through transition & reward model

- **Differentially accurate** in different circumstances
 - Model learning more accurate initially (data efficiency)
 - Sampling more accurate asymptotically (computational efficiency)

- Explains why have multiple systems, **when** to favor each
Behavioural experiment

Stage
1. training
(hungry)

initial state

approach magazine
cached Q=0

press lever
cached Q=1

...

nothing obtained r=0

food obtained r=1

initial state

approach magazine
computed Q=0

press lever
computed Q=1

food delivered
Behavioural experiment

Stage
1. training (hungry)

2. devaluation

initial state

- approach magazine cached $Q=0$
- press lever cached $Q=1$
- approach magazine computed $Q=0$

nothing obtained $r=0$

food delivered

- press lever computed $Q=0$
- approach magazine

food obtained $r=0$
Behavioural experiment

Stage
1. training (hungry)

2. devaluation

3. test

- Actions based on model will decline
- Actions based on model-free will persist
Suggested model

- Parallel controllers:
 - TD/caching (habits, dopamine/ striatum)
 - Tree search (goal-directed, PFC)

- Use each system when it is most accurate: Assess accuracy with uncertainty
 - Quantifies ignorance about true value (not risk)
 - Treat as evidence reconciliation problem
 - Can also treat decision theoretically (costs vs benefits of expanding tree)
Uncertainty

- Approximate values with distributional value iteration (e.g. Mannor et al. 2004)

- Values accumulate uncertainty through search from uncertainty about MDP (≈ error due to certainty equivalence)

- Pruning error modeled with fixed uncertainty per step

- Similar methods used for TD (Dearden et al. 1998)
Simulations

![Graph showing the relationship between uncertainty and rewarded trials, and the response rate relative to non-devalued conditions.]
Additionally

- Model-based RL more useful near horizon

- Statistical inefficiency of model-free RL more difficult to overcome in more complex tasks

→ Both factors should oppose habitization
Behavioural results

Lever Presses (Holland, 2004)

Magazine Behavior (Killcross and Coutureau, 2003)

Habituation with overtraining

... but not in tasks with multiple outcomes

... and not for actions proximal to reward
Behavoural results

Lever Presses (Holland, 2004)

Magazine Behavior (Killcross and Coutureau, 2003)

Data efficiency: overtraining and task complexity

Computational efficiency: search depth
Simulations

Leverpress

- **Cache**
- **Tree**

Magazine entry

- **Cache**
- **Tree**

Graphs showing the decrease in uncertainty over rewarded trials for Leverpress and Magazine entry. Bars represent response rate relative to non-devalued conditions.
Two actions/two outcomes

Distal (leverpress)

Proximal (magazine)

Uncertainty

Response rate relative to non-devalued

Rewarded trials

Non-devalued Devalued Non-devalued Devalued

Non-devalued Devalued Non-devalued Devalued

Non-devalued Devalued Non-devalued Devalued
Summary

• Dopaminergic learning for sequential choice

• Model-based RL as model of “cognitive” action control

• Why have two systems? Different approximations are appropriate to different circumstances
• When do animals use each system? Under those circumstances to which it is most appropriate.
• How could they determine this? Uncertainty.

Qs: Neural substrates for uncertainty (Ach? ACC?), arbitration (ACC?), dynamic programming (attractors?)