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Decide on structure

Who wants to present?

Google Doc - please put name down

Topic interest
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What is Machine Learning?

Methods for using data to generate statistical models.

Data-driven

Study and design of algorithms

ML Theory: complexity analysis; learning guarantees
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Areas of ML

Classification: assign a label to examples (object recognition)

Regression: predict value of item

Clustering: split up data to extract ”structure”

Dimensionality Reduction: find low-dimensional manifold within a
high-dimensional space.
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Definitions and Jargon

Example: data point

Features: attributes of a data point (pixels in image, for example)

Labels: Category or value associated to data point

Training data: Labeled or unlabeled - use this to train your model

Validation data: Labeled - use this to adjust hyper-parameters

Test data: Labeled, but not seen - only use this to test your model!
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Definitions and Jargon

Spaces: where you draw samples from, typically an input space X and
output space Y
Loss function: L : Y × Y → R

Cost of predicting ŷ instead of y

Hypothesis set: H ⊆ YX
Subset of functions from which a hypothesis is selected
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Definitions: types of errors

True error (AKA Baye’s error): the error that is inherent to the
system - you can never get rid of this! Related to the inherent noise
of system.

R∗ = inf
h
R(h)

Note: E[noise(x)] = R∗

Empirical error: the error that you measure for the model h that you
have learned, given your sample S .

R̂(h) =
1

m

m∑
i=1

L(h(xi ), yi )

Generalization error: The error of your hypothesis, in general. How
well your model will predict data that is has never seen.

R(h) = E(x ,y)∼D [L(h(x), y)]
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Problem

Given sample S of size m:

S = ((x1, y1), ..., (xm, ym)).

Goal: find a hypothesis h ∈ H with small generalization error

WE ONLY CARE ABOUT GENERALIZATION ERROR
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Overfitting

Figure A - training set performance

Figure B - test set performance

R̂(h) = 0 on training set

16 mistakes on test set
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Complexity

Multiple definitions, but should relate to how much a hypothesis can
(over)fit data.

Complexity describes a hypothesis h (i.e., your model)

We want a model that is complex enough to describe the data, but
not so complex that we overfit - exact notion of Occam’s Razor

Notion of model complexity is ubiquitous - AIC, BIC, corss-validation
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Empirical Risk Minimization

Select a hypothesis set (assume a set of models)

Choose h ∈ H such that:

h = argminh∈H R̂(h)

Commonly used - but doesn’t tell you anything about R(h).

No theoretical justification
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Structural Risk Minimization

Select a hypothesis such that:

h = argminh∈H R̂(h) + complexity(H,m)

Theoretical justification - take model complexity into account
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Generalization Bounds

Upper bound on error of model

Pr[|R(h)− R̂(h)| > ε] ≤ bound

Goal is to select model that has smallest generalization bound

Generalization bound depends on model complexity (i.e., Rademacher
complexity or VC dimension).

Natural and theoretically justified

Detailed description of generalization bounds and how to derive them
are outside the scope of this seminar.... But we will discuss another
time!
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Cross Validation

Shuffle data

Leave 10% of data on the side - this will be the test set.

Split up the remaining data into 10 equal-size disjoint sets.

Combine 9 for training set. Last one is the validation set.

Train model on the training set. Measure performance on validation
set.

Switch out a training set with the validation set and repeat until each
of the 10 sets have been used for validation

Repeat for different parameters

Choose model (with parameters) that was best on validation -
confirm with the test set
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Never Cross Validate with the Test Set

NEVER CROSS VALIDATE WITH THE TEST SET!!!

Cross validating with the test set is cheating

This is commonly done, usually by mistake

Common, subtle example: ”We left 10% of our data aside. We
trained our model with the rest of the data and cross validated with
the test set. This is the performance of our model on the test data....”
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How to select a good model

AIC and BIC - penalty for ”model complexity”

AIC only for parametric models and proof depends on assumption that
the true model is within the set that you are comparing. [Cavanaugh,
2012]
BIC also assumes that the best model is in comparison set [Dudley]
In practice, assumption might not matter - but no theoretical
justification.

