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Ideal cue combination for localizing
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Many visual tasks can be carried out by using several sources of information. The most accurate estimates of
scene properties require the observer to utilize all available information and to combine the information
sources in an optimal manner. Two experiments are described that required the observers to judge the rela-
tive locations of two texture-defined edges (a vernier task). The edges were signaled by a change across the
edge of two texture properties [either frequency and orientation (Experiment 1) or contrast and orientation
(Experiment 2)]. The reliability of each cue was controlled by varying the distance over which the change (in
frequency, orientation, or contrast) occurred—a kind of ‘‘texture blur.’’ In some conditions, the position of the
edge signaled by one cue was shifted relative to the other (‘‘perturbation analysis’’). An ideal-observer model,
previously used in studies of depth perception and color constancy, was fitted to the data. Although the fit can
be rejected relative to some more elaborate models, especially given the large quantity of data, this model does
account for most trends in the data. A second, suboptimal model that switches between the available cues
from trial to trial does a poor job of accounting for the data. © 2001 Optical Society of America
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1. INTRODUCTION
Many visual estimation problems require the observer to
combine information from multiple sources. The obvious
example of this is the perception of depth, where the
sources of information are regarded as independent depth
cues, and more than a dozen such cues have been
described.1 As a prerequisite to the perception of metric
depth, many depth cues also require an estimate of the
fixation distance, and this may also be estimated by using
a number of different retinal and extraretinal cues (Ref.
2, for example). The segregation of figure and ground
and both the detection and localization of object bound-
aries may also be viewed as problems of combining infor-
mation from different sources. Object boundaries typi-
cally arise between surfaces differing in one or more
surface qualities or differences in object geometry or mo-
tion. These manifest themselves in the retinal images as
differences across the boundary in luminance, color, tex-
ture, disparity, and local motion. In this paper we will
examine whether localization of texture edges may be
successfully modeled as a problem of cue integration and
whether, as in the depth cue combination case,3 the cue
integration strategy shares characteristics of the ideal ob-
server.

A. Theories of Cue Combination in Depth Perception
In computer vision, one is often concerned with how infor-
mation is combined from multiple sources and, in particu-
lar, when those sources of information involve different
sensors of the environment. In that field, the combina-
tion problem is referred to as data or sensor fusion.
Clark and Yuille4 discuss the data fusion problem in great
detail and describe a hierarchy of solutions to it. The
simplest scheme is weak fusion, where independent data
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sources are each used to make a separate estimate of a
property of the environment, and then these estimates
are combined, e.g., by some form of average. At the op-
posite extreme is strong fusion, where information
sources can interact in arbitrarily complex ways to
achieve an estimate. The weak fusion scheme corre-
sponds, to some extent, with the ideas of Marr,5 who sug-
gested that different depth modules (structure-from-
motion, shape-from-shading, binocular stereopsis, etc.)
provide independent estimates of depth, shape, and dis-
tance, and these are combined at the level of the 2 1

2 -D
sketch. The strong fusion scheme has been used by, e.g.,
Aloimonos and Shulman,6 who describe a number of algo-
rithms that combine two or more depth cues in idiosyn-
cratic ways to make up for the deficiencies in the use of
the individual cues, leading to nonmodular algorithms,
for example, shape from stereo-and-motion.

There are certainly good reasons for the visual system
to treat cues in a modular fashion. Using depth percep-
tion again as an example, different depth cues provide dif-
ferent kinds of information. Some yield only ordinal as-
sertions about depth, some give relative depth, and some
give fully metric depth. Some lead naturally to estimates
of depth while others provide local surface orientation.
Furthermore, the reliability and even the availability of
individual cues varies from scene to scene and even at dif-
ferent locations within a scene. All of these observations
make it logically simpler to organize the system modu-
larly, a method in which cues, when available, are used to
make estimates of scene characteristics. These separate
estimates can then be combined, taking into account
viewing conditions, which cues are available in the scene,
and the cues’ reliabilities.

Considerations such as these led Landy and
colleagues3,7 to propose a modified weak fusion (MWF)
2001 Optical Society of America
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model for depth cue combination. It begins with an as-
sumption of modularity and a linear cue combination rule
or weighted average (i.e., weak fusion). But then, using
normative considerations, the authors point out that the
cue weights should depend on relative cue reliability
(more reliable cues should get higher weight) and on the
discrepancy between estimates from different cues (to be
statistically robust, outlier estimates should be down-
weighted). Finally, cues do not provide commensurate
information and must be promoted to a common format
(e.g., scaled by the fixation distance) before averaging is
even a meaningful operation. This scaling may involve
additional retinal or extraretinal information or may in-
volve interactions between depth cues.

