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Abstract

In human perception, convex surfaces have a strong ten-
dency to be perceived as the ”figure”. Convexity has a
stronger influence on figural organization than other global
shape properties, such as symmetry ([9]). And yet, there
has been very little work on convexity properties in com-
puter vision.

We present a model for figure/ground segregatation
which exhibits a preference for convex regions as the fig-
ure (i.e., the foreground). The model also shows a prefer-
ence for smaller regions to be selected as figures, which is
also known to hold for human visual perception (e.g., Kof-
fka [11]). The model is based on the machinery of Markov
random fields/random walks/diffusion processes, so that the
global shape properties are obtained via local and stochas-
tic computations. Experimental results demonstrate that
our model performs well on ambiguous figure/ground dis-
plays which were not captured before. In particular, in am-
biguous displays where neither region is strictly convex, the
model shows preference to the “more convex” region, thus
offering a continuous measure of convexity in agreement
with human perception.

1. Introduction

The selection of salient surfaces in ambiguous fig-
ure/ground displays such as those shown in Figure 1 ([9])
reveals important properties of the human visual system.
For these figures, the detection of closed boundaries is
a straightforward problem, as exact and complete surface
boundaries can be obtained by computing the level sets (the
location of change from black to white colors).

And yet, these figures present a challenging image seg-
mentation problem, since a decision needs to be made as to
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which of the regions is seen as the foreground and which
as the background. Thus, we consider figure/ground sep-
aration to be an integral part of the process of image seg-
mentation. One can formulate the figure-ground problem
as a border ownership problem ([17], [18], [14]): given the
complete description of the boundary contours, how does
a system decide on which side of the boundary is the sur-
face that gives rise to that border? The resolution of the
border-ownership ambiguity and the determination of the
salient regions in the image are thus two interrelated prob-
lems. Consider, for example, Figure 1(a): most observers
report that the white regions are seen as figures, with the
black regions completing behind them in the background.
Equivalently we may say that white/black boundaries be-
long (perceptually) to the white shapes, and the black re-
gions (perceived as background) terminate along the bound-
aries merely because of occlusion.

1.1. A Continuous Measure of Convexity

The factors that determine which regions are perceived
as figure (or foreground) in Figures 1(a-d) must be related
to the shape of the regions, and not by their contrast polarity,
or any other lightness or texture property 1.

What, then, determines the figural organization in Fig-
ures 1(a-d)? These figures were developed by Kanizsa
([9]), to illustrate the role of convexity in determining bor-
der ownership and figure/ground organization: the regions
perceived as foreground are more convex than those as-
signed as background. More specifically, Figures 1(a-d)
set off two different global shape properties against each
other: convexity vs. symmetry. Note that the regions per-
ceived here as background are perfectly mirror symmetric
– a global shape property which was suggested by several
Gestalt researchers to strongly bias a surface to be perceived
as foreground (e.g., Koffka [11]). The fact that those re-
gions were nevertheless judged as background in Figure 1

1Contrast polarity and/or other surface-quality factors can play larger
role in figure/ground assignment, but not in the cases discussed here.
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(a)

(b)

(c) (d)

(e) (f)

Figure 1. Convexity as a determinant of per-
ceptual saliency (adapted from Kanizsa [9]),
observers report perceiving the white regions
as the figures in (a) and (d), whereas in (b)
and (c) the black regions are the ones per-
ceived as figures. This suggests convexity
plays a much larger role in determining figural
organization than other factors, such as con-
trast polarity and symmetry. The effect is also
present on illusory figures, where in (e), the
convex illusory circle is strongly perceived as
foreground, but on (f), the illusory white flat
plane with a concave circular hole is hardly
perceived as foreground. Here each figure
and ground regions are designed to own the
same size.

suggests convexity played a larger role than symmetry in
determining figural organization. Note, however, that most
of the perceptually salient regions in Figure 1 are not con-
vex in the strict mathematical sense, which is an all-or-none
definition. Instead,perceptualconvexity behaves in a con-
tinuous manner, where regions can be “more or less con-
vex”.

(a) (b)

Figure 2. Without convexity, small size ob-
jects tend to be perceived as foreground and
large size objects as background, regardless
of the polarity (adapted from Koffka [11].)