Cross Validation - use data to test model complexity:

Poor CV performance means model is either too complex or not
complex enough
Good CV performance implied good performance
Proof that the error of a model returned via cross validation will be
close to value of a model obtained through SRM [proof in appendix]
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Support Vector Machines - Separable Case
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Support Vector Machines - Separable Case
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Support Vector Machines - Non-separable Case
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Support Vector Machines - Binary Classification

Samples drawn i.i.d. according to an unknown distribution D

S = ((x1, y1), ..., (xm, ym)) ∈ X × {−1,+1}
Find model h ∈ H such that h : X 7→ {−1,+1}
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Marginal Hyperplanes

Equation for hyperplane in RN :

x ·w + b = 0

where w ∈ RN is a vector normal to the hyperplane and b is a scalar.
Thus, for any hyperplane that does not pass through any samples:

min
(x,y)∈S

|w · x + b| = 1

Thus, the hyperplane correctly classifies a training point xi when w · xi + b
has the same sign as yi , in other words, when yi (w · xi + b) ≥ 1.
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Margin

Let ρ denote the margin:

ρ = min
(x,y)∈S

|w · x + b|
‖w‖

=
1

‖w‖

Notice that maximizing the margin ρ is equivalent to minimizing ‖w‖.
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Optimal Hyperplane: Separable Case

We will want to find the maximum margin, subject to the following
condition:

ρ = max
w,b:yi (w·x+b)≥0)

min
i∈[1,m]

|w · xi + b|
‖w‖

Which as we’ve seen from above is equivalent to:

ρ = max
w,b:yi (w·xi+b)≥1

1

‖w‖
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Optimization: Separable Case

The optimization problem can be rewritten as follows:

min
w,b

1

2
‖w‖2

subject to: yi (w · xi + b) ≥ 1,∀i ∈ [1,m]

Admits an infinitely differentiable, strictly convex objective function:

F : w 7→ 1
2‖w|

2

∇w(f ) = w and ∇2f (w) = I

Just throw into your favorite quadratic programming optimizer and find the
global minimum.
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Support Vectors

The constraints can be rewritten in the Lagrangian form.

Let αi ≥ 0, i ∈ [1,m] be the Lagrange variables for the optimization
criteria

L(w, b, α) =
1

2
‖w‖2 −

m∑
i=1

αi [yi (w · xi + b)− 1]

w =
∑m

i=1 αiyixi : w is linear combination of training set∑m
i=1 αiyi = 0

αi = 0 ∨ yi (w · xi + b) = 1 : support vectors lie on marginal
hyperplane

Support vectors define the optimal hyperplane - hence SVM

Solution only depends on support vectors!
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Support Vector Machines - Non-separable Case
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SVM - non-separable case

Usually, data cannot be linearly separated

Introduce a so called slack variable ξi for optimization

Optimization constraint relaxed:

yi (w · xi + b) ≥ 1− ξi

Vector xi with ξi > 0 is an outlier

But too much slack and we can’t find a hyperplane

Conflicting objectives: large margin (more outliers) vs fewer outliers
(small margin)
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Optimization: non-separable case

Let C ≥ 0 be a parameter chosen via cross-validation. C determines the
trade-off between the maximum margin size and the slack penalty:

min
w,b,ξ

1

2
‖w‖2 + C

m∑
i=1

ξi

subject to yi (w · x + b) ≥ 1− ξi ∧ ξi ≥ 0, i ∈ [1,m]
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Generalization guarantee Mohri, 2012

The empirical margin loss tells us how many points are mislabeled given
some margin ρ is defined as follows (true definition is finer, but is for
another time):

R̂ρ ≤
1

m

m∑
i=1

1yih(xi )≤ρ

Let H denote a set of functions from which h, our model, is drawn. Fix
ρ > 0. Then, for any δ > 0, with probability at least 1− δ, the following
hold for all h ∈ H:

