RL part 2



Levels of analysis
Marr's (1982) hierarchy:

Computation
interpretation: why?

Algorithm

Implementation
simulation: how?



Levels of analysis
Marr's (1982) hierarchy:

Computation eq expected
interpretation: why? utility theory

Algorlthm eg R/W learning o =r.- VY,

Putamen) _

Implementation

eg dopamine, r e
simulation: how? BG loops : .




Markov Decision Processes

(MDPs)
. ntial ISI
Seque tial decision tasks _ @ %LE
— Like a maze 0 2| 1,
— [state,action]—[reward,new state] lTl
— Can be stochastic enter

* Want to choose actions to optimize
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where the expectation is over stochasticity in
transitions & reward deliveries



Online policy learning

The task:

World: You are in state 34.

Your immediate reward is 3. You have 3 actions.
Robot: I'll take action 2.

World: You are in state 77.

Your immediate reward is -7. You have 2 actions.
Robot: [I'll take action 1.

World: You're in state 34 (again).
Your immediate reward is 3. You have 3 actions.



Choice in unknown MDPs

* General facts:
— Algorithms exist that can asymptotically choose optimally

— Very few guarantees during learning (explore/exploit, eg
Kearns & Singh, 1998)

— Only one special case really nailed (the Gittins index for n-
armed bandit)



Markov Decision Processes
Sequential decision tasks

. Difficulty is optimizing 1
long-term quantity 2 rp :

* 'Credit assignment enter
problem’

* Use prediction to simplify

As before:

1. Predict long-term value of action in state:
‘Q(s,a)’
2. Choose based on this



1D learning

What to do at A?

Define:
5] 0
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So:
5t =nT VQ(SHI? az+1) _Q(Staat) should equal 0

N

2, if we went left Q(B,right or left) eg 5

Use in R/W update rule as before:

(s,,a,) < (s,,a,)+no,



Behavior

TD caches values Vor Q

Divorced from representation of specific outcome
(like food)

— This is a computationally simple approximation to
explicit planning (about which, more later)

This approximation has weird consequences

— e.g. should be blind (without retraining) to changes
In outcome value

— Satiety, illness etc.



Stage
‘-..__‘__
1. training I ) 10
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2. devaluation 0% '
tion e fy—>
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3. test ':f_ moderate extensive
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(Holland, 2004)

Animals behave in accord with TD, sometimes

« Experiments, lesions suggest two parallel decision paths
 Broadly, striatum associated with TD and PFC with planning
 Lots more behavioral data on when the systems trade off



Lesions

B Devalued
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Some questions

(Daw, Niv, Dayan 2005)
* What is this second decision system?
* Why would there be two?

 How would you choose between them?



‘Model based’ RL

What would Bayes do?

1) Figure out which MDP obtains (‘world model’)
* e, being Bayesian, identify distribution over MDPs
«  P(state,,|state,action,); P(r,state,)
«  Easy! (just counting: Beta & Dirichlet distributions)

2) Solve it

e compute Q(s,a): expected reward for actions in state
. with respect to uncertainty in transitions, rewards, MDP

« dynamic programming — explicit search through trajectories of
states (cf Colin’s games, think of chess)

. Hard!



still asymptotically optimal

Shortcuts

simplification #1: certainty equivalent

H

pull press

chain lever
(
pull press
Chai; i lever



Shortcuts

simplification #2: pruning
not asymptotically optimal

X

X

&

pull press
chain lever
( S i press

lever

press
lever

pull press

chain lever
(
pull press
Chai; i lever



Model-based RL
VAN

N ™, Advantage:
o Statistically optimal use of

experience (in principle)

Disadvantage:
Computationally prohibitive

Psychology: In practice, pruning

— cognitive model introduces error

— “goal-directed” behaviour This error persists even
Neuroscience: given infinite data

— prefrontal cortex & planning

— lesions implicate broader
network (BLA, OFC?, etc)



approach 2: Model-free RL

« we've already seen:
Temporal difference
learning: Sample
iIntermediate state value
(‘bootstrapping’)

ﬁ press

lever

press

lever
-+ stored
Q=1

Q(s,a;) €1, + Q(S;41,8441)



Model-free RL

S e el A
CS R

* Psychology:
Habitual behaviour

* Neuroscience:
Dopamine / TD, basal
ganglia, addiction

Advantage:
Computationally
simple
Asymptotically
optimal

Disadvantage:
Sampling &
bootstrapping are
statistically inefficient
when data are scarce



Model-free vs model-based

« Two different shortcuts for obtaining the same quantities
— Cached values sampled model-free from experience
— Computed values from search through transition & reward model

 Differentially accurate in different circumstances
— Model learning more accurate initially (data efficiency)
— Sampling more accurate asymptotically (computational efficiency)

« Explains why have multiple systems, when to favor each



Behavioural experiment

L initial
initial state
state

Stage
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Behavioural experiment

initial
state

press approach press
lever magazine lever
cachedcomputed computed
Q=1

SJflag’(:rainin <3 initial
" (hungry) ey — state

approach
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Q=0

approach
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Behavioural experiment

Stage initial

initial

1. trainin 2 %0 state
(ungry) oy TrCED state
approach press approach press
i %o - i lever magazine lever
2. devaluation o5~ —p @ magazine
T cached cached
Q=0 Q=1 =0
<7,
3.t = ? )
ot ‘J_> . nothing food
obtained|delivere
=0
approach
magazine

* Actions based on model will decline
 Actions based on model-free will persist




Suggested model

« Parallel controllers:
— TD/caching (habits, dopamine/striatum)
— Tree search (goal-directed, PFC)

 Use each system when itis
most accurate: Assess
accuracy with uncertainty

— Quantifies ignorance about est.
true value (not risk) leverpress

value
— Treat as evidence
reconciliation problem

— Can also treat decision
theoretically (costs vs benefits
of expanding tree)

More reliable
value controls
behavior

cache tree




Uncertainty

S, Initial state

Approximate values with _. Press . :
distributional value lever
I I A h
g?rgggz)(e.g. Mannor et At

' \- )
Values accumulate
uncertainty through s _ N
search from uncertainty S, Food delivered S, No reward

about MDP (~ error due to
certainty equivalence)

_

with fixed uncertainty per

Pruning error modeled V 7N
step

N )
S, No reward S, Food obtained

Similar methods used for
TD (Dearden et al. 1998) L




Simulations
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Additionally

 Model-based RL more useful near horizon

 Statistical inefficiency of model-free RL
more difficult to overcome in more
complex tasks

— Both factors should oppose habitization



Behavioural results
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Habitisation with overtraining
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... and not for actions proximal to reward



Behavioural results

Lever Presses Magazine Behavior
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Data efficiency: overtraining and task complexity

Computational efficiency: search depth



Simulations
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Two actions/two outcomes

Distal (leverpress)
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Summary

« Dopaminergic learning for sequential choice
 Model-based RL as model of “cognitive™ action control

« Why have two systems? Different approximations are
appropriate to different circumstances

« When do animals use each system? Under those
circumstances to which it is most appropriate.

« How could they determine this? Uncertainty.

Qs: Neural substrates for uncertainty (Ach? ACC?),
arbitration (ACC?), dynamic programming (attractors?)



