Stereopsis with Convolutional Neural Networks and Conditional Random Fields

Reuben Feinman, Ambuj Ojha

Abstract

- The brain uses the relative difference between signals from left and right eyes (binocular disparity) to perceive depth
- We present a powerful computational framework for decoding depth from stereo vision using Convolutional Neural Networks and Conditional Random Fields
- Our method requires zero labeled training data
- We are releasing an open-source code repository with highly efficient, modularized Python implementations of the disparity computation algorithm¹

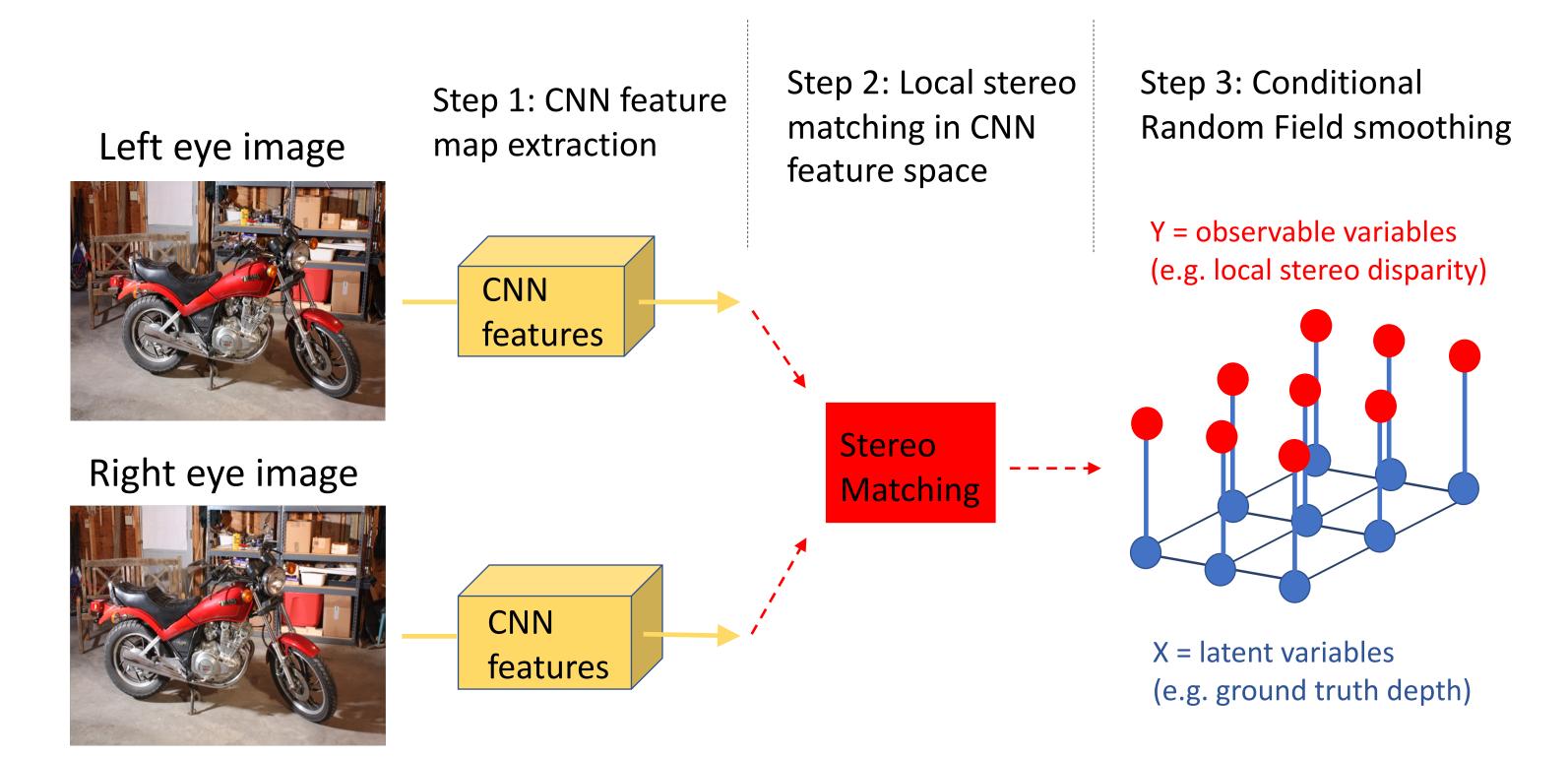
¹Python package is available for download at <u>https://github.com/rfeinman/binocular-disparity</u>

