
Reuben Feinman, Ambuj Ojha

• Standard block matching estimates disparity by searching for matching
blocks of pixels in the ‘left’ and ‘right’ images. But:
• Raw pixels are noisy; uninformative variance
• Standard block matching neglects local dependencies

Convolutional Neural Network (CNN):
• In biological vision, stimuli are transformed into a psychological space

before disparity computation
• Important to first decompose the signal, e.g. into orientation and

frequency subbands.
• We use a pre-trained CNN to extract feature maps from the two images,

then perform stereo matching with the features
Conditional Random Field (CRF):
• The disparities are expected to be piecewise smooth since most surfaces

are smooth.
• MAP inference options: 1) loopy BP 2) greedy gradient-descent

• The brain uses the relative difference between signals from left and right eyes (binocular disparity) to perceive depth
• We present a powerful computational framework for decoding depth from stereo vision using Convolutional Neural Networks and Conditional Random Fields
• Our method requires zero labeled training data
• We are releasing an open-source code repository with highly efficient, modularized Python implementations of the disparity computation algorithm1

• Compare Belief Propagation to other Inference Methods e.g. Gibbs Sampling, Variational Inference
• Augment our stereo matching algorithm to handle occlusions in either the left or the right image
• Incorporate image segmentation results into our basic stereo model as soft constraints (priors) under a probabilistic framework

Abstract

Model Overview

Convolutional Neural Network

Results: CNN + Loopy BP

Future Work

Conditional Random Field

CNN

features

CNN

features

Left eye image

Right eye image

Stereo

Matching

Step 3: Conditional

Random Field smoothing

Step 1: CNN feature

map extraction

Step 2: Local stereo

matching in CNN

feature space

Y = observable variables

(e.g. local stereo disparity)

X = latent variables

(e.g. ground truth depth)

!

" #$ − #&

'$&

'$ = (#$ − *$), Unary potentials

Binary potentials

1. Loopy belief propagation (20 iterations)

• MAP: max-product message passing

• Marginal modes: sum-product message passing

• Slow algorithm, best results

2. Greedy stochastic gradient descent (100 iterations)

• Very fast, slightly worse results

Inference Algorithms:

'$& = ! ∗ (#$ − #&),
(#$ − #&),+"

Right Eye

Image

Block Matching

Disparity

CNN

Disparity

CNN + CRF

Disparity

Ground Truth

Depth

Method Mean Spearman Corr. Mean Pearson Corr.

Block matching 0.304 +/- 0.109 0.222 +/- 0.100

CNN 0.787 +/- 0.110 0.700 +/- 0.159

CNN + CRF 0.801 +/ 0.112 0.732 +/- 0.157

*rho values show the Spearman correlation with ground truth

Code Demo

1. Select N, the number of disparity values to

consider. Set this large for now

2. Obtain features for L and R images via (1)
3. For n = 1:N, do

1. Shift left eye feature map by n pixels

2. Compute E
n

using eq. (2)
4. Convert E from shape [N, h, w] to [N, H, W]

via bilinear interpolation. Return E

A. Disparity Energy Computation
1. For n = 1:N, do

1. Set E = E
1:n

(look at first n elements of E)

2. For each pixel location {i,j}, compute an

uncertainty score for that location by

applying eq. (3) to the n-length vector e
ij
.

Store uncertainties as U
n

2. Select n with the least high-uncertainty

pixels; i.e., choose U
n

with lowest 75
th

percentile uncertainty

B. Threshold Selection

2

6664

~v11 ~v12 . . . ~v1w
~v21 ~v22
...

. . .
~vh1 ~vhw

3

7775

1

Image CNN Features

Shape: [H, W, 3]
Shape: [h, w, 128]

(h = H/2, w = W/2)

Feature

extraction

(1)

2

6664

~v11 ~v12 . . . ~v1w
~v21 ~v22
...

. . .
~vh1 ~vhw

3

7775

Energyij =
�� ~vi,j

L � ~vi,j
R
��
2

(1)

1

(2)

Return E1:threshold. These are initial beliefs for each pixel, i.e. disparity probabilities

12/17/2018 rfeinman/manifold-learning

https://github.com/rfeinman/manifold-learning 1/1

from disparity import cnn, mrf, util

Create a function to load your left and right image.
image_left, image_right = load_images()
height, width, _ = image_left.shape

Compute disparity energies for a left-right image pair.
This returns an array of size (height, width, numDisparities)
energies = cnn.compute_energies(image_left, image_right, numDisparities=120)

Select an optimal disparity threshold based on energy entropy
threshold = util.select_disparity_threshold(energies)
energies = energies[:,:,:threshold]

Initialize MRF loopy belief propagation model
smoother = mrf.LoopyBP(height, width, num_beliefs=threshold)

Perform MAP inference with loopy BP (max-product message passing)
disparity = smoother.decode_MAP(energies, iterations=20)

70b714b

1
Python package is available for download at https://github.com/rfeinman/binocular-disparity

Avoids over-smoothing at
surface boundaries!

2

6664

~v11 ~v12 . . . ~v1w

~v21 ~v22
...

. . .
~vh1 ~vhw

3

7775

Energyij =
�� ~vi,j

L � ~vi,j
R
��
2

(1)

Uncertainty(~e) =
H(~e)

max~e 0 H(~e 0)
(2)

1

(3)

normalize entropy across cardinalities

Y: observation X: latent variable

https://github.com/rfeinman/binocular-disparity

