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Interpolating sampled contours in 3D: perturbation analyses
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Abstract

In four experiments, observers interpolated parabolic sampled contours confined to planes in three-dimensional space. Each

sampled contour consisted of eight visible points, placed irregularly along the otherwise invisible parabolic contour. Observers

adjusted an additional point until it fell on the contour. We sought to determine how each visible point influenced interpolation by

measuring the effect of slightly perturbing its location. Influence fell rapidly to zero as distance from the interpolated point increased,

indicating that human visual interpolation of parabolic contours is local. We compare the measured influence for human observers

to that predicted by three standard interpolation algorithms. The results were inconsistent with a fit of a quadratic to the points, but

were reasonably consistent with a cubic spline and most consistent with an algorithm that minimizes the variance of angles between

neighboring line segments defined by the sampled points.

� 2003 Elsevier Ltd. All rights reserved.
Fig. 1. Contour completion. The white clothesline is readily visible

although much of it is obscured by clothing.
1. Introduction

The white clothesline in Fig. 1 is readily visible, al-

though the visual evidence signaling its presence is
fragmented and sparsely distributed. Assembling this

information into a coherent estimate of the location of

the clothesline is a formidable computational problem.

For convenience, it can be broken down into three

subordinate problems. The first is to determine that

there are one or more fragmented contours present in

the scene (the Detection Problem). The second is to de-

cide which parts of the image carry information about
the hypothetical fragmented contour (the Grouping or

Segmentation Problem). To solve the third (the Inter-

polation Problem), the visual system must correctly

estimate the position of the fragmented contour both

where it is and is not obscured by other objects.

Visual segmentation and interpolation of fragmented

contours is a research topic of major interest (Field,

Hayes, & Hess, 1993; Kanizsa, 1979). Most previous
work, though, has concentrated on the Detection

Problem. Field et al., for example, required their

observers to judge whether a contour, consisting of a
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small number of Gabor patches lying along a curved

path, was present in a visual display containing other,

masking Gabor patches. It is important to recognize

that successful performance of their task does not entail

that the observer has correctly grouped all of the Gabor

patches that belong to the contour or can correctly

interpolate them. 1 In viewing their stimuli, we may feel

that we can both group and interpolate, but successful
completion of the task does not require that we do
1 To determine which of two intervals contains a contour, the

observer need only detect a subset of the Gabor patches that lie on the

contour.
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Fig. 2. Schematic of the stimulus. The sampled contour is shown as

black points on a white background. The adjustable point p0 is con-

strained to move within a setting plane that intersects the invisible

contour at the invisible true point s (marked with a circle). The

coordinate axes ðn; bÞ in the setting plane are shown. The figure is a

stereogram. For crossed fusion, use the left-hand pair of images; for

diverged fusion, use the right-hand pair.
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either. Similarly, much research on illusory contours

emphasizes their presence or absence but not their pre-

cise location (e.g., Kanizsa, 1979), although the task

used by Ringach and Shapley (1996) does require dis-

crimination of the sign of curvature of an illusory con-

tour.

There is less work directly addressing the grouping
problem (for a review, see Warren, Maloney, & Landy,

2002) and very little work concerning the Interpolation

Problem. Warren et al. measured how accurately human

observers could interpolate linear and parabolic sam-

pled contours in three-dimensional space. One of their

stimuli, 2 a sampled parabolic contour, is illustrated in

Fig. 2. On each trial, the observer saw such a collection

of points, and adjusted one of them to fall on the con-
tour shared by the remainder. The adjustable point was

constrained to lie in an invisible plane that intersected

the invisible contour once. The plane was orthogonal to

the contour at the point of intersection. The computa-

tional theory appropriate for solving this sort of prob-

lem is the theory of splines 3 (de Boor, 1978).

Warren et al. found that observers’ settings were very

reliable. The standard deviation in repeated settings was
about 1/30th of the gap between points across which the

observer interpolated, comparable to human perfor-

mance in Vernier acuity tasks (Klein & Levi, 1987).

Significantly, the settings displayed no patterned biases

away from the parabolic contour across conditions and

observers. While it is scarcely surprising that human

observers interpolated linear contour segments as linear,
2 The actual stimuli were self-luminous ‘‘blobs’’ suspended in three-

dimensional space against a featureless black background. In the

figures we will represent the stimuli as black points on a white

background for clarity, and refer to the self-luminous blobs as

‘‘points’’.
3 A spline algorithm assigns a unique curve to an ordered series of

points p1; . . . ; pN with the property that the resulting curve passes

through each of the given points. Spline algorithms can also include

constraints on the slope of the resulting curve at each point. Since each

point here is indicated by an unoriented blob, these more complex

spline algorithms are not relevant to our task and stimuli.
it is interesting that observers interpolated parabolic

contour segments as parabolic rather than as some other

family of contours, slightly flatter or more curved at the

point of interpolation. These results suggest that para-

bolic (and linear) contours play a special role in visual

spline interpolation.

Warren et al. (2002) varied the number of points that

the observer could see in interpolating a linear contour
(2, 4, 6, and 8 points) or a parabolic contour (4, 6, 8, and

10), removing pairs of points furthest from the point of

interpolation in succession. Their goal was to examine

how the amount of visible information (measured in

number of points) affected the variability 4 of observers’

settings. In particular, they sought to determine whether

the setting variability of parabolic spline interpolation

with 6, 8 or 10 points might compare with the setting
variability of linear interpolation with two points. If the

two were comparable, then they could conclude that

providing additional visual information canceled the

increase in uncertainty associated with interpolating a

curved contour.

Surprisingly, setting variability did not decrease sig-

nificantly as the number of visible points increased for

either the linear or parabolic contour. One possible
interpretation of their results is that observers, in

interpolating, are using only the innermost four points

for the parabolic segment 5 or the innermost two for the

linear segment. In terms of the theory of splines, the

hypothesis can be restated as the claim that the ‘‘human

visual spline’’ is local. A local spline with window m is

one that bases its interpolation of the gap between

points pi and piþ1 on the 2m points pi�mþ1; . . . ; pi;
piþ1; . . . ; piþm, ignoring the remainder. The hypothesis

that emerges from Warren et al. can be restated as:

Human visual interpolation of parabolas is local with

window 2 and interpolation of lines is local with window

1. This local spline hypothesis is illustrated in Fig. 3.

This local spline hypothesis with m ¼ 2 is consistent

with the contour grouping models of Feldman (1997)

and approximately so with the contour grouping model
of Pizlo, Salach-Golyska, and Rosenfeld (1997). We will

return to the latter model in the general discussion.

In this article, we test the local spline hypothesis for

sampled parabolic contours in three-dimensional space.

We also address other hypotheses that we explain once

we have described the coordinate systems and dependent

measures we employ. We will make use of a perturba-
4 The observers adjusted a point confined to a plane and the

variability of the settings was characterized by the settings’ covariance

matrix. We use the term setting variability to refer to this covariance

matrix.
5 Since the parabolic segment is confined to a plane, it is possible

that the observer is using only three of the four points displayed.

Earlier results for parabolic contours confined to the fronto-parallel

plane (Koh & Maloney, 1988) do, however, show a decrease in setting

variability with an increase from three to four visible points.
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Fig. 3. The local spline hypothesis. The visual system uses a moving

2m-point window in computing the spline interpolation of the invisible

contour from the visible points. In the figure, m is 2, and the window is

shown for interpolation at three different points along the invisible

contour. A spline algorithm that can be expressed in this form is a local

spline.

