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Abstract 
We have been developing a stochastic model for 

figure-ground separation[9][3][12]. The model se- 
lects/constructs the foreground with preference for figures 
with “more convex” shapes. When these models are ap- 
plied to illusory figures ([7]) they yield perceptually ac- 
curate selection of figure and background. The approach 
is based on an “entropy” measure of a region dijfksion 
Markov model from a set of local jigure/ground hypothe- 
sis. The contour boundaries are implicitly represented, via 
the thresholding of the difSusion result. 

What optimal properties do the illusory contours satis- 
fies ? We show that the entropy criteria selects contours 
such as to minimize a Taylor series of the even deriva- 
tives with respect to the length of the contour: The co- 
efJicients are positive and they get exponentially smaller 
as the derivatives increase. The zeroth order term suggest 
that small length contours are preferred, the second order 
terms suggests that curvature-like term is minimized (with 
less strength compared to the zero order one), and higher 
order derivatives give additional contour smoothness con- 
straints. 

1 Introduction 
The selection of salient illusory surfaces such as those 

shown in Figure 3 ([7]) reveals important properties of the 
human visual system. Two problems are being solved, the 
computation of an illusory boundary and the decision of 
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what is a figure and what is background. One may put 
together both problems by asking to each pixel if it belongs 
to the foreground or to the background. The detection of 
the boundary and the border ownership problem are then 
automatic: the contour and its border ownership is given 
by the set of pixels assigned to the figure (or foreground) 
with a neighboring pixels assigned to the background. 

We present the stochastic model [I that respond at each 
pixel the question: does it belong to the foreground or 
background ? The model is based on local (pixel-to- 
pixel) computations in a stochastic two-dimensional net- 
work. The model can be readily adapted to work on richer 
representations, such as wavelets. In this case the network 
would set interactions between wavelet coefficients. Effec- 
tively, the diffusion process group intensity edges to pro- 
duce closed regions, without any restriction on the num- 
ber of regions and with topological freedom for admitting 
any number of holes in each region. The preference for 
global shape properties (specifically, convexity and larger 
regions) is realized by an “entropy” criteria on the output 
of the diffusion-like process. 

Essentially this is all there is, an “entropy” criteria to se- 
lect figurelground. One still may ask for a characterization 
of the selection criteria in terms of the boundary contour. 
In particular, what optimal criteria does the contours satis- 
fies that is equivalent to the entropy one ? Contours tend 
to fit the intensity edges, but what properties they satisfy at 
the illusory area, where no intensity edges exist ? 

We show that the entropy criteria selects contours such 
as to minimize a Taylor series of the even derivatives 
with respect to the length of the contour. The coeffi- 
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cients are positive and they get exponentially smaller as 
the derivatives increase. The zeroth order term suggest that 
small length contours are preferred, the second order terms 
suggests that curvature-like term is minimized (with less 
strength compared to the zero order one), and higher order 
derivatives give additional contour smoothness constraints. - 
1.1 Background 

The discussion to characterize the shape of contours 
start with Ullman [15] and a more elaborated models are 
developed by Parent and Zucker [13] and by Mumford 
[lo], the so called elastica. Our approach does not min- 
imize shape contour properties and is based on a region 
model. Regions models start with Brady and Grimson [ 11 
and later Nitzberg and Mumfordrl I]. In particular we fol- 
low the models of Kumaran et al. [9], Geiger et a1.[3] and 
Pa0 et al. [12]. These region models have not develop a 
characterization of the contours they select. This is our ef- 
fort here. 
1.2 Organization 

We first, on section 2 review the stochastic model we 
have been developing for addressing the figure-ground 
problem. We show how an “entropy” criteria to select a 
set of local figure-ground hypothesis is in agreement with 
human perception for this class of illusory figures. Then, 
on section 3, we show how the entropy criteria can be re- 
cast as a criteria on the shapes of the contours. 

2 Figure-Ground and Entropy: Overview 
In images the partition of the image in regions is not 

known a priori and this problem is best illustrated with il- 
lusory figures (see Figures 3. Moreover, given a partition 
of the image into regions one still needs to ask which ones 
are foreground regions and which ones are background re- 
gions. These two problems, separating a regions into im- 
ages and deciding which ones are foreground constitutecd 
st the segmentation problem. 