R(h) ≤ R̂ρ(h) +
2

ρ
Rm(H) +

√
log 1

δ

2m

where Rm(H) denotes the Rademacher complexity for the hypothesis set
over the sample. The Rademacher complexity measures how well a
hypothesis can fit random noise. We can talk about it more in another
seminar.
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Generalization guarantee notes

R(h) ≤ R̂ρ(h) +
2

ρ
Rm(H) +

√
log 1

δ

2m

Larger margin decreases complexity term

But larger margin leads to higher error!

Use cross validation to find optimal tradeoff
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MATLAB Tutorial
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Appendix
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Cross validation

Theorem: Let (Hk)k∈N be a countable sequence of hypothesis sets with
increasing complexities. Assume that the cross-validation (CV) solution is
obtained as follows. A learner receives an i.i.d. sample S of size m ≥ 1. It
randomly divides S into a sample S1 of size (1− α)m and sample S2 of size αm,
where α is in (0, 1) and is small. S1 is used for training, S2 for validation. For any
k ∈ N, let ĥk denote the ERM run on S1 using hypothesis set Hk . The learner
then uses sample S2 to return the CV solution fCV = argmink ∈ NR̂S2(ĥk). Also
let R(fSRM,S1) be the generalization error of the SRM solution using a sample S1
of size (1− αm) and R(fCV,S) the generalization error of the cross-validation
solution using a sample S of size m. Then, for any δ > 0, with probability at least
1− δ the following holds:

R(fCV,S)− R(fSRM,S1) ≤ 2

√
log 4

δ

2αm
+ 2

√
log max(k(fCV), k(fSRM))

αm
,

where, for any h, k(h) denotes the smallest index of a hypothesis set containing
h.
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Cross validation proof

Proof. By the union bound, we have

Pr
(

sup
k≥1
|R(ĥk)− R̂S2(ĥk)| > ε+

√
log k

αm

)
≤
∞∑
k=1

Pr
(
|R(ĥk)− R̂S2(ĥk)| > ε+

√
log k

αm

)
=
∑

E
[

Pr
(
|R(ĥk)− R̂S2(ĥk)| > ε+

√
log k

αm
|S1
)]
.

Since ĥk is conditioned on S1 and sample S2 is independent from sample S1, the
following holds by Hoeffding’s inequality:

Pr
(
|R(ĥk)− R̂S2(ĥk)| > ε+

√
log k

αm
|S1)

≤ 2 exp
(
− 2αm

(
ε+

√
log k

αm

)2)
≤ exp(−2αmε2 − 2 log k)

=
1

k2
exp(−2αmε2)
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Cross validation proof cont.

Thus:

Pr
(

sup
k≥1
|R(ĥk)− R̂S2(ĥk)| > ε+

√
log k

αm

)
≤ 4 exp(2αmε2).

Given this bound, then with probability at least 1− δ:

R(fCV,S) ≤ R̂S2(fCV) +

√
log 4

δ

2αm
+

√
log(k(fCV))

αm

≤ R̂S2(fSRM) +

√
log 4

δ

2αm
+

√
log(k(fCV))

αm

≤ R(fSRM,S1) + 2

√
log 4

δ

2αm
+

√
log(k(fCV))

αm
+

√
log(k(fSRM))

αm

R(fSRM,S1) + 2

√
log 4

δ

2αm
+ 2

√
log(max(k(fCV), k(fSRM))

αm
q.e.d.
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Cross validation notes

The cross validation solution will be close to the SRM solution!

Training on (1− α)m points could be poor in some bad cases
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AIC and BIC

Let k be the number of parameters in a model and n be the sample size.
Let L be the max value of the likelihood function such that
L = Pr(x |Parameters,Model).

AIC = 2k − 2 ln(L)

BIC = k · ln(n)− 2 · ln(L)
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