Perturbation

t

p
0

p
-2

n

bN-2

B-2
p
-1 Change in setting

(∆N-2, ∆B-2)

(∆n, ∆b)

Fig. 4. Setting coordinates and perturbation coordinates. The sampled

parabolic contour consisted of eight points in the fronto-parallel plane,

three of which are shown here. The observer’s task was to move the

adjustable point p0, constrained to lie in the setting plane, until it

appeared to fall on the contour. The setting plane was orthogonal to

the invisible parabolic contour at the point where it intersects it (the

true point s). The coordinate system of the setting plane ðn; bÞ is

shown. On some of the trials, one of the contour points (in the figure,

p�2) was perturbed away from the invisible contour. The perturbed
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tion technique first described by Maloney and Landy

(1989) (Landy, Maloney, Johnston, & Young, 1995) and

first applied to visual interpolation by Hon, Maloney,

and Landy (1997). The goal is to measure certain partial

derivatives that characterize how each of the visible
points in Fig. 2 contributes to the ‘‘human visual

spline’’.

point was constrained to lie in a perturbation plane that intersected the

contour at the unperturbed location of the point and was orthogonal

to the contour at that point. The coordinate system ðNi;BiÞ of one

perturbation plane is shown. A possible perturbation ðDNi;DBiÞ is

shown, as is a possible change in setting in response, ðDn;DbÞ. The
magnitudes of perturbation and response shown in this schematic are

much larger than those employed in the experiments reported here.

6 We could also move the visible point a large distance, rather than

just ‘‘wiggling’’ it. However, large displacements may lead the visual

system to re-segment the scene, in effect removing the point from the

contour. Hon et al. (1997) investigated the effect of large displacements

and found that this was the case.
2. Coordinate systems and the influence matrix

We first develop mathematical notation needed to
represent the visual splining task just described. The

experimenter selects visible points p�N ; . . . ; p�1;
p1; � � � ; pN with coordinates pi ¼ ðxi; yi; ziÞ that fall on an

invisible parabolic segment constrained to lie on a plane

in three-dimensional space referred to as the contour

plane. A setting plane PS is chosen that intersects the

invisible parabolic segment only once between p�1 and

p1 and that is perpendicular to the parabolic contour at
the point of intersection (Fig. 2). This point of inter-

section is referred to as the true point, s. In the notation,

we replace p�N ; . . . ; p�1; p1; � � � ; pN by ~p for convenience.

The observer’s task is to select a point p0 in PS that

‘‘falls on the contour’’. In our experiments, observers do

so by adjusting the position of a point constrained to lie

in the plane PS.

We denote the point that the subject selects as the
interpolation point by p0 ¼ SðPS;~pÞ. In general,

SðPS;~pÞ is a random variable: the observer will not

necessarily select the same point given the same stimu-

lus. Based on Warren et al. (2002), we can model this

trial-to-trial variability as additive, zero-mean Gaussian

noise and write

SðPS;~pÞ ¼ sðPS;~pÞ þ e; ð1Þ
where sðPS;~pÞ, the visual spline function, is the expected
value of the observer’s setting which we estimate by

averaging the observer’s settings across many trials.

Since the observer’s setting is constrained to be in the

setting plane, it is convenient to report settings in a
coordinate system confined to the setting plane. The

origin of this setting plane coordinate system is the true

point, s, and the two axes are referred to as n and b (Fig.
4). Both axes are perpendicular to the contour at the

true point (since they are contained in the setting plane
PS which is perpendicular to the contour at the true

point). The axis b (the binormal) is orthogonal to the

contour plane. The axis n (the normal) is in the contour

plane, and is orthogonal to both b and to the contour at

the true point s. We represent the observer’s setting in

setting plane coordinates, and we define the ‘‘output’’ of

the vector-valued function sðPS;~pÞ to be in setting plane

coordinates as well,

n
b

� �
¼ snðPS;~pÞ

sbðPS;~pÞ

� �
: ð2Þ

Our first goal is to test the local spline hypothesis. The

local spline hypothesis is the claim that only a subset of

the points p�N ; . . . ; p�1; p1; . . . ; pN , the ones nearest to the

point of interpolation, have any influence on the ex-

pected setting sðPS;~pÞ. Intuitively, we can imagine test-

ing the hypothesis by reaching into Fig. 4 (or Fig. 2) and

wiggling any one of the visible points pi a little bit. If

small displacements of the point do not alter the inter-
polation point then we conclude that the point we

‘‘wiggled’’ had no influence on the visual spline function

sðPS;~pÞ. 6 We formalize this intuition in terms of a
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particular set of partial derivatives of sðPS;~pÞ, which we

define next.

Let pi denote any one of the visible points

p�N ; . . . ; p�1; p1; . . . ; pN that we designate as the per-

turbed point. Let Pi denote the plane through pi
orthogonal to the parabolic contour at pi, which we refer

to as the perturbation plane. Just as we did for the setting

plane, we establish a perturbation coordinate system

ðNi;BiÞ with its origin at the perturbed point, and Ni and

Bi defined analogously (Fig. 4).

We are interested in estimating the effect of small

displacements of the perturbed point pi within the per-

turbation plane. These effects can be summarized by the

matrix of partial derivatives

Ii ¼

osn
oNi

osn
oBi

osb
oNi

osb
oBi

2
664

3
775; ð3Þ

which we refer to as the influence matrix corresponding

to the point pi. It is a portion of the Jacobian matrix of

the visual spline function s. We will estimate this influ-

ence matrix experimentally as explained in the methods

section below. The influence matrix is closely related to

measures of influence used in the theory of robust sta-

tistics (Hampel, Ronchetti, Rousseeuw, & Stahel, 1986).
To see the significance of the influence matrix for our

task, consider a perturbation of point pi. For small en-

ough perturbations we can approximate sðPS;~pÞ by a

truncated Taylor series

n
b

� �
� n0

b0

� �
þ

XN
i¼�N

Ii
DNi

DBi

� �
; ð4Þ

where ½DNi;DBi�0 represents the perturbation applied to

pi, and ½n0; b0�0 is the expected setting in the absence of a

perturbation. Thus, the influence matrices characterize
the response of the visual spline function to small per-

turbations of the visible points; they comprise the linear

component of the human visual spline function.

For a given visible point pi, the influence matrix

provides information about how that point enters into

the computation of the human visual spline. If, for

example, a visible point has no role in interpolation,

then the entries of its influence matrix should be zero.
The prediction of the local spline hypothesis, then, is

that the influence matrices for visible points far from the

point of interpolation should be zero. We test this pre-

diction in the experiments below.

The stimuli we use are contours confined to a plane in

three-dimensional space. It is natural to ask whether the

visual system makes use of this planar constraint.

Consider, for example, what might happen if we perturb
one of the visible points in the Ni-direction only so that,

although perturbed, it remains in the contour plane.

Will the resulting displacement of the setting point also
remain in the contour plane? Conversely, if we push the

visible point along the Bi-direction, orthogonal to the

contour plane, will the resulting change in interpolation

be a displacement along the b-direction only? In terms of

the influence matrix, we are asking whether the off-

diagonal entries, osn=oBi and osb=oNi are zero. We refer

to this hypothesis as the dimensional independence

hypothesis. It is interesting to note that previous work
concerning interpolation in the fronto-parallel plane

effectively assumes this hypothesis without testing it by

assuming that the contour defined by visible points (or

Gabor patches or fragmentary contours) in the fronto-

parallel plane must be contained completely in the

fronto-parallel plane. We test this hypothesis for the

fronto-parallel plane and for a non-fronto-parallel

plane.
Any proposed model of human visual interpolation

of parabolic contours must, of course, reproduce the

performance of human observers in Warren et al. (2002)

(Hon et al., 1997). Unfortunately, most spline algo-

rithms approximate parabolic contours very well and it

is difficult to reject models based on interpolation per-

formance alone. However, a valid model of human

performance must not only match human performance
in interpolation, but must also have the same influence

matrices. Intuitively, it must make use of the same

points in the same way as characterized by influence.

The influence matrices measured in the experiments

below provide a potentially useful tool for selecting

among models of human visual interpolation.