In our previous work, we have seen demonstrations of
all of these behaviors including linear cue combination
with cue weights dependent on relative reliability,8,9 sta-
tistical robustness,10 and cue interactions for scaling.2,9,11

One might be concerned with how a model such as MWF
is implemented in the brain. Fine and Jacobs12 have
tried to implement it using a neural network. The study
described in the current paper will be an application of
the MWF model to judgments of spatial localization.

The modified weak fusion model is certainly not the
only theory that has been put forward to explain how cues
are combined. In its essence, it treats the observers as if
they were statisticians confronted with a problem in esti-
mation. A recent trend in perceptual psychology is in-
stead to describe behavior in the terms of Bayesian esti-
mation (Ref. 13, for example). If the cues are treated as
statistically independent and the individual distributions
are Gaussian (Ref. 14, in which this is termed a weakly
coupled system), the resulting Bayesian calculation is in-
distinguishable from the MWF calculation. With differ-
ent distributions and without independence assumptions,
however, Bayesian calculations can be arbitrarily complex
(i.e., result in forms of strong fusion).

Another model for cue combination is the fuzzy logical
model of perception of Massaro and Friedman.15 This
model begins with the language of fuzzy logic for describ-
ing support for individual propositions. Propositions are
combined by multiplication (rather than by the weighted
sum of MWF). In most of its applications, the competing
alternatives are discrete and finite (e.g., alternative per-
ceptual organizations, competing phonemic interpreta-
tions of a speech utterance), and the multiplication opera-
tion coincides with the Bayesian rule of combination.
Thus one can cast this as yet another version of the same
combination scheme, although that depends on how it is
applied, and there has been an ongoing debate on the
relative efficacy of the fuzzy logical model of perception
versus linear cue combination rules.16–18

B. Cue Combination for Other Estimation Problems
We suggest that information fusion schemes such as
MWF and Bayesian methods have general applicability in
vision beyond the calculation of depth and scene geom-
etry. We will briefly review some recent studies of this
sort in color and spatial vision.

1. Color Constancy
Recently both MWF and the empirical techniques used to
estimate cue weights (perturbation analysis; see Section
2) were applied to the problem of estimating the spectral
power distribution of the illuminant as a step toward
achieving color constancy.19,20 In that work, different il-
luminant cues (the background and various cues involv-
ing specular highlights or shadow boundaries) are used
independently to estimate the illuminant, and MWF ap-
pears to be applicable as a model of how cues to the illu-
minant are combined.

2. Motion
The detection and analysis of motion involves combining
both first-order (luminance and color) and second-order
(contrast and other drift-balanced texture) information,
and many studies suggest that they are detected by inde-
pendent mechanisms.21–23 Thus these separate motion
components may be treated as individual cues to motion.
These cues may be pooled for judging the direction of
motion24 and for computing depth from motion parallax.25

3. Detection of Spatial Features
Borders and other spatial features may be defined by
multiple visual features including luminance, color, tex-
ture content, and so on. The detection of such features
may involve integration over these features. If the fea-
tures are detected independently, then combination may
be via probability summation, where a feature is detected
if any individual cue signals the feature. For example,
Frome et al.26 examined the fusion of color and luminance
information for the visibility of borders and found evi-
dence for independent contributions of the two cues to
border visibility.

4. Orientation Discrimination
Once a border is detected, features of that border such as
orientation may then be computed. Rivest et al.27 stud-
ied orientation discrimination with texture bars defined
by motion, color, and/or luminance. When subjects were
trained to discriminate the orientation of borders defined
by one of the three attributes (e.g., motion), orientation
discrimination performance improved for motion-defined
borders but also improved for color-defined and for
luminance-defined borders. This indicated that the
training affected a site at which the three cues had al-
ready been combined. They found that discriminability
with multiple cues combined the individual d8 values in
Euclidean fashion, consistent with cue independence.

5. Localization
Multiple cues may also be combined for localization judg-
ments, which is the topic of the research described in this
paper. In a preliminary version of the research described
here,28 stimuli included two cues to a texture-defined
edge. Subjects performed a Vernier task, judging
whether the uppermost of two such edges lay to the right
or left of the lower edge. The data were consistent with
the notion that subjects estimated edge location from
each cue individually and then averaged the two esti-
mates for each edge. In addition, lowered cue reliability
in the stimulus resulted in a lower weight for the corre-
sponding cue. Both of these results are, of course, con-
sistent with MWF.
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Rivest and Cavanagh29 combined multiple edge cues in
dynamic texture, including luminance, color, motion, and
scale information. When the two cued edges were rea-
sonably far apart (and hence discriminable as different
edges), the two edges interacted, leading to both attrac-
tion and repulsion (Ref. 30, where this was found for lu-
minance edges). When the multiple cues signaled iden-
tical locations, localization accuracy improved as if two
noisy estimates were averaged with equal weights. Note
that this paper did not consider the possibility of cue com-
bination with different weights for the individual cues.

