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• Standard block matching estimates disparity by searching for matching 
blocks of pixels in the ‘left’ and ‘right’ images. But:
• Raw pixels are noisy; uninformative variance
• Standard block matching neglects local dependencies

Convolutional Neural Network (CNN):
• In biological vision, stimuli are transformed into a psychological space 

before disparity computation 
• Important to first decompose the signal, e.g. into orientation and 

frequency subbands.
• We use a pre-trained CNN to extract feature maps from the two images, 

then perform stereo matching with the features
Conditional Random Field (CRF):
• The disparities are expected to be piecewise smooth since most surfaces 

are smooth.
• MAP inference options: 1) loopy BP   2) greedy gradient-descent

• The brain uses the relative difference between signals from left and right eyes (binocular disparity) to perceive depth
• We present a powerful computational framework for decoding depth from stereo vision using Convolutional Neural Networks and Conditional Random Fields
• Our method requires zero labeled training data
• We are releasing an open-source code repository with highly efficient, modularized Python implementations of the disparity computation algorithm1

• Compare Belief Propagation to other Inference Methods e.g. Gibbs Sampling, Variational Inference
• Augment our stereo matching algorithm to handle occlusions in either the left or the right image
• Incorporate image segmentation results into our basic stereo model as soft constraints (priors) under a probabilistic framework
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1. Loopy belief propagation (20 iterations)

• MAP: max-product message passing

• Marginal modes: sum-product message passing

• Slow algorithm, best results

2. Greedy stochastic gradient descent (100 iterations)

• Very fast, slightly worse results

Inference Algorithms:
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Method Mean Spearman Corr. Mean Pearson Corr.

Block matching 0.304 +/- 0.109 0.222 +/- 0.100

CNN 0.787 +/- 0.110 0.700 +/- 0.159

CNN + CRF 0.801 +/ 0.112 0.732 +/- 0.157

*rho values show the Spearman correlation with ground truth

Code Demo

1. Select N, the number of disparity values to 

consider. Set this large for now

2. Obtain features for L and R images via (1)
3. For n = 1:N, do

1. Shift left eye feature map by n pixels

2. Compute E
n

using eq. (2)
4. Convert E from shape [N, h, w] to [N, H, W] 

via bilinear interpolation. Return E

A. Disparity Energy Computation
1. For n = 1:N, do

1. Set E = E
1:n

(look at first n elements of E)

2. For each pixel location {i,j}, compute an 

uncertainty score for that location by 

applying eq. (3) to the n-length vector e
ij
. 

Store uncertainties as U
n

2. Select n with the least high-uncertainty 

pixels; i.e., choose U
n

with lowest 75
th

percentile uncertainty

B. Threshold Selection
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Image CNN Features

Shape:  [H, W, 3]
Shape: [h, w, 128]

(h = H/2, w = W/2)
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Return E1:threshold. These are initial beliefs for each pixel, i.e. disparity probabilities
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https://github.com/rfeinman/manifold-learning 1/1

from disparity import cnn, mrf, util 
 
# Create a function to load your left and right image. 
image_left, image_right = load_images() 
height, width, _ = image_left.shape 
 
# Compute disparity energies for a left-right image pair. 
# This returns an array of size (height, width, numDisparities) 
energies = cnn.compute_energies(image_left, image_right, numDisparities=120) 
 
# Select an optimal disparity threshold based on energy entropy 
threshold = util.select_disparity_threshold(energies) 
energies = energies[:,:,:threshold] 
 
# Initialize MRF loopy belief propagation model 
smoother = mrf.LoopyBP(height, width, num_beliefs=threshold) 
 
# Perform MAP inference with loopy BP (max-product message passing) 
disparity = smoother.decode_MAP(energies, iterations=20)
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1
Python package is available for download at https://github.com/rfeinman/binocular-disparity

Avoids over-smoothing at 
surface boundaries!
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Uncertainty(~e) =
H(~e)

max~e 0 H(~e 0)
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(3)

normalize entropy across cardinalities

Y: observation X: latent variable

https://github.com/rfeinman/binocular-disparity