In the experiments that follow, influence matrix ele-

ments will be estimated experimentally. The degree of
linearity will be tested, as will dimensional indepen-

dence. Finally, the measured influence matrices will be

compared to those predicted by several possible models

of the human visual spline.
3. General methods

3.1. Apparatus

We used two Sony Trinitron Multiscan G500 moni-

tors, positioned on either side of the observer, to display

stimuli (Fig. 5). The two monitors formed part of a
Wheatstone stereoscope: the image from the left moni-

tor was projected to the observer’s left eye by a small

half-silvered mirror placed at 45� to the observer’s

Cyclopean line of sight. A second half-silvered mirror

reflected the image of the second monitor to the ob-

server’s right eye. The partial transparency of the mir-

rors facilitated spatial calibration of the monitors

(described below) but played no other role in the
experimental sessions. The optical distance from each

eye to its corresponding monitor was approximately 70

cm. From this distance, the central region of each
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Fig. 5. The experimental apparatus. The observer was seated in a

Wheatstone stereoscope. The left and right retinal images of a stereo

pair were presented on computer monitors and viewed by means of

small mirrors. The fused image consisted of a small number of self-

luminous points. The apparatus was contained in a large box lined

with black, flocked paper to absorb stray light. A combination of anti-

aliasing software and calibration procedures permitted sub-millimeter

accuracy in positioning points in visual space.

P.A. Warren et al. / Vision Research 44 (2004) 815–832 819
screen, used to display our stimuli, subtended approxi-

mately 24 · 18 deg of visual angle. The screens of the

G500 monitors are close to physically flat. All stimuli

were generated using MatLab� (The Mathworks Inc;

Hanselman & Littlefield, 1997) on a Dell Precision 410

workstation running under the Linux operating system.
Observers were positioned in a chin rest and were

asked to keep their heads still, although no head re-

straint was imposed. The apparatus was housed within a

large box, the interior of which was covered in black,

flocked paper (Edmund Scientific), a highly light-

absorbent surface. The observer could see only the

points defining the stimulus, apparently floating in front

of him or her against a black background. In the
experiments described below, the task of the observer

was to move a point in space until it appeared to lie on a

contour sketched by other points. Each point was a

trivariate Gaussian 3-D ‘‘blob’’ of light that could be

positioned in space with high resolution. At 70 cm di-

rectly in front of the viewer, this resolution was 0.07 mm

in the horizontal and vertical directions and 0.14 mm in

depth, corresponding to 2100 visual angle in the vertical
and horizontal directions and 4200 of disparity resolu-

tion. This resolution is small compared to observers’

setting variability in these tasks. The computational

methods used to present these points in stereo are de-

scribed by Warren et al. (2002), including anti-aliasing

methods that permitted display of points in space with

high spatial resolution (Georgeson, Freeman, & Scott-

Samuel, 1996).
We calibrated the apparatus spatially before each

experimental session. Using only the left eye, the ob-

server first viewed a 4 · 5 array of points on the left

monitor superimposed on a physical reference by one of

the half-silvered mirrors. The calibration reference tar-
get was a 4 · 5 array of points on a rigid, planar surface

placed 70 cm in front of the observer. The observer

moved each point separately until it appeared to lie on

top of the corresponding physical reference dot. This

process was then repeated for the right eye.

3.2. Stimulus configurations

We used a parabolic contour segment. The equation

of the parabola in cm relative to the bottom left hand

corner of the central viewing area of the screen for the

fronto-parallel condition was y ¼ 0:0033x2 � xþ 152:4
(the parabola was rigidly rotated for the non-fronto-

parallel condition). The observer saw only sample points

constrained to lie on the segment as illustrated in Fig. 2.
The vertical and horizontal extents of the parabolic

section in the contour plane were approximately 5.5 and

26 cm (corresponding to 4.5� and 20.4� visual angle for

the fronto-parallel plane condition). We first selected

nine points: the two endpoints of the segment and seven

more points whose positions were computed to be

equally spaced in arc-length along the contour. If the

observer knew that the distance between successive
points along the contour was always the same, he or she

might use spacing as a cue in interpolating the contour.

Therefore, we jittered the positions of the points by

sliding them a random amount along the (invisible)

contour. After jittering, spacing between successive

points was evidently non-uniform (Fig. 2). The average

linear distance between the sampled points was 35.3 mm

(corresponding to approximately 3� visual angle in the
fronto-parallel condition). The locations of the points

on the contour were not varied on a trial-by-trial basis;

they remained constant throughout the experiment.

3.3. Procedure

In each trial in all four experiments, observers saw an

eight-sample planar parabolic contour in 3-D space. The

invisible ninth point s (the true point) was always in the

middle of the series of visible sampled points defining

the contour (Fig. 2). The observer was instructed to

move an additional point (p0, the adjustable point)until

it lay on the perceived contour (method of adjustment).

Movement of p0 was confined to a plane that we will
refer to as the setting plane. The initial position of p0 was
chosen randomly within the setting plane. The setting

plane intersected the contour at s, and was perpendic-

ular to the contour at s (Fig. 4).

Observers used six buttons throughout the course of

the experiment. Four of these moved p0 in the setting

plane. Prior to the experiment we selected two direction

vectors in the setting plane for each angle and curve
condition. To each direction vector we assigned two of

the four keys. Pressing one key of the pair moved the

point one way along the vector, pressing the other
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moved it in the opposite direction. We found that

observers were best able to learn to move p0 when one of

the direction vectors had zero absolute depth compo-

nent, lying as close to vertical as possible while still

constrained to lie in the setting plane. The other direc-

tion vector was perpendicular to the first, and therefore

had a depth component. Observers quickly became

comfortable with this mapping of keys to movements of
p0. Defining the actions of the movement keys in this

manner also ensured that no inherent significance was

attached to the normal and binormal directions to the

contour at s (the directions along which we measured

the components of the influence matrix).

At the start of a trial the control program permitted

‘‘quick’’ movement of the point––each key press dis-

placed the point by approximately 0.5 mm in a direction
in space defined by the experimental conditions. When

the observer judged that the adjustable point p0 was near
the contour, they pressed a fifth key which allowed them

to move the point with greater precision (at the limit of

resolution of the apparatus) until they were satisfied

with their setting. A final press of the sixth key recorded

the observer’s setting and triggered the next trial. No

feedback was given to observers since the results of
Warren et al. (2002) demonstrated that none was nec-

essary to ensure accurate interpolation performance.

3.4. Rotations

In the experiments described below, the stimuli were

either presented in the fronto-parallel plane or were
rotated by 70� about a vertical axis through the true

point s (Fig. 2). The fronto-parallel and 70� stimuli

alternated on successive trials to prevent observers from

noticing any changes in position of points associated

with changes in perturbation condition, as described

below.

3.5. Coordinate systems

Throughout this paper we will refer to absolute and

intrinsic coordinate systems. The absolute coordinate

system, ðX ; Y ; ZÞ, is simply the fixed frame of reference

of the apparatus centered on the true point, s. We chose

the convention that this frame is left-handed with the
X -, Y - and Z-directions corresponding to rightwards,

downwards and towards the observer, respectively.