Gray and Regan31 used texture stimuli similar to those
of Experiment 2 below. They also found that localization
accuracy improved when two cues (texture orientation
and contrast) were available as compared with accuracy
for only a single stimulus cue. They did not model the
improvement in accuracy quantitatively.

McGraw et al.32 used a combination of a smooth lumi-
nance blob and a second-order texture blob (black and
white dots windowed by a smooth blob) in a Vernier task.
Different, asymmetric blobs were used for the two cues, so
that the perceived location of the luminance blob alone
was shifted relative to that for the second-order texture
blob. The perceived location of the two-cue stimulus lay
in between the locations for the individual cues, indicat-
ing that cue combination had taken place. The perceived
location of the two-cue stimulus lay closer to the location
of the cue that was more reliable (i.e., that had higher
stimulus contrast). As the discrepancy between the loca-
tions signaled by the two cues increased, a loss of accu-
racy was found. This result is not expected if cue weights
are constant in their task, independent of the position sig-
naled by each edge, and it may be an indication of a sta-
tistically robust combination scheme that changes cue
weights as cue conflict increases.

C. Preview
In this paper we expand on the preliminary results of
Landy28 on cue combination for texture edge localization.
We report two experiments involving Vernier alignment
judgments of texture-defined edges. The first experi-
ment uses filtered-noise textures in which an edge is sig-
naled by a change in local spatial frequency and/or orien-
tation. As found previously, perceived edge location was
a weighted average of the locations indicated by the indi-
vidual cues, with weights dependent on relative cue reli-
ability, consistent with the MWF model. Experiment 2 is
a replication using the same logic but different stimuli.
The textures for that experiment contain randomly posi-
tioned texture elements (texels) varying in contrast
and/or orientation across the edge, and similar results
were obtained. The results of these two experiments are
then analyzed on the basis of a version of the MWF model
that assumes that observers accurately estimate indi-
vidual cue reliabilities. This is an ideal-observer model
that we refer to as the optimal linear cue combination
model.

2. EXPERIMENT 1: SPATIAL FREQUENCY
AND ORIENTATION
In this experiment, observers made a forced-choice Ver-
nier judgment about two texture-defined edges, one above
the other. The textures consisted of noise processed by a
filter that was bandpass in spatial frequency and orienta-
tion. The texture-defined edge was cued by a change in
peak spatial frequency and/or orientation across the edge.
The reliability of the individual cues was manipulated by
varying the texture blur, that is, the distance in the
stimulus over which the change in spatial frequency or
orientation occurred.33 Vernier judgments were made
with single-cue stimuli (spatial frequency or orientation)
to estimate the reliability (that is, accuracy) of the indi-
vidual cues. Then, judgments were made with two-cue
stimuli (spatial frequency and orientation) with perturba-
tion analysis.3

Perturbation analysis was first used for relative depth
judgments3,8,9 and has also been used to study interpola-
tion of sampled contours.34 Here it is easily adapted to
localization.

In perturbation analysis, two kinds of two-cue stimuli
are used: consistent-cues stimuli, in which the two cues
signal the same edge location, and inconsistent-cues
stimuli, in which the position of the edge signaled by one
cue is perturbed (that is, translated laterally) relative to
that signaled by the other cue. If the perturbation is
large enough, then two edges are perceived and the task
of aligning with the edge in the stimulus becomes ill-
defined. Rather, the experiments are performed by using
a range of cue perturbations for which observers do not
perceive a double edge without scrutiny. Using a Vernier
task, we measured the perceived location of an
inconsistent-cues edge relative to a consistent-cues edge
as a function of the degree of perturbation Dcue (the
amount that one cued edge is translated relative to the
other in the inconsistent-cues stimulus).

Suppose edge location x is estimated by using a
weighted average of the estimated locations of the indi-
vidually cued edges x1 and x2 5 x1 1 Dcue, with weights
w1 and w2 5 1 2 w1 . The perceived location of the
inconsistent-cues edge, f(Dcue) 5 w1x1 1 w2x2 5 x1
1 w2Dcue. This is a linear function of Dcue. The slope
of that line is the weight applied to the perturbed cue w2
and should be lower if that cue has lower reliability. As
we shall see, these predictions are, in fact, borne out by
the data of the following experiments.