We presents a segmentation model which exhibits a simi-
lar preference to select convex regions as foreground. More-
over, the model detects boundaries when they are not read-
ily available (see Figure 1(e)–(f).)

The model is based on local (pixel-to-pixel) computa-
tions in a stochastic two-dimensional network. The prefer-
ence for global shape properties (specifically, convexity) is
obtained by propagation of the local interactions, given by
the diffusion-like processes. The model, like human per-
ception, selects regions which are intuitively (or perceptu-
ally) more convex even in cases when neither region obeys
the exact mathematical definition of convexity. The model
therefore provides a continuous measure of convexity. Ef-
fectively, the diffusion process groups intensity edges to
produce closed regions, without any restriction on the num-
ber of regions and with topological freedom for admitting
any number of holes in each region.

There has been few previous work on using convexity for
recognition, so they need to be pointed out ([8], [7] and [20]
). Our effort differs from them in that we are extending the
notion to a continuous measure of convexity used in study-
ing vision perception. Moreover, our stochastic formulation
is unique in this context.

Finally, our model also shows a preference forsmaller
regions to be selected as figures, which is known to hold for
human visual perception as well (especially when all other
factors are held equal; see Figure 2, adapted from Koffka
[11]).

2. Figure-Ground and Entropy Criteria

We start by thinking a shape-figure as a “two dimen-
sional cave” and the shape-figure-boundary as a source of
“heat”, diffusing inwardly while the background has the
source of “heat” diffusing outwardly. In many cases, the
partition of the image in regions is not known (Figure 1 (e)-
(f)), the source of “heat” are then sparse, at the so called
inducerssuch as corners, T-junctions, end lines, and pos-
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sibly all available intensity edges. After the diffusion pro-
cess is done, an “entropy” criteria is used to select the best
figure-ground configuration. This framework is inspired
by Kumaran et al. [12], However, (i) their work concen-
trated more on the illusory figures. When the figure/ground
boundary detection become trivial (Figure 1 (a)-(d)), the
closed door diffusion give no difference for each totally
blocked region. We, on the other hand, use “leaking en-
ergy diffusion process” to overcome this minor (Section 3);
(ii) Their sources/inducers must be special intensity change
places, such as junctions or corners, while we consider any
intensity change as a potential source. Our approach will
work even if a curved edge is not detected as a corner. Thus,
we put no extra burdens on the feature detection process.

We emphasize here, that we do not address the prob-
lem of the combinatorial explosion of multiple hypothesis.
Rather, we focus on formulating a criteria to select the best
hypothesis.

2.1. Naming the Variables

The input image is defined on a discrete lattice of sizeN
by N,

I2 � fk= 1; :::;N2g : h set of pixelsi

Let us indicate a shape-figureSof sizeSpixels in the image
either by

S� fks : s= 1; :::;Sg h shape representationi

with areaA(S) = #S= Spixels, or simply by

C (S) : h shape boundaryi

Image wise, closed boundary like to “sit” on intensity edges,
but boundary points may not have an intensity edge. We
then define the edge-perimeter ofSas the size of the bound-
ary set weighted by the normalized intensity edges, i.e.,

P (S; I) = ∑
k2C (S)

e(k) ; h edge-perimeteri

wheree(k)2 [0;1] is the intensity edge (magnitude of inten-
sity gradient) at pixelk, normalized by the largest intensity
edge on a given imageI . All pixels k of the perimeter be-
long toS and since 0� e(k)� 1, we have

S= A(S)> #C (S)� P (S; I) :

Let us assign the (“heat”) source value at theinducer re-
gions as (see Figure 3b.)

σ0(k)= f
e(k) if k is figure
�e(k) if k is background .

h hypothesis at inducersi
At every heat source a local choice of figure/background is
thus required. These are the local hypotheses and an en-
tropy measure will select the best hypothesis (best set of
local hypotheses). Let us also define

P(k) : I2 ! R ; h diffusion fieldi

a function to be evaluated, at every pixelk, by a diffusion
network of the local hypotheses.

2.2. Variational Model

We create a diffusion process model for the fieldP(k) by
formulating it as a variational problem.