Intrinsic coordinates were introduced previously

(Warren et al., 2002). They are the coordinates in the

plane orthogonal to the contour at a specified point

along the contour. At the true point, s, this plane is the

setting plane and the setting coordinates axes in the

plane are denoted b and n (Fig. 4). The axis b is per-
pendicular to the contour plane; the axis n is in the

contour plane. We also define the unit tangent vector, t,
to the curve at the true point. We will only make use of
this last coordinate axis in discussing modeling results in

the conclusion. The perturbation coordinate system is

defined as the intrinsic coordinate system at the current

perturbed point pi and is denoted ðNi;BiÞ.
3.6. Measuring the influence matrix

In each of the following experiments, we perturb

some of the visible points on some of the trials (per-

turbed trials). On other trials, no points are perturbed

(unperturbed trials). When a point is perturbed, we will
alter its position in either the Ni-direction by an amount

DNi or in the Bi-direction by an amount DBi, but not in

both. We estimate the effect of the perturbation DNi in

the setting plane by computing the difference between

the mean settings on the unperturbed and the perturbed

trials, ðDn̂Ni ;Db̂NiÞ. Similarly, we estimate the effect of

the perturbation DBi in the setting plane by computing

the difference between the mean settings on the unper-
turbed and the perturbed trials, ðDn̂Bi ;Db̂BiÞ. The

resulting estimated influence matrix for the perturbed

point is

Îi ¼

Dn̂Ni

DNi

Dn̂Bi

DBi

Db̂Ni

DNi

Db̂Bi

DBi

2
664

3
775; ð5Þ

which is identical to the influence matrix of Eq. (3) with

empirical estimates replacing some of the quantities. We

are especially interested in conditions of sufficiently
small perturbations for which Îi is a valid estimate of the

Jacobian of the human visual spline function. In the

next two experiments we test whether the perturbations

we use are small enough for linearity to hold, allowing

us to consider Îi as an estimate of the Jacobian.
4. Experiment 1

In this experiment we examine how scaling the mag-

nitude of the size of the perturbations DNi and DBi af-

fects measured influence. Over the range where

perturbation is homogeneous, we expect that scaling DNi

by one half would scale the corresponding effects of
perturbation ðDn̂Ni ;Db̂NiÞ by the same factor, and that

scaling DBi by one half would halve ðDn̂Bi ;Db̂BiÞ. Fur-
ther, we expect that the inverse perturbation �DNi

should result in the inverse effect ð�Dn̂Ni ;�Db̂NiÞ and

similarly for reversing DBi. If these predictions hold,

there is no net effect on the estimated influence matrix Îi
since the factors of 1/2 or )1 appear in both the

numerators and denominators of each entry in Eq. (5)
and cancel. We test homogeneity separately for stimuli

in the fronto-parallel plane and for stimuli rotated 70�
about a vertical axis.
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4.1. Methods

On each trial, observers viewed an eight-point sam-

pled contour, and adjusted the position of p0 within the

setting plane so that it appeared to lie on the perceived

contour. On some trials a single point (p1, the point

immediately to the right of p0 along the contour) was

perturbed in the normal direction N1.
The factors in this experiment were perturbation size

(0, 0.8 or 1.6 mm, corresponding to visual angles of 00, 40

and 80 in the 0� condition), contour rotation angle (0� or
70�) and perturbation direction ð�1;þ1Þ. The factors

were fully crossed resulting in 12 experimental condi-

tions. Note, however, that with perturbation size zero

(i.e., no perturbation) the direction factor collapses. This

naturally gives twice as many settings for any unper-
turbed condition as any perturbed condition. Observers

completed 12 repetitions of each condition over a period

of three hour-long sessions, leading to a total of 144

settings per subject.

The perturbation sizes were chosen based on the re-

sults of Warren et al. (2002). There it was found that

variability was within 80 in the fronto-parallel plane.

Thus, it is unlikely that subjects could detect even the
largest perturbation, which was approximately the same

size as the upper bound on setting variability, and

examination of the stimuli confirmed this claim. The

angle conditions were interleaved so that observers

could not complete the task by remembering the loca-

tion of the point between trials. Each trial took

approximately 1 min to complete so it is unlikely that

observers were able to use location memory to complete
the task. All other conditions were randomized.
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perturbations in the N -direction (±0.8 and ±1.6 mm), the distribution of se

respond to the centroids of these distributions. The centroids primarily shif

perturbation. The sign of the shift agrees with the sign of the perturbation. Re

that within a perturbation condition the settings are slightly more variable i
4.2. Observers

Three observers participated in the experiment. Two

of the observers, PAW and LTM, were authors. The

third observer, JT, was an experienced psychophysical

observer unaware of the purpose of the experiments. All

observers had normal or corrected-to-normal vision.
4.3. Results

Fig. 6 shows the entire data set for a single observer

(PAW) in setting plane coordinates. First, note that the

distributions of settings around each mean setting point

are similar in all perturbed and unperturbed conditions.

The main effect of perturbation is a shift in mean setting.

The setting distributions in this and subsequent experi-
ments are similar to those of Warren et al. (2002) who

reported uncertainties of ±1.5 mm (±7.50 visual angle) in

the X - and Y -dimensions and ±2 mm (less than ±10

disparity) in depth. In the intrinsic coordinate frame, for

the unperturbed condition, the maximum standard

deviation across all three observers, two angle condi-

tions and both coordinate directions was 1.1 mm (3% of

the distance to the nearest contour point). Similarly the
maximum standard deviations for the 0.8 and 1.6 mm

perturbation conditions pooled over positive and nega-

tive perturbation directions were 1 and 1.2 mm. In all

three perturbation conditions the maximum standard

deviation was observed for the b-component of the 0�
rotation condition. Since this corresponds to the depth

dimension the value can be equivalently expressed as

approximately 0.50 disparity for all three perturbation
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822 P.A. Warren et al. / Vision Research 44 (2004) 815–832
conditions. These quantities are very similar to those

reported previously (Warren et al., 2002).

The mean of the setting errors in the n-direction is

displaced for the perturbed trials, and perturbations of

opposite sign lead to displacements in the opposite

direction. The larger the perturbation magnitude, the

larger the displacement was in the n-direction. Also,

note that perturbation in the Ni-direction has little effect
on the mean of the distribution of settings in the b-
direction. This is consistent with the dimensional inde-

pendence hypothesis. We will test this hypothesis more

rigorously in Experiments 3 and 4.

Fig. 7 shows Dn̂N1
=DN1, and Db̂N1

=DN1 for both the 0�
and 70� angle conditions and all four perturbation sizes

for both observers. We conducted a variety of t-tests on
the data to assess the significance of the influence mea-
sures. In total, we performed 28 tests per subject and

accordingly applied a Bonferroni correction at the 5%

significance level. Thus, the null hypothesis was rejected
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results are consistent with the claim that these magnitudes of pertur-

bation fall within the linear perturbation region. Data for three
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only if p < 0:0018 (0.05/28). The results of some of these

tests can be found in Table 1. We first tested whether the

components Db̂N1
=DN1 and Dn̂N1

=DN1 were significantly

different from zero for the positive and negative per-

turbation conditions separately (a total of 16 tests). For

all subjects, in all angle, perturbation size and direction

conditions the b-component of influence was not sig-

nificantly different from zero. Turning now to the n-
component, for the 0.8 mm perturbation size condition

the n-component of influence was significant for only

one subject (PAW) in all angle and direction conditions.

The other two subjects showed less consistent results

which approached but did not achieve significance.

When the perturbation size was 1.6 mm, all three

observers displayed a significant influence in all condi-

tions. When the positive and negative perturbation
direction data sets were combined (thereby doubling the

size of the data set in a single t-test, resulting in eight

additional tests) we again found that for both pertur-

bation sizes and angle conditions the b-component was

not significantly different from zero for all subjects (not

shown). However, the n-component of the influence

showed significant differences from zero for two subjects

(PAW, LTM) in all conditions (Table 1). For subject JT
when the perturbation size was 1.6 mm, the n-compo-

nent of influence was significantly different from zero in

both the 0� and 70� conditions. In the 0.8 mm pertur-

bation size conditions the influence approached signifi-

cance (p < 0:01 and p < 0:05 for the 0� and 70�
conditions, respectively; Table 1). Thus, we conclude

that the perturbations had a measurable effect. In

addition, we tested whether the n- and b-components of
influence were significantly different for the two pertur-

bation sizes (four additional tests). For all three subjects,

no significant differences were found (Table 1). We

conclude that homogeneity holds over the range inves-

tigated (perturbations of )1.6 to +1.6 mm).
5. Experiment 2

This experiment was designed to test the superposi-

tion condition that must be satisfied for local linearity.