A. Methods

1. Stimuli
Stimuli consisted of filtered noise. An edge was cued by
a change in spatial frequency [Figs. 1(a) and 1(b)], orien-
tation [Figs. 1(c) and 1(d)], or both [Fig. 1(e)]. When spa-
tial frequency cued an edge, spatial frequency increased
from 3 to 6 cycles per degree (cpd) from left to right. In
the single-cue spatial frequency edges, two noise orienta-
tions were used in the experiments: vertical [Fig. 1(a)]
and horizontal [Fig. 1(b)]. When change in orientation
was used to cue an edge, orientation was horizontal at the
left and rotated smoothly to vertical at the right. In the
single-cue orientation-defined edges, two noise spatial fre-
quencies were used: 3 cpd [Fig. 1(c)] or 6 cpd [Fig. 1(d)].
For two-cue stimuli [Fig. 1(e)], spatial frequency and ori-
entation were varied across their respective edge loca-
tions as in the single-cue stimuli.
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Single-cue stimuli were generated as follows. First, a
noise stimulus of size 2048 3 600 pixels was created, with
each pixel a random and independent draw from a Gauss-
ian distribution. Next, an edge profile was created. For
example, consider the case of an orientation-defined edge
with spatial frequency 6 cpd. An image of the same size
as the noise was created with value 0 deg in the left half
of the image (indicating ‘‘horizontal’’) and 90 deg in the
right half (indicating ‘‘vertical’’). This edge image was
then blurred by a Gaussian with standard deviation so .
As we shall see, the value of so determined the reliability
of the orientation cue; it acted as a kind of texture blur.
Next, the Gaussian noise image was filtered
nonisoplanatically. That is, a different filter was used at
each pixel as guided by the blurred edge image. For the
case that we are first considering, the filter used was a
Gabor patch:

Fig. 1. Example stimuli from Experiment 1. (a) An edge cued
by a change in spatial frequency from 3 to 6 cpd with texture
blur s f 5 9 min and vertically oriented filtered noise. (b)
s f 5 36 min, horizontal noise. (c) Orientation-defined edge:
f 5 3 cpd, so 5 9 min. (d) f 5 6 cpd, so 5 36 min. (e) A typi-
cal stimulus from a two-cue experiment. Upper texture, a
consistent-cues stimulus; lower texture, Dcue 5 13.5 min (i.e.,
the edge cued by spatial frequency is 13.5 min to the right of the
orientation-defined edge). Both stimuli have s f 5 so 5 9 min.
Observers judged whether the upper edge was to the right or left
of the lower edge.
G~x, y ! 5
1

f
exp~2f 2r2!sin$2pf @x cos~u! 1 y sin~u!#%,

(1)
where (x, y) is the position in the Gabor patch, r
5 Ax2 1 y2 is the distance from the center of the patch, f
is the spatial frequency, and u is the orientation. The
contrast of the patch is scaled by 1/f so that the rms con-
trast of the filtered noise is independent of spatial fre-
quency. The Gaussian width is also scaled by 1/f so that
the filters have a constant bandwidth in octaves. The fil-
ter masks were clipped at 62.8 standard deviations of the
Gaussian window. For the orientation-defined edge that
we are considering, f 5 6 cpd, and u for a given pixel is
given by the corresponding pixel in the blurred edge im-
age. Each pixel of the Gaussian-noise image was used to
scale the contrast of the corresponding Gabor patch (cen-
tered on that pixel), and these Gabor patches were then
summed to produce a filtered-noise image. This algo-
rithm ensures that no artifactual luminance edges in the
stimulus result from the rapid changes in filter across the
edge.33,35 The filtered-noise images were then linearly
scaled so that the mean luminance corresponded to a
pixel value of 128, and the full contrast range was utilized
(in fact, fewer than 0.01% of the pixels were clipped at
pixel values of 0 and 255). Finally, the central 2048
3 512 pixels were saved as a stimulus strip to be used

during the experiments.
All other stimuli were generated analogously. For

edges cued by spatial frequency, the orientation u re-
mained constant across the stimulus (with a value of 0 or
90 deg), and spatial frequency was determined by a
blurred edge image with a value of 3 cpd at the left, 6 cpd
on the right, and a blur standard deviation of s f . Two-
cue stimuli were generated by using a separate blurred
edge image to determine the local spatial frequency and
orientation. The orientation edge was always located at
the center of the stimulus strip. The spatial frequency
edge, for inconsistent-cues stimuli, was shifted laterally
by a distance Dcue [Fig. 1(e)]. The nominal position of
the two-cue stimuli will be the position of the orientation
edge in the data plots that follow.

On each trial, two stimuli were shown, one above the
other. These stimuli were 400 3 400 pixel squares taken
from the corresponding stimulus strip. These were
shown 7.2 min apart on the monitor, and each had a size
of 6 3 6deg as viewed from 1 m. The stimuli were com-
puted with the HIPS image processing software36 and dis-
played with a Pixar II Image Computer on a Sony GDM-
1950 monitor with 1280 3 1024 resolution at 60 Hz. The
background luminance was 35 cd/m2, and luminance was
linearized with a Minolta CS-100 chromometer.