Local Hypotheses and Data Fitting: We prefer the field
P(k) fitting the local hypotheses, where they are available.
In our model they are available at all intensity edge pixels
according to its strength (e(k)), i.e., we wantP(k) to mini-
mize

E(Pjσ0) =

N2

∑
k=1

e(k)(P(k)�σ0(k))
2
:

Smoothness: In order to obtain a diffusion process, from
a minimization standing point, we insert a smoothness con-
straint onP(k). A simple one minimizes the square of the

length of the gradient vector (∂P(x;y)
∂x ;

∂P(x;y)
∂y ), or in the dis-

crete setting we write

Smooth(fPg) = µ
N2

∑
k=1

∑
k0
2Nk

(1�e(k;k0))(P(k)�P(k0))2
;

whereµ is the smoothness coefficient,Nk = fk+1;k�1;k�
N;k+Ng are the four neighbors of pixelk, ande(k;k0) is the
magnitude of the intensity change from pixelk to pixel k0,
normalized to the largeste(k;k0). Note that we can define
e(k) = maxk02Nk

e(k;k0).

Energy Model and Level Set: With the smoothing crite-
ria, the total cost function becomes

E(P) =

N2

∑
k=1

h
e(k)(P(k)�σ0(k))

2

+ ∑
k0
2Nk

µ(1�e(k;k0))(P(k)�P(k0))2
i
:(1)
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Thus, the optimal solutionP�(k) balances fitting the lo-
cal hypothesis and smoothing. It is clear (e.g., [12]) that
P�(k) is bounded by the maximum and minimum values of
σ0, i.e.,�1. This gives a diffusion property to this process.

2.3. Shape-Figure and Entropy

In order to select the set of hypotheses that produce the
“best figure” (best shape), we consider an entropy measure.
After all, given a source, we do not know which side takes
σ0(k) = e(k) or�e(k). At junctions the multiplicity of hy-
potheses grows (see [12], [3]). We first, for simplicity, con-
vert�1� P�(k) � 1 into a probability distribution at each
pixel, via the linear mapping

p�(k) =
1
2
(1+P�(k)) :

Thus, the entropy criteria becomes

S(p�) =

�
1
S ∑

k2S
p�(k)logp�(k)+(1� p�(k))log(1� p�(k)) ;

whereS is defined as the set of pixelsk such thatp�(k)�0:5
(that meansP�(k) � 0). For the background entropy (that
needs to be compared against), one can also compute

S(p�) =

�
1

S ∑
k=2S

p�(k)logp�(k)+(1�p�(k))log(1� p�(k)) ;

whereS= N2�S. The sharper is the diffusion, the closer to
1 is P�(k) insideS, the better is the figure perception, i.e.,
the lower the entropy the more salient is the region. Note
that the entropy is a per pixel entropy or the total entropy
normalized by the number of pixels.

Problem: This criteria favors closed contour that “track”
the intensity edges, e.g., the black-and-white four pack men
on Figure 3. In this case, with alle(k; j) = 0;1 (edges or
non-edges), the four pack man solution givesP�(k) = �1
everywhere, i.e.,S(p�) = 0. This is the best solution one
can hope. Moreover, with this criteria we can not distin-
guish between the black and white regions of Figures 1(a)-
(d) as both regions will give zero entropy. Thus, we need
to devise a criteria that would favor geometric properties as
well as intensity edges, that would favor the Kanizsa square
solution and convex regions. We now address the trust of
our work: How can we fully characterize a desired shape
via an entropy criteria and how can we measure convexity?

(a) (b) (c) (d)

Figure 3. (a) the Kanizsa square. (b) lo-
cal hypothesis where σ0 = 1 is white (fig-
ure) and σ0 = �1 is black (background). (c)
P�(k)-diffusion of all the local hypotheses. (d)
threshold (level set) at P= 0. The entropy of
the diffusion is S = 0:75.

3. Decay Process and Convexity

In order to balance intensity edges (number of inducers)
and shape we introduce a “decay” process outside the in-
ducers (sources). We require non-source pixelsk to be a
non-commitment between figure and ground, i.e., we re-
quire P(k) to be zero (“neutral”). This idea can be im-
plemented in the variational approach by adding an energy
term Edecay= ∑N2

k=1 ν(1� e(k))P2(k). The energy( 1) be-
comes

E(P) =

N2

∑
k=1

h
λk (P(k)�σ0(k))

2

+ ∑
k0
2Nk

µk;k0(P(k)�P(k0))2
i
; (2)

whereµk;k0 = µ(1�e(k;k0)) and now

λk = max(e(k);ν(1�e(k)) and σ0(k) =� e(k) ;

wheree(k) 2 [0;1] andν is the decay coefficient. In Ap-
pendix A, we show that adding this energy term is equiva-
lent to adding a decay to the random process associated to
the previous energy.