That is, we test whether the effect on observer settings of
perturbing two points equals the sum of the effects

resulting from each of the separate perturbations.
5.1. Methods

On each trial observers viewed the eight-point sam-

pled contour and had to adjust p0 in the setting plane

until it lay on the inferred contour. The perturbed points
were always p�1 and/or p1, the two points flanking p0.
On a given trial, either no points, one point or two

points were perturbed by 0.8 mm in the corresponding



Table 1

Tests of homogeneity for Experiment 1

Angle Observer

PAW LTM JT

0.8 mm perturbation

0� t23 ¼ 8:61, p < 0:001 t23 ¼ 4:06, p < 0:001 t23 ¼ 3:03, n.s.

70� t23 ¼ 5:26, p < 0:001 t23 ¼ 3:78, p < 0:001 t23 ¼ 3:37, n.s.

1.6 mm perturbation

0� t23 ¼ 11:16, p < 0:001 t23 ¼ 12:31, p < 0:001 t23 ¼ 7:06, p < 0:001

70� t23 ¼ 14:56, p < 0:001 t23 ¼ 8:30, p < 0:001 t23 ¼ 10:85, p < 0:001

Difference

0� t46 ¼ �1:01, n.s. t46 ¼ �1:21, n.s. t46 ¼ �0:10, n.s.

70� t46 ¼ �0:54, n.s. t46 ¼ �0:06, n.s. t46 ¼ �0:04, n.s.

The t-statistics testing whether measured influence on settings in the n-direction of the ±0.8 and ±1.6 mm perturbations in the N -direction were

significantly different from zero are shown for the three observers in both angle conditions. The degrees of freedom of each t-statistic are shown as a

subscript. All were significantly (or close to significantly) non-zero, showing that observers reliably changed their settings in the n-direction in

response to perturbations in the N -direction. In the panel labeled ‘‘Difference’’ we compare the magnitude of measured influence in response to the

two sizes of perturbation. There were no significant differences and thus we did not reject the homogeneity hypothesis.
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normal direction(s) N�1 and N1. The factors in this

experiment were the angle (0� and 70�) and perturbation

pair type for the two perturbed points (ð0; 0Þ, ð0; 0:8Þ,
ð0:8; 0Þ, ð0;�0:8Þ, ð0:8; 0:8Þ and ð0:8;�0:8Þ). We dou-

bled the number of ð0; 0Þ (unperturbed) conditions to

guarantee twice as many unperturbed settings. Thus,
there were 14 conditions. Observers completed nine

repetitions of each condition over three hour-long ses-

sions leading to a total of 126 settings per subject.

As in the first experiment the angle conditions were

interleaved, and all other conditions were randomized.
5.2. Observers

The observers were the same as those used in

Experiment 1.
5.3. Results

Once again setting variability was comparable to that

reported by Warren et al. (2002). The maximum stan-

dard deviation across all three subjects, six perturbation

conditions, two rotation conditions and both coordinate

directions was 1.39 mm (approximately 4% of the dis-

tance to the nearest contour point). As in Experiment 1
this maximum variability was observed in the b-com-

ponent of the 0� rotation condition. Since this corre-

sponds to the depth dimension the value can be

equivalently expressed as approximately 0.60 disparity.

The law of superposition implies that the effect of the

perturbation of two points (e.g., perturbation pair type

ð0:8; 0:8Þ) should be the sum of the effects of the con-

stituent single-point perturbations (ð0:8; 0Þ and ð0; 0:8Þ).
Fig. 8 compares two point perturbations effects with the

sum of the constituent single-point effects. This is shown

separately for the b- and n-components of the effect (e.g.,
Db̂N�1
þ Db̂N1

) and for the three subjects. Note that we

report effect rather than influence as influence is not well

defined for two simultaneous perturbations. Effects are

calculated using the mean of the perturbed settings in

each condition relative to the mean of the unperturbed

settings.
We performed a variety of t-tests on the data. In total

we performed eight tests per subject––two coordinate

directions ðn; bÞ by two angles ð0; 70Þ by two double

perturbation conditions (ð0:8;�0:8Þ and ð0:8; 0:8Þ). We

accordingly applied a Bonferroni correction to achieve

an overall 5% Type I error rate. Thus, the null

hypothesis was rejected only if p < 0:0063 (0.05/8).

In Table 2 we show results of these tests of super-
position for the n-components of the effect measure. In

each condition, we tested whether the effect of the

double perturbations was significantly different from the

sum of the effects of the corresponding single pertur-

bations. In all conditions for LTM and JT, and all but

one condition for PAW (70� rotation with ð0:8;�0:8Þ
perturbation), there was no significant difference. Thus,

superposition appears to hold in most cases. Taken to-
gether with the results of Experiment 1, we conclude

that effect is a linear function of perturbation for the

range of perturbations employed here.
6. Experiment 3

The purpose of this experiment is to derive estimates

Dn̂Ni=DNi and Db̂Ni=DNi of all components of the influ-

ence matrices for all eight points in our stimulus (i ¼ �4,

)3, )2, )1, 1, 2, 3, 4). In this experiment, we only per-
turb points in the Ni-direction, for both angle condi-

tions. In Experiment 4, we will estimate the remaining

two components of the influence matrices by perturbing
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when the perturbations are applied simultaneously. The symbols in

each plot correspond to the effects of two perturbations applied

simultaneously to the two points immediately flanking the adjustable
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shown for each of the two angle conditions, the two double pertur-

bations and the two coordinates of the setting plane. If superposition

were satisfied exactly then for each of the conditions the symbols

should lie on the end points of the corresponding lines. Data for three

observers are shown.
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in the Bi-direction. If the local spline hypothesis is true,

then we expect that both components will decrease

rapidly in magnitude with increasing distance from p0
(i.e., with increasing jij). We also will test dimensional

independence, i.e., whether small perturbations in the

Ni-direction result in displacements confined to the n-
direction, as the results of the last two experiments

suggested.
The results of the last two experiments indicate that

over the range )1.6 to 1.6 mm the effect of a perturba-

tion is a linear function of the perturbation. We take 0.8

mm as the perturbation magnitude in this and the fol-

lowing experiment, ensuring that we are within this lo-

cally linear range.
6.1. Methods

In this experiment, observers saw the eight-point

sampled parabolic contour and were asked to adjust p0
in the setting plane until it lay on the perceived contour.

On a given trial any one of the points forming the

contour might be perturbed by 0.8 mm in the positive or

negative normal direction Ni of the point pi being per-
turbed.

The factors in this experiment were angle (0� and

70�), direction of perturbation (+0.8 and )0.8) and

perturbed point number ()4, )3, )2, )1, 1, 2, 3, 4). The
angle conditions were interleaved and all other condi-

tions were randomized. We ran twice as many unper-

turbed trials as any single perturbation condition which

adds a further four conditions––one for each of the
angle and direction conditions. Thus, there were 36

experimental conditions and subjects saw 8 repetitions

of each condition over eight 30-min sessions. This leads

to a total of 288 settings per subject.

6.2. Observers

The observers were the same as those in Experiments

1 and 2 with the addition of IM who was naive to the

purpose of the experiments but was not available to run

in Experiments 1 and 2. Thus, we are assuming that the

perturbations used here are within the linear range for

this observer as they are for the other three.

6.3. Results

As in Experiments 1 and 2 we report maximum set-

ting standard deviations across all eight perturbation

conditions, two rotation conditions and both intrinsic

coordinate directions (due to the results of Experiment 1

positive and negative perturbations are pooled). How-
ever, here we report the value for each observer sepa-

rately in millimeters and as a percent of the distance to

the nearest contour point. For observers PAW, LTM,

IM and JT, the maximum standard deviations were:

0.84 mm (2.4%), 0.87 mm (2.5%), 0.78 mm (2.2%), and

1.63 mm (4.7%), respectively. Each of these maximum

variability values was observed in the b-component of a

0� rotation condition and can thus be equivalently ex-
pressed as a disparity of 0.40, 0.40, 0.30 and 0.70, respec-

tively. Consequently, variability was again similar in

magnitude to that reported by Warren et al. (2002).