2. Procedure
The subject’s task was a Vernier discrimination. Each
trial consisted of a 1-s fixation interval, a 0.5-s blank in-
terval, and a 200-ms presentation of the Vernier stimulus.
The subject indicated by a key press whether the upper
texture-defined edge appeared to lie to the right or the left
of the lower edge. The screen remained blank until the
subject’s response, which also initiated the subsequent
trial. The lower stimulus was mirror reflected about a
horizontal axis so that orientation change was counter-



M. S. Landy and H. Kojima Vol. 18, No. 9 /September 2001 /J. Opt. Soc. Am. A 2311
clockwise from left to right in the upper stimulus and
clockwise below [Fig. 1(e)]. This reflection was intended
to minimize a pronounced alignment bias that otherwise
occurred owing to the apparent texture flow from the
lower to the upper patch, although no such bias was found
in another study using similar stimuli.37 Interleaved
staircases were used to determine the position Dx of the
upper edge relative to the lower one (to a resolution of 4
pixels or 3.6 min). Staircases began with an increment of
14.4 min, which was halved with staircase reversals until
it reached the 3.6 min level. The midpoint between the
location of the two edges was jittered from trial to trial
610.8 min about the center of the patch. A 400 3 400
patch of texture was extracted from the appropriate
stimulus strip for each of the two images used in each
trial. The horizontal position was determined by the
value of Dx and the edge location jitter. The vertical po-
sition of the patch in the strip was selected randomly.

A block of trials in a single-cue experiment consisted of
a single value of texture blur (so or s f). Each trial re-
quired a Vernier discrimination between two different,
single-cue edge stimuli from the same condition (sharing
the same value of so or s f and of f or u), which were dif-
ferent, randomly chosen 400 3 400 patches from the
same stimulus strip. For the orientation cue blocks,
there were four interleaved staircase combining two types
of staircase (a 1-up–2-down and a 2-up–1-down, converg-
ing to probabilities of 0.707 and 0.293 of saying the upper
edge was to the right, respectively) and two values of f (3
and 6 cpd). Two stimulus strips were used in one block
(one for each value of f ). The spatial frequency cue
blocks were analogous, except that two values of u (verti-
cal and horizontal) were interleaved. Each staircase ran
for 50 trials, for a total of 200 trials per block.

A block of trials in a two-cue experiment consisted of a
single pair of values of texture blur (so and s f). Each
block of trials had six or eight interleaved staircases, com-
bining the two types of staircases with either three (29, 0,
or 9 min) or four (213.5, 24.5, 4.5, or 13.5 min) values of
Dcue. This resulted in blocks of 300 or 400 trials. Each
trial required a vernier discrimination between a
consistent-cues stimulus (Dcue 5 0) and an inconsistent-
cues stimulus (Dcue determined by the staircase from
which the trial was drawn). Whether the inconsistent-
cues stimulus was in the upper or lower patch was deter-
mined randomly. The staircase level determined the
relative position of the orientation-defined edges in the
two stimuli; the edge cued by spatial frequency was dis-
placed a distance Dcue away from that position in the
inconsistent-cues stimulus. Again, the midpoint be-
tween the locations of the two orientation-defined edges
was jittered 610.8 min about the center of the patch.
One stimulus strip was used for each value of Dcue in the
block, plus one for the consistent cues stimuli (Dcue
5 0) if needed.

The blocks of trials were kept relatively short, resulting
in the complex blocking of the inconsistent-cues stimuli.
With longer blocks, the task grew difficult for observers.
These stimuli are potent adapting stimuli as they are
high contrast and narrow band in both spatial frequency
and orientation. With accurate fixation, each patch of
retina, except those near the position of the edge, is re-
peatedly stimulated with the same bands of orientation
and spatial frequency. The stimuli are high contrast, so
the adaptation does not cause them to become difficult to
detect as such. Rather, after a large number of trials it
appears increasingly difficult to detect the texture-defined
edge itself. The block lengths used here were intended to
alleviate this difficulty.

Each subject ran forty blocks of trials. First, eight
blocks of single-cue trials were run combining two cues
(orientation and spatial frequency) and two values of tex-
ture blur (so or s f equal to 9 or 36 min), with two blocks
for each combination. These first blocks were run with
feedback to familiarize the subjects with the materials
and to minimize any response biases. These eight single-
cue blocks were then rerun with no feedback to the sub-
jects. Only the results from the no-feedback blocks
were analyzed. Finally, the two-cue blocks were run.
First, eight blocks were run with so 5 s f 5 9 min (four
blocks with three, and four blocks with four values
of Dcue). Next, eight blocks were run with so 5 36 min
and s f 5 9 min. Finally, eight blocks were run with
so 5 9 min and s f 5 36 min.

