1. Select N, the number of disparity values to

2. Obtain features for L and R images via (1)
3. Forn=1:N, do

4. Convert E from shape [N, h, w] to [N, H, W]
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Abstract

Our method requires zero labeled training data

The brain uses the relative difference between signals from left and right eyes (binocular disparity) to perceive depth
We present a powerful computational framework for decoding depth from stereo vision using Convolutional Neural Networks and Conditional Random Fields

We are releasing an open-source code repository with highly efficient, modularized Python implementations of the disparity computation algorithm!

IPython package is available for download at https://github.com/rfeinman/binocular-disparity

Model Overview

* Standard block matching estimates disparity by searching for matching
blocks of pixels 1n the ‘left’ and ‘right’ 1mages. But:
* Raw pixels are noisy; uninformative variance
* Standard block matching neglects local dependencies
Convolutional Neural Network (CNN):
* In biological vision, stimuli are transformed 1nto a psychological space
betore disparity computation
* Important to first decompose the signal, e.g. into orientation and
frequency subbands.
* We use a pre-trained CNN to extract feature maps from the two 1mages,
then perform stereo matching with the features
Conditional Random Field (CRF):
* The disparities are expected to be piecewise smooth since most surfaces
are smooth.
* MAP inference options: 1) loopy BP 2) greedy gradient-descent
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B. Threshold Selection

1. Forn=1:N, do
1.Set E = E,., (look at first n elements of E)
2. For each pixel location {i,j}, compute an
uncertainty score for that location by
applying eq. (3) to the n-length vector e
Store uncertainties as U,
2. Select n with the least high-uncertainty
pixels; i.e., choose U, with lowest 75t
percentile uncertainty

A. Disparity Energy Computation

consider. Set this large for now

1. Shift left eye feature map by n pixels
2. Compute E, using eq. (2)

via bilinear interpolation. Return E

Return Eq.thresholg- These are initial beliefs for each pixel, i.e. disparity probabilities

Left eye image

pr (L7

Step 3: Conditional
Random Field smoothing

Step 2: Local stereo
matching in CNN
feature space

Step 1: CNN feature
map extraction |

Y = observable variables
W& e.g. local stereo disparit
! CNN (e.g parity)
e \
features N
\
Y
#
/
/
/
CNN /) _
ot me X = latent variables

(e.g. ground truth depth)

Conditional Random Field

}i; Y: observation X: latent variable
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff a
d; = (x; —y;)? Unary potentials
;i = o * (i —%)° Bi tential
j = inary potentials
J (i —x)%+p P

-

Inference Algorithms:

Avoids over-smoothing at
surface boundaries!

1. Loopy belief propagation (20 iterations)
e MAP: max-product message passing
 Marginal modes: sum-product message passing
* Slow algorithm, best results

2. Greedy stochastic gradient descent (100 iterations)
* Very fast, slightly worse results

Results: CNN + Loopy BP

CNN + CRF
Disparity
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Method

Mean Spearman Corr. Mean Pearson Corr.

Block matching

0.304 +/- 0.109 0.222 +/-0.100

CNN

0.787 +/-0.110 0.700 +/- 0.159

CNN + CRF

0.801 +/0.112 0.732 +/- 0.157

Code Demo

from disparity import cnn, mrf, util

# Create a function to load your left and right image.
image_left, image_right
height, width, _

# Compute disparity energies for a left-right image pair.
# This returns an array of size (height, width, numDisparities)
cnn.compute_energies(image_left, image_right, numDisparities=120)

energies

# Select an optimal disparity threshold based on energy entropy
threshold = util.select_disparity_threshold(energies)
energies|[:,:, :threshold]

energies

# Initialize
smoother

# Perform MAP inference with loopy BP (max—-product message passing)
disparity = smoother.decode_MAP(energies, iterations=20)

mrf.LoopyBP(height, width, num beliefs=threshold)

load_images()
image_left.shape

MRF loopy belief propagation model

*rho values show the Spearman correlation with ground truth

Future Work

* Compare Belief Propagation to other Inference Methods e.g. Gibbs Sampling, Variational Inference
* Augment our stereo matching algorithm to handle occlusions in either the left or the right image
* Incorporate image segmentation results into our basic stereo model as soft constraints (priors) under a probabilistic framework



https://github.com/rfeinman/binocular-disparity

