RL part 2

Levels of analysis

Marr's (1982) hierarchy:

Computation

interpretation: why?

Algorithm

Implementation

simulation: how?

Levels of analysis

Marr's (1982) hierarchy:

Computation

interpretation: why?

eg expected utility theory

Algorithm

eg R/W learning

$$\delta_{\rm t} = r_{\rm t} - V_{\rm t}$$

Implementation

simulation: how?

eg dopamine, BG loops

Markov Decision Processes (MDPs)

- Sequential decision tasks
 - Like a maze
 - [state,action]→[reward,new state]
 - Can be stochastic

Want to choose actions to optimize

$$Eiggl[\sum_{ au=t}^{end} r_{ au}iggr] \qquad ext{or} \qquad Eiggl[\sum_{ au=t}^{\infty} \gamma^{ au-t} r_{ au}iggr]$$

where the expectation is over stochasticity in transitions & reward deliveries

Online policy learning

The task:

World: You are in state 34.

Your immediate reward is 3. You have 3 actions.

Robot: I'll take action 2.

World: You are in state 77.

Your immediate reward is -7. You have 2 actions.

Robot: I'll take action 1.

World: You're in state 34 (again).

Your immediate reward is 3. You have 3 actions.

Choice in unknown MDPs

General facts:

- Algorithms exist that can asymptotically choose optimally
- Very few guarantees during learning (explore/exploit, eg Kearns & Singh, 1998)
- Only one special case really nailed (the Gittins index for narmed bandit)

Markov Decision Processes

Sequential decision tasks

- Difficulty is optimizing long-term quantity
- 'Credit assignment problem'
- Use prediction to simplify

As before:

- 1. Predict long-term value of action in state: 'Q(s,a)'
- 2. Choose based on this

TD learning

What to do at A?

Define:

$$Q(s_{t}, a) = E \left[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots \right]$$

$$= E \left[r_{t} + \gamma Q(s_{t+1}, a_{t+1}) \right]$$

So:

$$\delta_t = r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \text{ should equal } 0$$

2, if we went left

Q(B,right or left) eg 5

Use in R/W update rule as before:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \eta \delta_t$$

Behavior

TD caches values V or Q

Divorced from representation of specific outcome (like food)

 This is a computationally simple approximation to explicit planning (about which, more later)

This approximation has weird consequences

- e.g. should be blind (without retraining) to changes in outcome value
- Satiety, illness etc.

Test

Animals behave in accord with TD, sometimes

- Experiments, lesions suggest two parallel decision paths
- · Broadly, striatum associated with TD and PFC with planning
- Lots more behavioral data on when the systems trade off

Lesions

- With lesion of dorsolateral striatum (also its DA input) rats acquire normally but never habitize
- Prefrontal areas, also dorsomedial striatum produce opposite pattern: even undertrained rats are habitual

Some questions

(Daw, Niv, Dayan 2005)

What is this second decision system?

Why would there be two?

How would you choose between them?

'Model based' RL

What would Bayes do?

- 1) Figure out which MDP obtains ('world model')
 - ie, being Bayesian, identify distribution over MDPs
 - P(state_{t+1}|state_t,action_t); P(r_t|state_t)
 - Easy! (just counting: Beta & Dirichlet distributions)
- 2) Solve it
 - ie compute Q(s,a): expected reward for actions in state
 - with respect to uncertainty in transitions, rewards, MDP
 - dynamic programming explicit search through trajectories of states (cf Colin's games, think of chess)
 - Hard!

Shortcuts

simplification #1: certainty equivalent still asymptotically optimal

shock r=-5 food r=1

Shortcuts

simplification #2: pruning not asymptotically optimal

Model-based RL

Psychology:

- cognitive model
- "goal-directed" behaviour

Neuroscience:

- prefrontal cortex & planning
- lesions implicate broader network (BLA, OFC?, etc)

Advantage:

Statistically optimal use of experience (in principle)

Disadvantage:

Computationally prohibitive In practice, pruning introduces error

This error persists even given infinite data

approach 2: Model-free RL

we've already seen:
 Temporal difference
 learning: Sample
 intermediate state value
 ('bootstrapping')

$$Q(s_t, a_t) \leftarrow r_t + Q(s_{t+1}, a_{t+1})$$

Model-free RL

- Psychology: Habitual behaviour
- Neuroscience:
 Dopamine / TD, basal ganglia, addiction

Advantage:

Computationally simple Asymptotically optimal

Disadvantage:

Sampling & bootstrapping are statistically inefficient when data are scarce

Model-free vs model-based

- Two different shortcuts for obtaining the same quantities
 - Cached values sampled model-free from experience
 - Computed values from search through transition & reward model
- Differentially accurate in different circumstances
 - Model learning more accurate initially (data efficiency)
 - Sampling more accurate asymptotically (computational efficiency)
- Explains why have multiple systems, when to favor each

Behavioural experiment

Behavioural experiment

Behavioural experiment

Suggested model

- Parallel controllers:
 - TD/caching (habits, dopamine/striatum)
 - Tree search (goal-directed, PFC)
- Use each system when it is most accurate: Assess accuracy with uncertainty
 - Quantifies ignorance about true value (not risk)
 - Treat as evidence reconciliation problem
 - Can also treat decision theoretically (costs vs benefits of expanding tree)

Uncertainty

- Approximate values with distributional value iteration (e.g. Mannor et al. 2004)
- Values accumulate uncertainty through search from uncertainty about MDP (~ error due to certainty equivalence)
- Pruning error modeled with fixed uncertainty per step
- Similar methods used for TD (Dearden et al. 1998)

Simulations

Additionally

Model-based RL more useful near horizon

 Statistical inefficiency of model-free RL more difficult to overcome in more complex tasks

→ Both factors should oppose habitization

Behavioural results

... and not for actions proximal to reward

Behavioural results

Computational efficiency: search depth

Simulations

Two actions/two outcomes

Summary

- Dopaminergic learning for sequential choice
- Model-based RL as model of "cognitive" action control
- Why have two systems? Different approximations are appropriate to different circumstances
- When do animals use each system? Under those circumstances to which it is most appropriate.
- How could they determine this? Uncertainty.

Qs: Neural substrates for uncertainty (Ach? ACC?), arbitration (ACC?), dynamic programming (attractors?)