3. Subjects
Two subjects participated in the experiment. Both had
normal or corrected-to-normal vision.

B. Results
Figure 2 shows the data for the four single-cue conditions
for observer MJY. Plotting raw data can be a problem
when a staircase method is used, as some levels may pro-
vide only a small number of trials (and hence yield highly
variable data). Here, we indicate this by using larger
symbols for data points corresponding to a greater num-
ber of trials. In Fig. 2(a) cumulative Gaussian functions
are fitted to the data from each condition with a
maximum-likelihood (ML) criterion. When texture blur
was increased in the stimulus, localization accuracy suf-

Fig. 2. Results from single-cue trials for Experiment 1 for ob-
server MJY. Data from each of the four single-cue conditions
are plotted. The proportion of times the upper edge was seen as
lying to the right of the lower edge is plotted as a function of the
distance of actual vernier shift. Symbol area is proportional to
the number of trials contributing to each point. The same data
are plotted in the two panels. (a) The solid curves are ML fits of
cumulative Gaussian functions to individual psychometric func-
tions. (b) The solid curves are the ML fits of the optimal linear
cue combination model to the entire Experiment 1 data set for
this observer.
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fered (compare the slopes of the two solid curves or of the
two dashed curves), so the localization reliability manipu-
lations s f and so were effective. This observer evidently
had difficulty with the s f 5 36 min condition; the data
points are highly variable, and there was a substantial
bias to indicate that the upper edge was located to the
right of the lower edge. At both levels of texture blur,
this observer has better localization accuracy with the ori-
entation cue than with the frequency cue. This and sub-
sequent data figures also include fits of a model that will
not be discussed until Subsection 4.A.

The results of the two-cue conditions for MJY are

Fig. 3. Results from two-cue trials for Experiment 1 for ob-
server MJY. Data from each of the 21 two-cue conditions are
plotted. The proportion of times the consistent-cues edge was
seen as lying to the right of the inconsistent-cues edge is plotted
as a function of the distance of actual vernier shift between the
orientation-defined edges. The separate data sets in each plot
are for different values of Dcue: the shift of the frequency-
defined edge relative to the orientation-defined edge in the
inconsistent-cues stimulus. The symbol area is proportional to
the number of trials contributing to each point. The same data
are plotted in each pair of panels. Each row of panels corre-
sponds to a different cue reliability condition (indicated in each
figure). (a), (c), (e) The curves are ML fits of cumulative Gauss-
ian functions to individual psychometric functions. (b), (d), (f)
The curves are ML fits of the optimal linear cue combination
model to the entire Experiment 1 data set for this observer.
shown in Fig. 3. The abscissa indicates the relative loca-
tion of the orientation edges in the two texture stimuli; in
the inconsistent-cues stimulus the frequency edge was
displaced Dcue away from the corresponding orientation
edge. This observer was more accurate in general when
using the unperturbed, orientation cue. As a result, the
perturbation had only a modest effect on the psychomet-
ric functions. Although it is difficult to see in this figure,
the order of the psychometric functions reflects that of the
cue perturbations, consistent with the idea that the ob-
server perceived an edge location for the inconsistent-cues
stimulus intermediate between the location of the
orientation-defined and the frequency-defined edges (i.e.,
as if the edge locations signaled by the individual cues
were averaged).

The psychometric functions are closest when orienta-
tion is the more reliable cue in the stimulus [Fig. 3(e)],
most separated when frequency is the more reliable cue
allowing the perturbation to have an effect [Fig. 3(c)], and
intermediate for the case when s f 5 so [Fig. 3(a)]. This
is consistent with a weighted average of cues with more
weight given to the more reliable cue. In addition, the
psychometric functions in this dataset are, by and large,
parallel. This would be expected if the observer were us-

Fig. 4. PSEs as a function of Dcue. PSEs are estimated as the
50% points of individual cumulative Gaussian fits to the 21 two-
cue conditions in each experiment (e.g., left-hand panels of Fig.
3). Error bars shown on a subset of the data are 62 standard
error of the mean, computed via the matrix of second derivatives
of the log-likelihood function with respect to the fit
parameters.40,43 Lines are from the fits of the optimal linear cue
combination model to the entire data set for each observer and
experiment.
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ing the same combination rule and the same cue weights
across all values of Dcue within a given cue reliability con-
dition.

These shifts of the psychometric functions with differ-
ent amounts of cue perturbation may be seen more clearly
in Fig. 4. Here, the points of subjective equality (PSEs)
estimated by the individual psychometric function fits
(the 50% points of each curve in the left-hand panels of
Fig. 3) are plotted as a function of the cue perturbation.
Figures 4(a) and 4(b) show the results for the two observ-
ers in Experiment 1. The PSE is approximately a linear
function of the cue perturbation. The linearity of the
PSEs is noisy, and the deviations from a straight line
show no discernible pattern. The slope of each line is the
weight predicted for the perturbed cue and varies as one
would expect given the relative cue reliabilities. The
slopes of the PSEs for the condition in which s f 5 9 min
and so 5 36 min (open squares) are steepest, indicating
that the perturbation of the frequency-defined edge loca-
tion had maximal effect when that cue was most reliable.

