Assessing the role of rewards and priors on confidence judgments

Elon Gaffin-Cahn, Shannon M. Locke, Nadia Hosseinizadeh, Pascal Mamassian, Michael S. Landy

Benefits of Confidence

- Beneficial to predict the outcome of a task
- Confidence: estimate of probability correct e.g., Fleming & Dolan (2012)

How Do Priors and Payoffs Affect Decisions?

Do people adjust confidence for asymmetric priors but not for payoffs?
Task: Discrimination + Confidence Report

Stimuli: or
Task: Discrimination: or
Confidence: Low or High
Feedback: Correct/incorrect on discrimination; reward if correct

Priors and Payoffs Manipulation

<table>
<thead>
<tr>
<th>Prior</th>
<th>Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Symmetry</td>
<td>s</td>
</tr>
</tbody>
</table>

Priors and Payoffs Manipulation

<table>
<thead>
<tr>
<th>Prior</th>
<th>Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Asymmetry</td>
<td>s</td>
</tr>
<tr>
<td>Full Symmetry</td>
<td>s</td>
</tr>
<tr>
<td>Single Asymmetry</td>
<td>s</td>
</tr>
</tbody>
</table>

Priors and Payoffs Manipulation

<table>
<thead>
<tr>
<th>Prior</th>
<th>Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Asymmetry</td>
<td>s</td>
</tr>
<tr>
<td>Full Symmetry</td>
<td>s</td>
</tr>
<tr>
<td>Single Asymmetry</td>
<td>s</td>
</tr>
</tbody>
</table>

Priors and Payoffs Manipulation

<table>
<thead>
<tr>
<th>Prior</th>
<th>Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Asymmetry</td>
<td>s</td>
</tr>
<tr>
<td>Full Symmetry</td>
<td>s</td>
</tr>
<tr>
<td>Single Asymmetry</td>
<td>s</td>
</tr>
</tbody>
</table>

SDT: Confidence

SDT: Confidence Criteria

$C_{discrim}$

“Left” or “Right”

Probability

Internal Response

“Left” or “Right”

Probability

Internal Response

Galvin et al. (2013)
Models of Confidence

- Models differ in whether confidence criteria are affected by:
 - Model 1: Priors but not payoffs (Partially Paired)
 - Model 2: Priors and payoffs (Fully Paired)
 - Model 3: Neither priors nor payoffs (Unpaired)
Partially Paired

Fully Paired

Unpaired

Best-Fitting Models of Confidence

Model	Frequency of Best Fit
Partially Paired | 0
Fully Paired | 6
Unpaired | 4

Calculated model evidence by marginalizing parameter grid

1. Assumed optimal criterion shifts
 - But people show conservatism: Incomplete criterion shift from neutral to optimal
 e.g., Healy & Kubovy (1981), Ackermann & Landy (2015)
Discrimination Criteria

- People show conservatism
- More conservative for asymmetric payoffs (closer to optimal for asymmetric priors)

Prior

Payoff

Criterion Assumptions

1. Assumed optimal criterion shifts
 - But people show conservatism: Incomplete criterion shift from neutral to optimal
2. Assumed shifts in single-asymmetry conditions sum

Predicting Criterion Shift

Conservatism in Confidence

Does conservatism carry over to confidence?

Conservatism in Confidence

More conservatism

Conservatism in Confidence

More conservatism
Best-Fitting Models of Confidence

Discrimination:
- Optimal
- Conservative
- Conservative

Confidence:
- Optimal
- Optimal
- Conservative

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency of Best Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partially Paired</td>
<td>(prev: 0)</td>
</tr>
<tr>
<td>Fully Paired</td>
<td>(prev: 6)</td>
</tr>
<tr>
<td>Unpaired</td>
<td>(prev: 4)</td>
</tr>
</tbody>
</table>

Conclusions

- **Discrimination:**
 - Criterion shifts for payoffs and priors sum

- **Confidence:**
 - Conservatism carries over into confidence decision
 - Not normative: respond to both priors and payoffs or neither