The solution to equation (2) can be written (e.g., [12]) as

P� = D�1(µ;ν)λσ0 : (3)

where the symmetric and band limited matrixD(µ;ν) have
the following structure

(i) The diagonal elementDk;k = λk+µb(k;Nk) ,

(ii) The non-zero off-diagonal elements areDk;k0 =

�µ(1�e(k;k0)) for k0 2 Nk,

whereb(k;Nk) = ∑k0
2Nk

(1�e(k;k0)). Results of this mini-
mization are shown in Figure 3.
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In order to obtain the figureS, we consider all pixelsk2 I
such thatP�(k)� 0. The background pixels are obtained as
pixelsk 2 I such thatP�(k) < 0. The level setsk 2 I such
that P�(k) = 0, represent the closed contoursC (S). The
result of Figure 3 d. (and [12], [3]) suggests that the shapes
obtained are “roughly” in agreement to perception. Finally
in the Appendix A, we derive the solutionP�(k) and show
that it indicates an “average” over the number of random
walks starting at the sources and passing through pixel k.

We can now examine and discriminate closed intensity
regions, since the associated entropies are no longer zero.
We note that “clearly” convex regions have lower entropy
than concave ones (see figure 4).

200 250 300 350

50

100

150

200

250

(a) (b) (c) (d)

Figure 4. (a) is an image with two regions, one
is convex and concave is another. Both of
them own the same area and inducers. (b), (c)
are the maps according to the typical hypoth-
esis that assumes the white region is salient.
We set ν = 5�10�4; 1�10�5 with (b) & (c) re-
spectively. The maps show decay when it is
away from the arc. The entropy (convex / con-
cave or S / S ) for them are (b) 0:972/ 0:974and
(c) 0:880 / 0:916. (d) the isocontour (iso- P�(k))
for the map (c). It shows how the diffusion
expand larger distance on the convex side.

3.1. Convexity Measurement

Let us show how the entropy measure is capturing con-
vexity (and capturing, simultaneously, size). Let us start
with the definition of convexity for a given shapeS.

Convexity: A shapeS is convex if and only if for any
pair of points insideS the line segment connecting this pair
of points is completely insideS.

Let us representk j to be the Euclidean distance between
pixels k and j. Let us denote the shortest legal path be-
tweenk and j within the shapeSby d(k; j). The distinction
between convex and concave regions is that for convex re-
gions,d(k; j) = k j 8k; j 2 S (by definition) while for con-
cave ones there arek; j 2 S such thatd(k; j) > k j.

Consider Figure 5 where two regions, one convex and the
other concave, have the same area and same inducers. Given
a source pixelp (along the boundary) and given a pixelq
at the convex side of the figure, there is a pixelq0 equally

d(p, q) = pq

d(p, q’) > pq’

Convex
Concave

p

q’ q

Figure 5. We examine how convexity is cap-
tured by the model. Consider all the path
starting at the boundary pixel p. In the con-
cave region the shortest random walk from p
to q is given by d(p;q0) > pq0 while the short-
est random walk to q0 is d(p;q) = pq= pq0. The
shorter are the random walks the more sup-
port is obtained by the source, otherwise the
random walk tend to decay. Thus, concave
regions get weaker response. The reflectivity
makes random walks even longer at concave
regions.

distant top (Euclidean distance) in the concave side. There
are many pixelsq0 with such property. In the concave region
the shortest legal walk betweenp andq0 traverse a distance
d(p;q0)> pq0 while in the convex region, the shortest legal
walk betweenp andq traverse a distanced(p;q) = pq=

pq0.

We now invoke the theory of random walks (see Ap-
pendix A) to suggest that the entropy is lower for convex
regions than for concave ones.