Fig. 9 shows estimates Dn̂Ni=DNi and Db̂Ni=DNi of the

influence measure for each subject. The results of

Experiment 1 suggest that we can combine positive and

negative perturbation data to estimate influence, and all

tests were carried out on these combined data. In total
we conducted 32 t-tests on each observer’s data set to

assess whether the influence of each point was signifi-

cantly different from zero (i.e., eight points, two influ-



Table 2

Tests of superposition for Experiment 2

Perturbation hypothesis 0� 70�

PAW LTM JT PAW LTM JT

H0: ð0:8; 0:8Þ
¼ ð0:8; 0Þ þ ð0; 0:8Þ

t16 ¼ 1:30, n.s. t16 ¼ 0:75, n.s. t16 ¼ �0:02, n.s. t16 ¼ �0:44, n.s. t16 ¼ 0:20, n.s. t16 ¼ 2:12, n.s.

H0: ð0:8;�0:8Þ
¼ ð0:8; 0Þ þ ð0;�0:8Þ

t16 ¼ 2:26, n.s. t16 ¼ �0:73, n.s. t16 ¼ 1:31, n.s. t16 ¼ 4:86,

p < 0:001

t16 ¼ �1:65, n.s. t16 ¼ 2:09, n.s.

The reported t-statistics test whether the sum of effects (in the n-direction) of two single perturbations is significantly different from the effect of the

perturbations when applied simultaneously. Tests were carried out for the three observers in both angle conditions for the two double perturbations

tested (ð0:8; 0:8Þ and ð0:8;�0:8Þ). The only significant exception to the Superposition Hypothesis is for observer PAW in the 70�, ð0:8;�0:8Þ
condition.
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ence axes, two orientation conditions). A Bonferroni

correction was applied and thus significance was

achieved at the 5% level only if p < 0:0016 (0.05/32).

Fig. 9 shows that in both the 0� and 70� conditions
the b-component of influence is close to zero for all

perturbed points (except perhaps observer JT). This is

consistent with dimensional independence. The statisti-

cal tests agreed with this observation. For all four

subjects there were no significant influences in the
b-direction for any perturbed point in either angle con-

dition.

Turning to the n-component, for all subjects Fig. 9

shows that the influence is close to zero in both angle
conditions for all points except p�1, p1 and perhaps p�2

and p2. Clearly, we would expect at least three points to

exert influence on the setting since it requires at least this

many to define a parabola. Statistical tests showed that

there was a significant n-component of influence for
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points p�1 and p1 in all conditions for all four observers.

However, only for observer PAW was there a significant

effect of points p�2 and p2, with the three other observers

displaying non-significant influence or influence

approaching significance (e.g., point p�2 for observer

LTM in the 70� condition).
For all but one subject in one condition (point p2 for

observer IM in the 0� condition) the n-component of
influence of points p�2 and p2 was negative. This means

that, for example, a positive perturbation of point p2
causes the setting to be displaced away from the average

unperturbed setting in the negative direction and vice

versa.

These results are similar to those found by Hon et al.

(1997) in the fronto-parallel plane. Only the nearest four

points contributed to the interpolation setting with
the nearest two (p�1, p1) exerting a positive influence

and the next two (p�2, p2) exerting a negative influence.

In addition, our data suggest that influence is not af-

fected by rotating the stimulus into the third dimension.

Also, we find evidence of dimensional independence. In

the following experiment we look for the opposite pat-

tern of results. We perturb a point in the Bi-direction

and expect the setting to be influenced only in the
b-direction.
7. Experiment 4

The purpose of this experiment was similar to that of

Experiment 3 except that the perturbations were made

in the Bi-direction rather than the Ni-direction. Thus we

will measure how the estimated 2-D influence vector
ðDn̂Bi=DBi;Db̂Bi=DBiÞ varies with position on the con-

tour. We expect to find that the b-component of influ-

ence is very small for all but the sample points closest to

p0 (the local spline hypothesis) and to find very small

values for the n-component of influence for all perturbed

points (the dimensional independence hypothesis).

7.1. Methods

The methods were identical to those of Experiment 3

except that the perturbation was now performed in the

Bi-direction at each sample point.

7.2. Observers

The observers were the same as those in Experi-

ment 3.

7.3. Results

As in Experiment 3, for each observer we report the

maximum standard deviations of settings across all eight

perturbation conditions, two rotation conditions and
both intrinsic coordinate directions (due to the results of

Experiment 1, positive and negative perturbations are

pooled). We report each value in millimeters and as a

percent of the distance to the nearest contour point. For

observers PAW, LTM, IM and JT, the maximum

standard deviations were: 1.07 mm (3%), 1.04 mm (3%),

0.85 mm (2.4%), and 1.84 mm (5.3%), respectively. Each

of these maximum variability values was observed in the
b-component of a 0� rotation condition and can thus be

equivalently expressed as a disparity of 0.50, 0.50, 0.40

and 0.80, respectively. Consequently, variability was,

once again, similar in magnitude to that reported by

Warren et al. (2002).

Fig. 10 shows estimates Dn̂Bi=DBi and Db̂Bi=DBi of the

components of the influence matrix for all subjects.

Again, 32 t-tests were performed (with Bonferroni cor-
rection, and combining positive and negative perturba-

tions) on each observer’s data set to assess whether the

influence of each point was significantly different from

zero. Fig. 10 shows that in both the 0� and 70� condi-

tions the n-component of influence was close to zero for

all perturbed points. Again, this is what we would expect

in the case of dimensional independence since all per-

turbations were made in the B-direction. With the
exception of point p1, for observer PAW in the 70�
condition, the statistical tests agreed with this observa-

tion; no point had a significant influence on setting in

the n-direction. Turning to the b-component, Fig. 10

shows that the influence is close to zero in both angle

conditions for all points except p�1, p1 and perhaps

points p�2 and p2. Again, we would expect at least three

points to exert influence on the setting since it requires at
least this many to define a parabola. With the exception

of observer JT in the 0� condition, statistical tests

showed that, for points p�1 and p1, the b-component of

influence was significantly different from zero in all

conditions for all observers. No observers displayed, a

significant influence of points p�2 and p2 in any condi-

tion, however the b-direction influence of observer PAW

was nearly significant for points p�2 and p2 in the 70�
condition. Finally, as in Experiment 3, the b-component

of influence of points p�2 and p2 was always either near
zero or negative.

Due to the similarities in the data between the sub-

jects and both angle conditions in Experiments 3 and 4,

we collapsed the subject and angle conditions to give a

single influence measure in each of the b- and n-direc-
tions (Fig. 11, top panels). Tables 3 and 4 shows the
results of t-tests to assess whether the influence was

significantly different from zero in the b- and n-direc-
tions for Experiments 3 and 4, respectively. We con-

ducted 16 tests per experiment and accordingly applied a

Bonferroni correction such that the 5% significance level

was only achieved if p < 0:0031 (0.05/16). For a per-

turbation in the N -direction, Table 3 shows that no

point had a significant influence on the setting in the
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b-direction, and only perturbation of points p�2, p�1, p1
and p2 significantly affected settings in the n-direction.
The pattern of results seen in Experiment 4 is less clear.

However, there is still evidence of dimensional inde-

pendence and only the nearest points have an influence

on the setting. For a perturbation in the B-direction,
Table 4 shows a significant influence on the setting in

the n-direction of point p�1 and of points p�1 and p1 on
settings in the b-direction.
8. General discussion

We have addressed the question of how much of the

available information is used in a 3-D interpolation

task. Several studies have suggested that when interpo-

lating regions of space, all but the most proximate

information is overlooked. We have tested these claims

by asking observers to interpolate sampled planar con-

tours in 3-D.