To approach this problem we follow our previous work: 
Kumaran et al. [9], Geiger et al. [3] Pao et a1 [12]. 

A set of sparse features, so called inducers, such as 
corners, T-junctions, end lines, and all available intensity 
edges. 
2.1 Naming the Variables 

by N .  
The input image is defined in a discrete lattice of size N 

1 2 3 { i =  1, ..., N 2 }  isthesetofpixels. 

Let us indicate a shape-figure S of size S pixels in the image 
either by 

S E {s = 1, ..., S }  region 

with aiea A(S) = #S = S pixels, or simply by 

C(S) closed boundary 

Image wise, closed boundary like to “sit” on intensity 
edges, but boundary points may not have an intensity edge. 
We then define the edge-perimeter of S as the size of the 
boundary set weighted by the normalized intensity edges, 
i.e., 

P(S,Z) = c e (k )  edge-perimeter , 
k e C ( S )  

where e (k )  E [0,1] is the intensity edge (magnitude of in- 
tensity gradient) at pixel k ,  normalized by the largest inten- 
sity edge. 
2.2 Variational Model 

Let us define P ( k )  to be the value at pixel k of a steady 
state solution of the diffusion inside and outside S. We cre- 
ate the diffusion process by formulating it as a variational 
problem. 

Local Hypothesis and Data Fitting: At the inducers we 
assign the source value 00 = 1 for foreground and 00 = - 1 
for background, both at P(S,Z) (see Figure lb.) At every 
inducer/source a local choice of figurehackground is thus 
required. These are the local hypothesis and an entropy 
measure will select the best hypothesis (best set of local 
hypothesis). 

We also consider a “decay” process outside the induc- 
ers. One way to present it is to push non-source pixels k to 
a non-commitment between figure and ground, i.e., to push 
(or decay) P ( k )  to be zero (“neutral”). 

This idea can be implemented in the variational ap- 
proach by minimizing an energy with respect to the set of 
variables P ( k ) ,  i.e., 

N2 

where if pixel k is not a source we have kk = v( 1 - e ( k ) )  
and oo(k )  = 0; For source pixels we have kk = e (k )  and 
oo(k )  = f l .  A perhaps good criteria to decide which 
pixels are sources or not, is based on comparing e (k )  to 
1 - e (k )  whichever is larger, i.e., if e (k )  2 0.5 then it is a 
source pixel. In our experiments e (k )  = 0, l  so the decision 
was easy to make. 

Smoothness: In order to obtain a diffusion process, from 
a minimization stand point, we insert a smoothness con- 
straint on P ( k ) .  A simple one minimizes the square of the 
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Figure 1. (a) The Kanizsa square and (b), (c), (d) 
its hypothesis set, diffussion and threshold. In 
(b), we use white and black color to indicate the 
foreground (00 = + 1) and background (00 = - 1) 
hypothesis respectively. The gray level indi- 
cates the neutral hypothesis (a0 = 0). 

length of the gradient vector (9, vl), or in the dis- 
crete setting we write 

where Nk = { k +  1 , k -  1 , k -  N , k + N }  is the subset of 
the four neighbors of pixel k that are either inside the 
object shape S or outside it and e ( k , j )  is the magnitude 
of the intensity change from pixel k to pixel j,  normal- 
ized to the largest e ( k , j ) .  Note that we can define e(k)  = 
maxj€N, e@,  j ) .  

Energy Model: 
function becomes 

With the smoothing criteria the total cost 

Thus, the optimal solution P*(k)  balances fitting the lo- 
cal hypothesis and smoothing. It is clear (e.g., [9]) that 
P* (k) is bounded by the maximum and minimum values of 
00, i.e., f 1. This gives a diffusion property to this process. 

Figure 2. (a) The Kanizsa square and the (d) 
shape solution, (c) diffusion, for (b) different 
organizations. The entropy criteria chooses 
the Kaniza square. How can this formulated 
in terms of contour properties is addressed in 
this paper. 