The contribution to the the final solutionP�(q) and
P�(q0) of the sourcep to q and q0 is directly dependent
on d(p;q) andd(p;q0) respectively. This is because with
the decay term, only the pixels with shorter distance can
be reached by the random walk. The longer is the path to
reach a pixel the more likely it will die (yielding the de-
cay). More precisely, from the Markov theory the probabil-
ity of a particle dying when going in the shortest path from

p to q is exactly∑d(p;q)
s=1 (Qs

pa(s)Ra), where the sum is over
all pixelsa in the shortest path fromp to q, parameterized
by s= 1; :::;d(p;q). Thus, the longer is the path, the more
terms in the sum overa, and the smaller is the probability
to reachq. Thus, a pointq in a convex side will be reached
by more random walks than a pointq0 in the concave side.
This implies thatP�(q) will be more defined to 1 or -1 (to
figure or ground) thanP�(q0) and the entropy will satisfy
S�(q) < S�(q0). Thus, convexity is encouraged by the en-
tropy criteria.
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3.2. Size

The entropy is lower for smaller size objects. Indeed,
neglecting the smoothing in (3), and for shapes with in-
ducers on all edges (e(k) = 1), we haveP�(k) = σ0(k) and

S(P�) = log2 (A(S)�P (S;I))
A(S) = log2(1� Perimeter

Area ). Note, that
the perimeter is adapted to the number of inducers. The
more inducers the smaller is our “size” criteria.

3.3. Reflectivity

In order to enhance the convexity effect, we studied a
“reflectivity” term that bounces the random walk perpen-
dicular to the tangent to the boundary shape once it reaches
the boundary. Thus, the diffusion tends to go along perpen-
dicular directions to the tangent of the boundary contour.

Let us consider a pixelk at the boundaryC (S). The re-
flective can be considered by increasing the probability of a
jump fromk to the neighbor pixel,f (k), in the direction per-
pendicular to the tangent to the curve. In a corner there may
be two such directions,f 1(k) and f 2(k), so, we consider
the setFk = f f 1(k); f 2(k)g to contain both directions.

Within the theory of random walks, these modifications
are simple to implement. More precisely, we modifyQ to

Qk;k0 =

n 2µ
λk+µ(b(k;Fk)+b(k;Nk))

8k0 2 Fk
µ

λk+µ(b(k;Fk)+b(k;Nk))
8k0 2 Nk�Fk :

0 otherwise

We are also forced to modifyRk =
λk

λk+µ(b(k;Fk)+b(k;Nk))
so

thatM is always stochastic (∑N2

j=0Mk; j = 1). This modifica-
tion of Q only affects pixels near the boundary, where the
setF(k) is not empty (whereb(k;Fk) 6= 0). We note that
there is an associated energy to this process

Ere f lectivity(P) = µ
N2

∑
k=1

∑
k0
2Fk

µk;k0(P(k)�P(k0))2
:

In order to keep the symmetry of the process we request that
if k0 2 Fk thenk2 Fk0 .

In Figure 5 the reflectivity enhancesd(p;q0) making the
differenced(p;q0)�d(p;q) larger.

4. Experiments

The first series (see Figure 6) is set for examining the
convexity effect. We test our model on a series of images
where black and white regions own the same size. The
degree of the angleθ in those images arenπ=36, where
n = 6;7; :::;36. The difference in entropy decreases as the
angle becomes wider (Figure 6). We then test other images
(see Figure 7,8).

We set the smoothness coefficientµ= 10�1 and the de-
cay coefficientν = 5� 10�4 through all our experiments
(Except in Figure 4). The numerical method we apply here
for the optimization process is conjugate gradient descent
method.

(a1) (a2)

(b1) (b2)
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Figure 6. (a1), (b1), The parallel pentagon im-
age with angle of π=6 and 5π=6 degree, (a2),
(b2) the saliency map of them. The entropy
values for (a2) and (b2) are (convex/concave
or S / S ) 0:721 / 0:870and 0:944 / 0:950 respec-
tively, with ν = 1�10�5. (c) The difference be-
tween the entropy for the convex and concave
region as a function of the angle (“inverse of
convexity”).