Our experiments replicated some of the conclusions
of Hon et al. (1997) while extending those conclusions to

non-fronto-parallel contours. The results of Experiment

1 showed that doubling the size of the perturbation
simply doubles the effect on the observer’s setting.

Experiment 2 demonstrated that the effect of perturbing

two points is approximately the sum of the effects of the

individual perturbations. Thus, for the range of pertur-

bations tested, interpolation is linear. Experiments 3 and

4 show that influence falls to zero quickly as the per-
turbed point moves away from the adjustable point p0,
indicating that limited information is used in carrying

out the task. Experiments 3 and 4 extend the work of

Hon et al. to 3-D. Dimensional independence held, so

that when a point adjacent to p0 is perturbed, either

within or orthogonal to the plane of the contour, the

effect on the observer’s setting is largely in the same

dimension. For example, perturbing point p�1, in the
N�1-direction leads to non-zero influence in the n-
direction only.

Note that prior psychophysical results suggest a

special role for local element orientation in grouping

(Field et al., 1993; Geisler, Perry, Super, & Gallogly,

2001). It remains to be seen whether a similar effect is

seen for interpolation. A study in which the high con-

trast positional information found in this study is re-
placed with oriented elements (e.g., Gabor patches) will

form the basis of further research.
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Fig. 11. The composite measured influence matrix and influence matrices for candidate spline algorithms. The influence matrices for three spline

algorithms are plotted, together with the averaged human data.

Table 3

Experiment 3: The composite influence function for perturbations in the N -direction

Point n-component b-component

p�4 t127 ¼ �0:81, n.s. t127 ¼ 1:17, n.s.

p�3 t127 ¼ �0:22, n.s. t127 ¼ �0:18, n.s.

p�2 t127 ¼ �4:76, p < 0:001 t127 ¼ 0:74, n.s.

p�1 t127 ¼ 20:81, p < 0:001 t127 ¼ �0:50, n.s.

p1 t127 ¼ 19:77, p < 0:001 t127 ¼ 1:65, n.s.

p2 t127 ¼ �3:89, p < 0:001 t127 ¼ 0:13, n.s.

p3 t127 ¼ �0:25, n.s. t127 ¼ �1:18, n.s.

p4 t127 ¼ �0:18, n.s. t127 ¼ �0:06, n.s.

The t-statistics shown indicate whether influence is significantly non-zero for the n- and b-directions in response to perturbations in the N -direction.

These data were obtained by averaging settings over the four observers, two angle conditions and two signs of perturbation. The data are, however,

representative of results for the individual observers.
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8.1. Piecewise interpolation

The most striking result reported here is that

observers use so little of the available information to
complete the task. One explanation is that visual inter-

polation mechanisms are confined to fixed regions of the

retina roughly centered on the fovea. This explanation

can be tested by changing the size of the stimulus, e.g.,

by scaling the stimulus size by 0.5. Such a scaling would

increase the number of points that fall within the
hypothetical interpolation region. If this explanation

were true we would expect to see more points with sig-

nificant influence. This control experiment was con-

ducted in the fronto-parallel plane by Hon et al. (1997).
They found that changing the size of the stimulus did

not affect the characteristic shape of the influence

functions (i.e., interpolation was scale-invariant). Thus,

when the stimulus was halved in size, the same number

of points had a significant influence on observers’ set-

tings, even though some of the points that were not used



Table 4

Experiment 4: The composite influence function for perturbations in the B-direction

Point n-component b-component

p�4 t127 ¼ �1:03, n.s. t127 ¼ �0:57, n.s.

p�3 t127 ¼ 0:21, n.s. t127 ¼ �0:59, n.s.

p�2 t127 ¼ �0:45, n.s. t127 ¼ �1:67, n.s.

p�1 t127 ¼ 3:59, p < 0:001 t127 ¼ 13:53, p < 0:001

p1 t127 ¼ �2:42, n.s. t127 ¼ 11:98, p < 0:001

p2 t127 ¼ 0:72, n.s. t127 ¼ �0:50, n.s.

p3 t127 ¼ �0:18, n.s. t127 ¼ 0:98, n.s.

p4 t127 ¼ 0:34, n.s. t127 ¼ 0:41, n.s.

The t-statistics shown indicate whether influence is significantly non-zero for the n- and b-directions in response to perturbations in the B-direction.
The format is the same as that of Table 3.
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in the smaller stimulus were within the interpolation

region for the larger stimulus.

In Warren et al. (2002) we replicated this finding
using setting variability as a measure of performance.

Observers performed a parabolic interpolation task

similar to that used here, but the number of points

describing the contour was varied. We showed that

halving the size of the stimulus led to smaller variability

for each number of points, but that the difference in

variability between these conditions was small. Adding

extra points beyond the three or four used for parabolic
interpolation did not enhance performance. These con-

trol experiments make it unlikely that visual interpola-

tion mechanisms can only operate in a small, central

retinal region.

Of course, only three points are actually needed to

completely specify the parabola. Thus, an alternative

explanation is that the extra points carry little useful

information. Care must be taken with this proposal
because the neural mechanisms responsible for inter-

polation do not have access to the exact location of the

point, since human estimates of location are unreliable,

leading to the variability in the location of the setting

point. Thus, one might expect that an optimal strategy

for minimizing this setting variability would use location

information from all of the points, weighting the con-

tribution of each point by its uncertainty. We tested this
hypothesis using a linear sampled contour stimulus in

the fronto-parallel plane (Warren et al., 2002). In that

study we found evidence that human observers use only

two points when interpolating a sampled linear contour.

We described an ‘‘ideal Gaussian interpolator’’ model

that calculated the contribution of each point relative to

a model of 3-D Gaussian uncertainty in its location. The

additional information provided by using four points
rather than two led to a reduction in setting variability

of 30%. We concluded that it is not the case that the

additional points carry negligible information in the

linear task. It is reasonable to assume that additional

points in the parabolic case would also contain useful

information. Thus, in spite of its great accuracy, human

interpolation performance is far from ideal when setting

variability is considered.
These considerations suggest that interpolation is a

local process in the sense that it relies on only the very

few nearest ‘‘information samples’’ from a contour or
surface. Note, however, that these nearest samples may

be a relatively large distance from the interpolation

region.

We have suggested that non-optimal performance

may occur as a result of attempting to provide a robust

solution to the interpolation problem (Warren et al.,

2002). Since there is more uncertainty in the location of

more peripheral points, their contribution should be
down-weighted. Such a scheme might lead to decreased

interpolation reliability unless (a) a precise estimate of

internal noise is available and that (b) the information is

used optimally. If either (a) or (b) is violated then in-

creased shape estimation errors may result from using

more than the most proximate sources of information.

Additionally, more distant points are more likely to

belong to another object or contour, lending additional
impetus to excluding them from the interpolation cal-

culation.

8.2. The human visual spline

Taken together, the results of this paper, Hon et al.

(1997) and Warren et al. (2002) provide strong evidence

for the proposal of Feldman (1997) that human visual

interpolation of contours is very much like a piecewise

spline. Thus, the human visual system localizes a sam-

pled contour by computing an estimate of location

based on a series of four-point sections. We have so far

restricted our attention to parabolic contours, so we
cannot conclusively describe the polynomial order of

these four-point splines. However, Warren et al. (2002)

suggest that any bias away from a parabolic spline is

tiny (roughly the width of a few sheets of paper). These

results suggests that the family of curves that the human

visual system can interpolate without appreciable bias

(the ‘‘human visual spline’’) includes linear and para-

bolic contours. We do not rule out the possibility that
other curve families (circles, cubic polynomials, etc.)

could also be part of the ‘‘human visual spline’’. Tests of

such hypotheses will be the goal of future research.
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8.3. Comparisons with standard interpolation algorithms

We now compare the measured influence functions of

observers with the computed influence functions of three

interpolation algorithms: (1) a least-squares fit to a

parabola, (2) a standard cubic spline algorithm, and (3)

an algorithm that minimizes the variance of angles in the

contour (defined over all neighboring triplets of points
along the curve). This latter model is an instantiation of

the minimum angle variance criterion implicit in the

work of Pizlo et al. (1997) and Vos and coworkers

(personal communication) (see van Assen & Vos, 1999).

