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Summary: The primary visual cortex has been shown to maintain
localised patterns of activity when local oriented stimuli are
presented in the visual field [1,2]. We developed a computational
framework to perform numerical continuation directly on the
integral form of the planar neural field equation in [3]. Working
with a biologically relevant connectivity function, we apply these
methods to study localised patterns of activity with inhomogeneous
firing rate function and input. The model captures the spatial and
dynamic features of the experimentally observed patterns.

Motivation: localised states in the primary
visual cortex (V1)

Orientation selectivity and lateral spread of activity in V1

Orientation selectvity map:

Localised activity for a local, oriented input [1]:

Dynamics of spread [2]:

Local activation is selective (i.e. patchy), lateral spread is
non-selective (i.e. non patchy).

Snaking and persistent localised states in a neural field

In [3] we studied pattern formation in the neural field equation, posed
on the Euclidean plane, and given by

∂

∂t
u(x, y, t) = −u(x, y, t) +

∫
R2
w(x− x′, y − y′) S(u(x′, y′, t)

)
dx′dy′,

where S is the firing rate function with threshold θ and slope µ

S(u) =
1

1 + e−µu+θ
− 1

1 + eθ
, µ, θ > 0,

and w is the radial connectivity function with shape parameter b

w (r) = e−br(b sin r + cos r), r =
√
x2 + y2, b > 0.

We employ matrix-free Newton-Krylov solvers and perform numerical
continuation of localised patterns directly on the integral form of the
equation. The scheme requires only that S be smooth (not necessarily
spatial homogeneous) and that the integral term be expressible as a
convolution.

We found there to be localised patterns, of varying spatial extent, that
grow through the mechanism of homoclinic snaking.
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Questions

1) With input do the patterns persist and how are they modified?

2) How does the phase of the input with respect to a regular underlying
cortical structure affect the patterns observed?

3) Can the neural field model capture the spatial features and temporal
evolution of patterns observed experimentally?

Mathematical model and parameter study

Neural field model of an iso-orientation subpopulation

We introduce a connectivity more closely motivated from biology [4]
and separable into excitatory and inhibitory contributions
w = wE − wI. This allows for conversion of output into VSD-like
signal and for the model to be extended to a two-population EI
network in the future.

IwE: peaks in excitation each hyper-column width λ up to r = 2λ.

IwI: peaks in inhibition each half-hyper-column width λ
2 up to r = λ.
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The input with radius RI activates a region with radius Ract. Firing
rates are modulated by a weak inhomogeneity J with spatial scale λ
and a phase specific to a single orientation in the selectivity map.
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Note that the patterns lie on a regular hexagonal lattice even with
β = 0. Setting β > 0 fixes the spatial phase.

τ
∂

∂t
u(x, y, t) = −u(x, y, t) + kIext(x− x0, y − y0)

+

∫
R2
w(x− x′, y − y′) (1 + βJ(x′, y′)

)
S
(
u(x′, y′, t)

)
dx′dy′

Parameter values: τ = 10ms, β = 0.2, µ = 2.3, θ = 5.6 and k = 1.8.

Bifurcation diagrams for stimulus-driven patterns

The numerical continuation scheme allows us to rapidly tune the
model parameters θ, µ and set k so that we operate just above the
input threshold. We consider three stimulus locations.

I A: centred at a peak.

I B: midpoint between two peaks.

I C: midpoint between three peaks.

Solid branch segments are stable:
.
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Summary of bifurcation results:

I With increasing RI a series of folds give rise to localised patterns
with increasing spatial extent.

I The patterns have either D6 (A), D2 (B) or D3 (C) symmetry
dependent on the spatial phase of the input with respect to J .

I For RI > 1.3λ activated spots start to form outside the stimulated
region.

Comparison with experiments and predictionsy

Voltage Sensitive Dye (VSD) signal

Following the method presented in [4] we convert the model output in
terms of a membrane potential u into a VSD signal OI :

OI(x, y, t) = g(x, y) ? [m (x, y) ? S (u(x, y, t))] ,

where

I S (u(x, y, t)) is the activity profile at time t,

Im(x, y) is the connections-only kernel m = wE + wI,

I g(x, y) is a Gaussian smoothing kernel.

Spatial profile of lateral spread

Characteristics of the spatial profile are determined by selected
contours. A cross-section reveals:

I A plateau with individual peaks.

I Longer range lateral spread through the excitatory connections.
.
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We find the relationship between RI and the spread of activity with a
brute force computation. At each RI-value we average across 10
simulations with random phase for the input (← dashed-black box).

Dynamics of the lateral spread

Data extracted from [2]:

Patchy activity arises after around 100ms and the system converges to
steady state after 250ms. The model accurately captures the dynamics
of the spread, isolated peaks merge to form a coherent region.
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Key results:
I The location of an input with respect to the underlying map effects

the size, shape and symmetry properties of the observed patterns.

I The main spatial features of the localised activity are captured: a
plateau, one or more peaks and non-patchy peripheral spread.

I The dynamic spread of local selective and longer-range non-selective
activation is also captured.

I Prediction: for large inputs, patchy (selective) spread is observed
outside the imprint of the stimulus.
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