Model Overview

- Standard block matching estimates disparity by searching for matching blocks of pixels in the 'left' and 'right' images. But:
 - Raw pixels are noisy; uninformative variance
 - Standard block matching neglects local dependencies

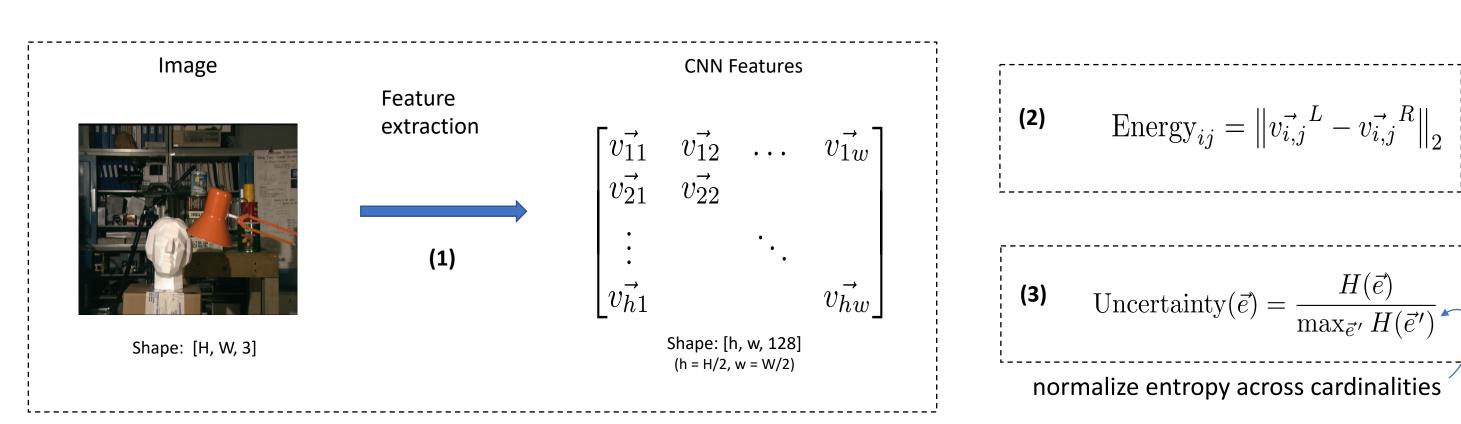
Convolutional Neural Network (CNN):

- In biological vision, stimuli are transformed into a psychological space before disparity computation
- Important to first decompose the signal, e.g. into orientation and frequency subbands. • We use a pre-trained CNN to extract feature maps from the two images, then perform stereo matching with the features



Conditional Random Field (CRF):

- The disparities are expected to be piecewise smooth since most surfaces are smooth.
- MAP inference options: 1) loopy BP 2) greedy gradient-descent