For each of these interpolation algorithms, we com-

puted the partial derivatives of the model’s setting of the

adjustable point p0 relative to perturbations of the other

points, i.e., the influence matrices Ii for perturbations of
each point pi, which constitute each model’s predictions

for the measured influence functions of human observ-

ers.

Since the data for human observers suggests that the

‘‘human visual spline’’ is approximately dimensionally

independent, we broke the problem of three-dimen-

sional interpolation into two separate two-dimensional

interpolations. For convenience, we let t, n, b denote the
intrinsic coordinates at the true interpolation point.

Recall that t denotes the unit vector tangent to the curve

at the true point, n is perpendicular to t and in the

contour plane, and b is perpendicular to both n and t.
The first two-dimensional interpolation takes placed in

the nt-plane which contains the contour and the sampled

points. The second two-dimensional interpolation takes

place in the bt-plane, orthogonal to the nt-plane. We will
interpolate the n-coordinate with respect to the t-coor-
dinate and, separately, the b-coordinate with respect to

the t-coordinate. These are precisely the directions in

which we measured influence. We will compute the

corresponding influence measures for different spline

algorithms and compare them to the measured influence

functions for human observers.

If dimensional independence were exactly satisfied
then the two partial derivatives characterizing Dn̂Bi=DBi

and Db̂Ni=DNi would have expected value 0. We do not

plot these data as the algorithms considered all satisfy

dimensional independence. Moreover, the three inter-

polation algorithms are invariant under rotation about

the n-axis. Thus, it is legitimate to compare each of them

with the results for human observers averaged across

angle conditions (Fig. 11, composite observer).
The numerical estimates of the partial derivatives

corresponding to Dn̂Ni=DNi and Db̂Bi=DBi for the least-

squares quadratic fit (Davis, 1975, Chapter VIII) are

shown in Fig. 11 (least squares quadratic). To compute

these values we first fit a quadratic equation to the

unperturbed visible points in the 0� condition, and

estimated the intersection of the resulting quadratic

curve with the setting plane. Then we refit the visible
points with one perturbed in either the N - or B-direction
and compute the intersection of the fitted contour with

the setting plane. We used this information to compute

numerical estimates Dn̂Ni=DNi and Db̂Bi=DBi of the par-

tial derivatives, just as we did for the human observers.

Warren et al. (2002) found that the interpolation

settings of human observers, for unperturbed sampled

parabolic contours, fell very close to the parabolic
contour. This is also the case for the least-squares qua-

dratic fit and, if we only considered unperturbed inter-

polation performance, then we could not reject the

hypothesis that human observers are simply fitting a

parabolic contour to the visible sampled points. When

we consider human response to perturbations, however,

it is evident that the estimated derivatives for the least-

squares quadratic fit are qualitatively different from the
human data. Human observers use the available visual

information in a different fashion than does the least-

squares quadratic algorithm.

The second algorithm considered is a standard cubic

spline (de Boor, 1978) computed using the function csapi

in the MatLab� Spline Toolbox (The Mathworks Inc;

Hanselman & Littlefield, 1997). This spline routine

provides a perfect fit to parabolic data and, like the
least-squares algorithm just considered, it can duplicate

human performance in unperturbed conditions. The

numerical estimates of Dn̂Ni=DNi and Db̂Bi=DBi are

shown in Fig. 11 (cubic spline).

We note first of all that the estimates for the cubic

spline data in Fig. 11 are very different from those for

the least-squares quadratic fit, and the pattern of results

is qualitatively similar to the average human observer
data. The effect of perturbing either of the points adja-

cent to the interpolation point is to move the interpo-

lation point in the same direction in both the n- and

b-coordinates. Perturbing the visible points that are two

steps removed from the interpolation point leads to a

small response in the contrary direction in either n or b.
The effect of perturbation rapidly diminishes with sep-

aration from the point of interpolation. However,
qualitatively, the response of the human observer to

perturbation of the adjacent point is about twice as great

as the response of the cubic spline algorithm, and the

effect of perturbation seems to drop off more rapidly for

the human observers.

The last algorithm considered is based on the mini-

mum angle variance criterion of Pizlo et al. (1997). Any

three successive points pi�1, pi, piþ1 along the contour
define an angle hi, i ¼ �ðN � 1Þ; . . . ;N�1. The MAV

algorithm that we use selects the setting p0 that mini-

mizes the variance of the fhig. For example, if the points

pi are equally spaced, then the angle variance is zero

when the points lie on a segment of a circle or a straight

line. Intuitively, the MAV criterion favors near-circular

contours and the limiting case of a straight line. As Pizlo

et al. note, angle variance and, therefore, the setting
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selected by the MAV algorithm are size-invariant (as are

the other two algorithms considered here). The numer-

ical estimates of Dn̂Ni=DNi and Db̂Bi=DBi for the MAV

algorithm are shown in Fig. 11 (minimum angle vari-

ance). They are in qualitative agreement with the aver-

age human data but, as was the case with the cubic

spline algorithm, the human observer is considerably

more responsive to perturbations of the points adjacent
to the setting point p0 than the algorithm.

We conclude by noting the interpolation task requires

that the visual system gather discrete items of informa-

tion sparsely distributed across a large part of the visual

field. For the sampled contours considered here and by

Warren et al. (2002), human performance is very accu-

rate both in a fronto-parallel plane and in general po-

sition. The large separations between adjacent sample
points in a contour, and the three-dimensional character

of the task both pose challenges to simple models of

cortical interpolation that presuppose interactions be-

tween retinotopically adjacent neurons (Polat & Sagi,

1993). 7 We do not know what classes of contours the

human observer can interpolate without bias, but this

class includes parabolic and linear contours at a mini-

mum. Consequently, any model of human visual inter-
polation must reproduce this aspect of human

performance in three-dimensional space.

An accurate computational model of human inter-

polation performance is likely to advance our under-

standing of long-range interactions in cortex (Kapadia,

Ito, Gilbert, & Westheimer, 1995; Knierim & van Essen,

1992; Levitt & Lund, 1997; Sillito, Grieve, Jones,

Cudeiro, & Davis, 1995), and it is natural to begin with
the large mathematical literature on interpolation (see

Davis, 1975) in modeling human performance. The

perturbation measures advanced here are useful in

rejecting classes of models of human visual interpola-

tion.

One of the most obvious candidates considered here

(a least-squares quadratic fit) can be rejected as a model

of human interpolation performance based on pertur-
bation analyses, even though it reproduces human per-

formance in unperturbed conditions. The other two

models considered are in qualitative agreement with our

results, but human observers are more affected by per-

turbation of adjacent points than either of them, and

may show faster ‘‘damping’’ of the effect of perturbation

with separation from the setting point than the cubic

spline algorithm. In searching for the human visual
spline, then, we are seeking an algorithm that is less

‘‘springy’’ in its response than the cubic spline and that

accurately interpolates parabolas and, of course, lines.
7 We do not completely rule out a contribution of the long range

interaction model to the interpolation mechanism. However, a first

step in testing this would require an experiment linking the tasks of

detection and localization.
The approximate dimensional independence of human

visual interpolation is also a constraint on possible

models.

In this article and in Warren et al. (2002), we have

considered only parabolic and linear contours, confined

to frontal and slanted planes in space. It would, there-

fore, be of interest to look at other classes of curves,

both polynomial and non-polynomial, and to consider
sampled contours in space that have significant torsion,

no longer confined to a single plane.
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