3. EXPERIMENT 2: CONTRAST AND
ORIENTATION
A second experiment was carried out as an attempt to
replicate the results with a different class of stimuli and
cues. The stimuli consisted of randomly placed short line
segments. The edges were cued by changes in line orien-
tation and contrast. Such textures with line segment
texture elements and orientation modulation have been
much studied in our lab and others.38,39 Otherwise, this
experiment was identical in conditions and procedure to
Experiment 1.

A. Methods

1. Stimuli
As in Experiment 1, stimuli were 400 3 400 pixels ex-
tracted from a 2048 3 512 pixel stimulus strip. The
stimulus strips consisted of 7,550 blurred, white line seg-
ments varying in orientation and contrast on a midgray
background (Fig. 5). The position of each segment was
chosen randomly and uniformly over the strip. Line seg-
ments were computed by using a grid with five times the
resolution in both dimensions as the stimulus image for
the purposes of antialiasing and subpixel location resolu-
tion. Segments were 9 min long and blurred by a Gauss-
ian with a standard deviation of 0.9 min.

For an orientation-defined edge [Fig. 5(a)], line seg-
ment orientation was determined with the same edge im-
age as in Experiment 1: a scaled cumulative Gaussian
with standard deviation so changing from vertical on the
left side of the image and rotating smoothly to horizontal
on the right. The contrast-defined edges were analogous:
with an edge image with standard deviation sc , with line
segments of 50% contrast on the left and 100% contrast
on the right [Fig. 5(b)]. As before, the lower of the two
stimuli on each trial was reflected about a horizontal axis
[Fig. 5(c)]. All other aspects of the stimuli (hardware,
viewing distance, stimulus size and geometry, display
timing and calibration, etc.) were identical to those of Ex-
periment 1.
2. Procedure
The procedure was identical to that in Experiment 1, in-
cluding the task and the order and blocking of practice
trials, single-cue trials, and two-cue blocks (with the con-
trast cue substituted for the frequency cue of Experiment
1). For two-cue trials, as in Experiment 1, the position of
the orientation-defined edge was controlled by the stair-
case, and the position of the edge defined by the other cue
(here, the contrast-defined edge) was perturbed by Dcue
from that position in the inconsistent-cues stimulus. so
and sc took on the same values and value pairs as so and
s f in Experiment 1.

3. Subjects
The same two subjects were used as in Experiment 1.

B. Results
Figure 6 shows the results for the single-cue conditions
for observer MSL. As in Experiment 1, the manipula-
tions of cue reliability in the stimulus were effective in
varying localization accuracy (compare the slopes of the
two solid curves or the two dashed curves). The relative
slopes indicate that the localization reliability manipula-
tions so and sc were about equally effective.

The two-cue condition results for MSL are shown in
Fig. 7. As before, the abscissa indicates the relative lo-
cation of the orientation edges in the two texture stimuli;
in the inconsistent-cues stimulus the contrast edge was
displaced Dcue away from the corresponding orientation
edge. As in Experiment 1, all aspects of the data are rea-
sonably consistent with the idea that the observer is lo-
calizing each two-cue edge by calculating a weighted av-

Fig. 5. Example stimuli from Experiment 2. (a) Orientation-
defined edge with 100% contrast and so 5 36 min. (b)
Contrast-defined edge with vertical line segments and sc
5 9 min. (c) A typical stimulus from a two-cue experiment.
Lower texture, consistent-cues stimulus; upper texture, Dcue
5 2 13.5 min (i.e., the edge cued by contrast is 13.5 min to the
left of the orientation-defined edge). Both stimuli have sc
5 so 5 9 min.



2314 J. Opt. Soc. Am. A/Vol. 18, No. 9 /September 2001 M. S. Landy and H. Kojima
Fig. 6. Results from single-cue trials for Experiment 2 for ob-
server MSL. Data from each of the four single-cue conditions
are plotted. Plotting conventions and fits are identical to those
of Fig. 2. (a) Independent cumulative Gaussian fits. (b) Fits of
the optimal linear cue combination model to the entire Experi-
ment 2 data set for this observer.

Fig. 7. Results from two-cue trials in Experiment 2 for observer
MSL. Data from each of the 21 two-cue conditions are plotted.
Plotting conventions and fit curves are as in Fig. 3. (a), (c), (e)
The curves are ML fits of cumulative Gaussian functions to indi-
vidual psychometric functions. (b), (d), (f) The curves are ML
fits of the optimal linear cue combination model to the entire Ex-
periment 2 data set for this observer.
erage of the locations signaled by each cue individually,
with cue weights related to relative cue reliability. First,
the psychometric functions shift with changes in the
value of Dcue. Second, these shifts are ordered by the
amount of Dcue. The more the edge cued by contrast was
shifted to the right of the edge signaled by orientation,
the more the perceived edge location of the inconsistent
cues edge was shifted rightward, and hence the less often
the consistent-cues edge was perceived as being to the
right of the inconsistent-cues edge. Third, these psycho-
metric functions are reasonably equally spaced, as would
be expected since the values of Dcue are equally spaced.
Fourth, the amount of shift is greater when the reliability
of the perturbed cue is greatest [Fig. 7(c)] and least when
it is lowest [Fig. 7(e)]. Finally, the psychometric func-
tions have approximately equal slopes, consistent with
the use of the same cue weights for all values of Dcue.