Closed Contour and Level Sets: In order to obtain the 
figure S we consider all pixels k E I such that P*(k)  2 0. 
The background pixels are obtained as pixels k E I such 
that P*(k)  < 0. The level set k E I such that P*(k)  = 0, 
represent the closed contours C(S). The result of Fig- 
ure 1 d. (and [9], [3]) suggest that the shapes obtained 
are “roughly” in agreement to perception. 
2.3 Shape-Figure and Entropy 

In order to select the hypothesis that produce the “best 
figure” (best shape) we consider an entropy measure. Af- 
ter all, given a source, we do not know which side takes 
o o ( k )  = 1 or - 1. At junctions the multiplicity of hypoth- 
esis grows (see 191, 131). We first, for simplicity, convert 
- 1 5 P*(k)  5 1 into a probability distribution at each pixel, 
via the linear map 

1 
2 p ( k )  = -(1 + P * ( k ) ) .  

Thus, the entropy criteria bgcomes 

1 s = -- c P ( k ) l W ( k )  + (1 - P ( k ) ) l 4 1  - d k ) ) .  
N 2  kE12 

The sharper is the diffusion, the closer to 1 is P*(k)  (and 
p ( k ) )  inside S, the better is the figure perception, i.e., the 
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lower the entropy the more salient is the region. Note that 
the entropy is a per pixel entropy or the total entropy nor- 
malized by the number of pixels. In such model convex 
regions have lower entropy than concave ones [ 121. 

where the function n ( p ) ,  which is now an aredength per 
value p ,  is potentially discontinuous at the values p = 
Oorl, since the diffusion is blocked at intensity bound- 
aries. However, since the illusory edges are obtained by 
thresholding the reconstruction p at the value 0.5, n ( p )  
is the total perimeter of the continuous ISO-contours con- 
tained entirely in the smooth image domains. It can hence 
be Taylor-expanded about this value as follows. 

where 

Figure 3. (al), (bl) and (cl) The 'Kanizsa 
Square' with pac men of different orientations. 
(a2), (b2) and (c2) are the diffusion result. (a3), 
(b3) and (c3) are the threshold. The shape of ob- 
jects changed when the orientation is changed. 
Moreover, when the change is abrupt, the whole 
meaning could also be changed. In (c3), the ob- 
ject is broken into two parts, Perceptually, we 
said we have two objects other than one. 

3 Entropy and Contour Criteria 
To see how the entropy criteria relates to contour criteria 

such as length, curvature and etc., we rewrite the entropy 
as follows. 

where N ( p )  is the number of image locations bearing the 
reconstructed value p ,  i.e. it is the histogram or marginal 
distribution function for the p values. To better understand 
the relation to properties of contours, we extend the above 
formulation to a continuous 2-D image. On a continuum, 
the entropy function would take the form 

are the set of coefficients independent of contour shape 
information. The odd coefficients have vanished. The 
even coefficients are all positive and diminish exponen- 
tially. The latter property makes the expansion convergent 
if the derivatives are not too badly behaved, as is likely to 
be the case in a diffusion process. This form can now be 
compared with the contour models. 

The zero order term gives a term proportional to the 
length of the contour 

so = CO .(PI lp=0.5 . 

The second term (and second order term) is given by 

To better understand this term we write the density func- 
tion n ( p )  as 

4 P >  = J W X 7 Y )  - P)dXdY 
image 

where 60 is the Dirac-delta function. Then we have 

where the I indicates derivative with respect to the argu- 
ment. We now rewrite this derivative using the product 
rule as 
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and similarly 

This expression can then be used to evaluate the above in- 
tegral by parts, which would lead to higher derivative con- 
tributions evaluated at the 0.5 ISO-contours. 

Thus, the optimization of the entropy function might 
be performed in an approximate manner by truncating the 
Taylor expansion and optimizing the resulting cost func- 
tional of the curve parameters. Note, however, that this 
renders a highly non-linear problem that would be cum- 
bersome to solve even if only a small number of leading 
terms are retained. This complexity is entirely avoided in 
our surface model while the reconstructions obtained are at 
least of the quality of the most sophisticated contour mod- 
els. 
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