A. Random Walk Formulation

Let us now bring the theory of Markov chains to under-
stand our approach as “an average over random walks” or
as a diffusion. This view will allow us to modify the model
and construct a measure of convexity and size.
The matrixD from equation (3) can be written as

D = D(I �Q) ;
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(a) (b)

Figure 7. Inducers are placed along all the
perimeter. The entropy values are S = 0:521 /
S = 0:534 for the black/white regions.

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 8. (a1), (b1), initial figures, (a2), (b2),
sparse data and (a3), (b3), the diffusion re-
sults. The figure entropy values ( P�(k) > 0)
are (a3)S = 0:968, (b3)S = 0:975.

with D being the diagonal matrix with elementsDk;k = λk+

µb(k;Nk) (Dk;k0 = 0 for k 6= k0.) ThereforeQ must have four
off-diagonals non-zero and positive i.e.,

Qk;k0 =

n µ
λk+µb(k;Nk)

8k0 2 Nk

0 otherwise
(4)

The inverse ofD is

D�1 = (

∞

∑
n=1

Qn)D�1
;

and so,

P� = (

∞

∑
n=1

Qn)g; (5)

with g = D�1λσ0, i.e., gk =
λk

Dkk
σ0(k). We can thinkg as

our “new” input data. The matrixQ is the “transient” part
of an “absorbing Markov chain”M , whereM is

M = (
1 000:::
R Q

) ; (6)

with R being aN�1 matrix with elements

Rk = 1�∑
j

Qk j =
λk

λk+µb(k;Nk)
; (7)

so that∑N
j=0Mi j = 1 8i. The stochastic matrixM is of size

N+1 byN+1. It is clear that

Mn
= (

1 000:::
R0 Qn ) ;

whereR0 = ∑n
α=0QαR. M is an absorbing Markov chain in

the sense that if one starts with any states0, by successively
applyingM , one ends up in the statesf inal = (1;0;0; :::;0),
i.e., sf inal = limn!∞ s0Mn (we are applying the matrix to
the vector to the “left”) This is clear from the fact that
limn!∞ Qn = 0, since all the elements of Q are less than
1 and sum less than 1 for each row. This is whyQ is
the transient part ofM . The interpretation of the state
s= (�1;0; :::;0), is of “death” of the random walk, since
the random walk jumped to the zero-th coordinate that is
not a pixel in the lattice. Moreover, once it reaches the zero-
th coordinate it never leaves, i.e.,s= (�1;0;0; ::::;0) is an
eigenstate ofM or sM = s (or equivalently, to the “right”s†

is an eigenstate ofM†, with M†s† = s†. This is the absorb-
ing state.

Random Walk View: Let us clarify the random walk in-
terpretation of the matrices.

(Qn)k; j - probability that a random walk that started at
pixel k will reach pixel j in n steps.

Rk- probability that a random walk starting at pixelk
will die (move to the zero-th state coordinate.)

R0 = ∑n
α=0QαR - probability that the random walk of

n+1 steps has died at any stage before reaching pixelk.

(∑n
k=1Qn)k; j -probability that the random walk started

at pixelk and reached pixelj in any number of steps.

In one step, for example, the random walk starting atk has
probability non-zero,Qk; j =

µ
λk+µb(k;Nk)

, to move to one of

its j 2 Nk neighbors and probabilityRk =
λk

λk+µb(k;Nk)
to die.

Note that inside the shapeS we haveλk = 0 and therefore
the random walk can not die there. It will only die, possibly,
when reaching back the boundary.

The initial stateg= D�1λσ0 can be written as
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g( j) = ∑
k2C (S)

1
1+µb(k;Nk)

ek( j) ;

whereek( j) = δ jk, with δ jk = 1;0 and is 1 only if j = k.
Thus, we conclude this section with the random walk view
interpretation of the solutionP� (equation 3) :

The solution P� correspond to the average of multiple
source averaged over the random walks, where each ran-
dom walk starts at a boundary pixel k2 C (S) and carry the
weight g(k) = 1

1+µb(k;Nk)
(i.e., corners tend to weight more).

So far, we hadRk =
λk

λk+µb(k;Nk)
= 0 inside the shape,

sinceλk = 0. We now modify it toRk =
ν

ν+µb(k;Nk)
where

1> ν > 0, so that the probability of jumping to the zero-th
coordinate (and dying) is small, depending how smallν is,
but not zero.
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