A. Disparity Energy Computation

1. Select N, the number of disparity values to

2. Obtain features for L and R images via (1)

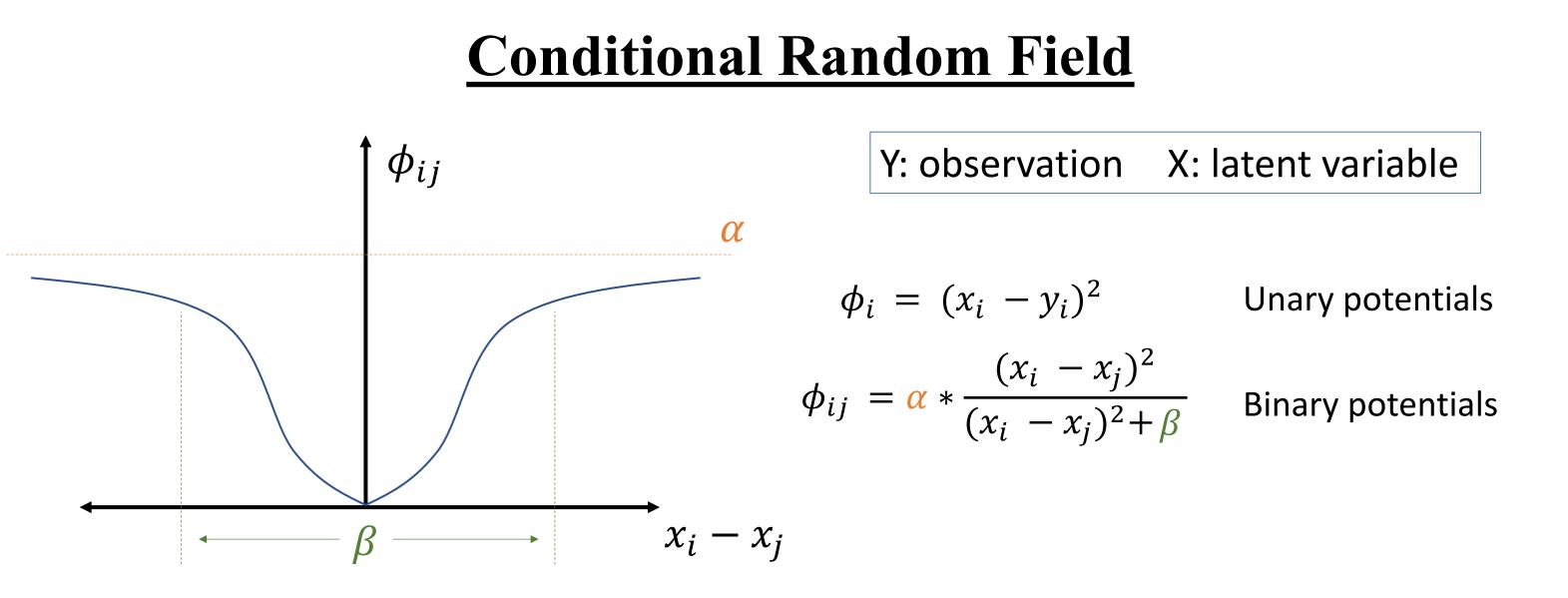
- **B. Threshold Selection**
- 1. For n = 1:N, do
 - 1. Set $E = E_{1:n}$ (look at first n elements of E) 2. For each pixel location {i,j}, compute an uncertainty score for that location by

 $\max_{\vec{e}'} H(\bar{e})$

Avoids over-smoothing at surface boundaries!

Inference Algorithms:

- 1. Loopy belief propagation (20 iterations)
 - MAP: max-product message passing



Convolutional Neural Network

3. For n = 1:N, do

consider. Set this large for now

1. Shift left eye feature map by n pixels 2. Compute E_n using eq. (2) 4. Convert E from shape [N, h, w] to [N, H, W] via bilinear interpolation. Return E

applying eq. (3) to the n-length vector e_{ii} . Store uncertainties as U_n

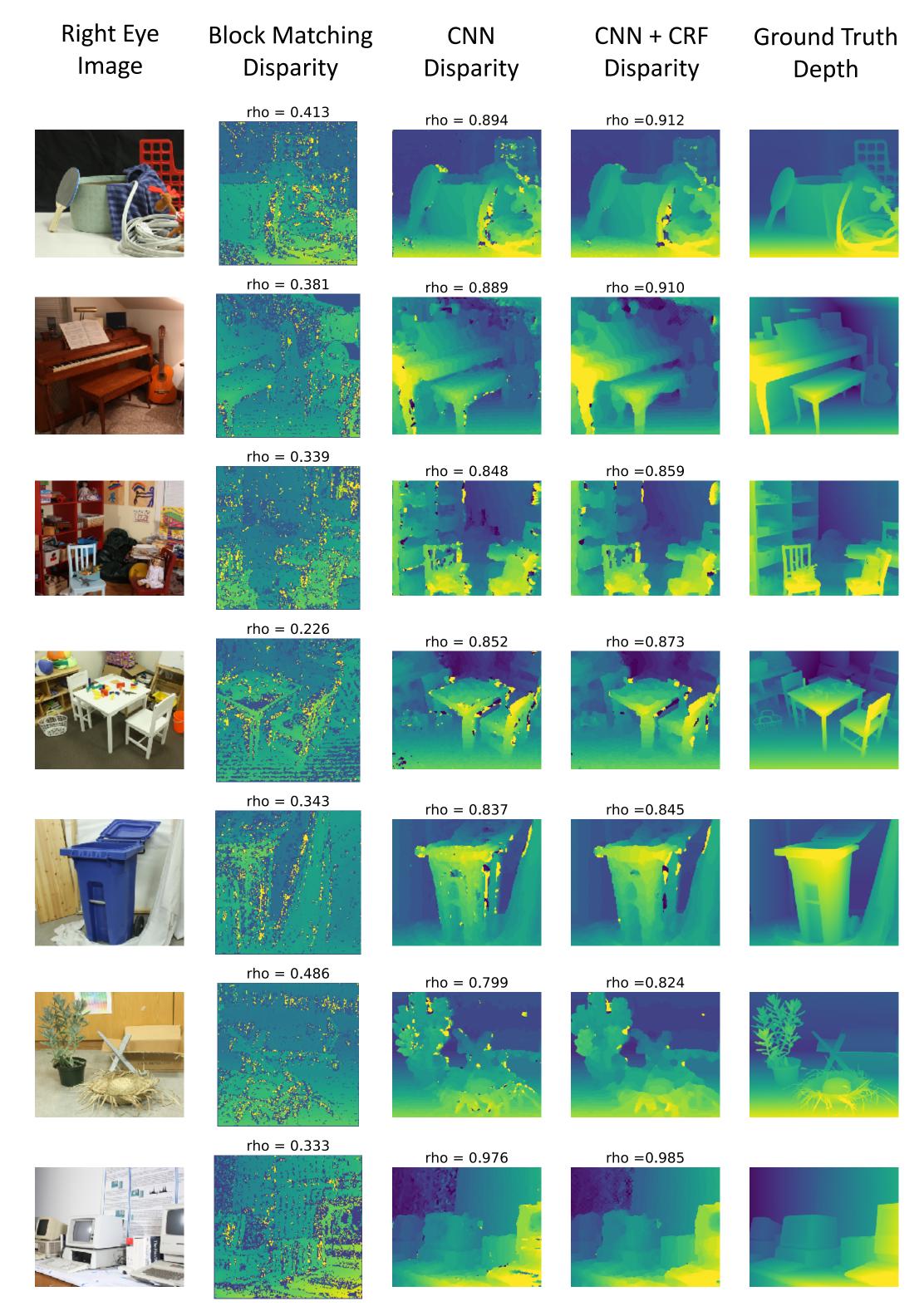
2. Select n with the least high-uncertainty pixels; i.e., choose U_n with lowest 75th percentile uncertainty

Return **E_{1:threshold}**. These are initial beliefs for each pixel, i.e. disparity probabilities

• Marginal modes: sum-product message passing

- Slow algorithm, best results
- 2. Greedy stochastic gradient descent (100 iterations)
 - Very fast, slightly worse results

Results: CNN + Loopy BP



Method	Mean Spearman Corr.	Mean Pearson Corr.
Block matching	0.304 +/- 0.109	0.222 +/- 0.100
CNN	0.787 +/- 0.110	0.700 +/- 0.159
CNN + CRF	0.801 +/ 0.112	0.732 +/- 0.157

Code Demo

from disparity import cnn, mrf, util

*rho values show the Spearman correlation with ground truth

Create a function to load your left and right image. image_left, image_right = load_images() height, width, _ = image_left.shape

Compute disparity energies for a left-right image pair. # This returns an array of size (height, width, numDisparities) energies = cnn.compute_energies(image_left, image_right, numDisparities=120)

Select an optimal disparity threshold based on energy entropy threshold = util.select_disparity_threshold(energies) energies = energies[:,:,:threshold]

Initialize MRF loopy belief propagation model smoother = mrf.LoopyBP(height, width, num_beliefs=threshold)

Perform MAP inference with loopy BP (max-product message passing) disparity = smoother.decode_MAP(energies, iterations=20)

Future Work

- Compare Belief Propagation to other Inference Methods e.g. Gibbs Sampling, Variational Inference
- Augment our stereo matching algorithm to handle occlusions in either the left or the right image
- Incorporate image segmentation results into our basic stereo model as soft constraints (priors) under a probabilistic framework