The plots of PSE as a function of Dcue for Experiment 2
for both observers may be seen in Figs. 4(c) and 4(d). The
balanced reliabilities for the two single cues for observer
MSL resulted in a contrast cue weight for the sc 5 so
5 9 min condition (the slope of the PSEs as a function of
Dcue) intermediate between the other two conditions.
Otherwise, these data are entirely analogous to those
from Experiment 1. In short, the basic predictions of a
linear cue combination are, at least qualitatively, appar-
ent in the data of Experiment 2, as they were in Experi-
ment 1, showing that these effects are not dependent on
the particular choice of stimuli or edge cues.

4. MODELING
In this section we describe several models that were fitted
to the data of Experiments 1 and 2. The bulk of the sec-
tion is concerned with a fit of an optimal linear cue com-
bination model, that is, modified weak fusion as applied
to this texture localization task. After thoroughly explor-
ing various aspects of the fits of this model, we will com-
pare it with several alternative models.

A. Optimal Linear Cue Combination Model
The modified weak fusion model suggests that observers
combine cues in a linear fashion except under certain spe-
cific conditions. In our task, it suggests that observers
determine an edge location independently for each cue
and that these two location estimates are combined with
a weighted average. Nonlinearities would arise, for ex-
ample, if the cue weights depended on the locations sig-
naled by the individual cues. This would be expected if,
for example, there was such a strong conflict between the
locations signaled by the individual cues that the ob-
server decided to increase the weight of the more reliable
of the two cues in an attempt to be more statistically ro-
bust. In cases of extreme conflict, of course, one would
expect the observer to perceive two separate edges. In
most of the analysis that follows, few traces of such non-
linear behavior are seen. In one case we will point out a
hint of robust combination.

The optimal linear cue combination model, which we
now describe, is a version of MWF that assumes that the
individual location estimates determined by each cue are
unbiased estimates, normally distributed and indepen-
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dent, and have an accuracy that depends on the texture
blur associated with that cue in the stimulus. Thus, just
as our stimulus conditions have four parameters (so 5 9
or 36 min, s f 5 9 or 36 min), the model has four param-
eters corresponding to the localization accuracy of a
single-cue stimulus in each of these cue conditions. We
designate these localization accuracies, which are the
standard deviations of the corresponding Gaussian noises
that perturb observer location estimates, as scue . A fit of
this model to one observer’s data in one experiment will
result in four such noise estimates. For example, in Ex-
periment 1, these are scue(o, 9), scue(o, 36), scue(f, 9),
and scue(f, 36).

For any given choice of these four parameters, the op-
timal linear cue combination model has a prediction for
all data points for that observer in that experiment. For
the single-cue experiments the predictions are quite
simple. A single-cue data point (see Figs. 2 and 6) is
specified by a cue (o, f, or c), its texture blur (9 or 36 min),
and the Vernier shift Dx of the upper edge relative to the
lower one. For example, the predicted probability
p(o, 9 min, 7.2 min) that an orientation-cued edge with
texture blur of 9 min and a rightward Vernier shift of the
upper edge by 7.2 min is actually perceived as lying to the
right of the lower edge will be

p~o, 9, 7, 2 ! 5 Pr$N@7.2, scue
2 ~o, 9 !# . N@0, scue

2 ~o, 9 !#%,

(2)

where the N(m, s2) are independent, normally distrib-
uted random variables with the specified mean and vari-
ance.

For the two-cue case, the logic is only slightly more
complicated. This model is referred to as ‘‘optimal’’ be-
cause we assume that the observer uses cue weights that
are optimal given the underlying localization reliabilities
of the two cues. For example, if the localization accura-
cies of the individual cues are scue(o, 9) and scue(f, 9),
then overall localization accuracy will be maximal if the
weights used for each cue satisfy

wf 5
1/scue

2 ~f, 9 !

@1/scue
2 ~f, 9 !# 1 ~1/scue

2 ~o, 9 !#
,

wo 5 1 2 wf . (3)

The location estimator that uses these weights has an ac-
curacy

sopt
2 ~f, 9, o, 9 ! 5

scue
2 ~f, 9 !scue

2 ~o, 9 !

scue
2 ~f, 9 ! 1 scue

2 ~o, 9 !
. (4)

A particular two-cue data point is specified by the con-
dition [e.g. (f, 9, o, 9)], the value of Dcue (how far the
frequency-defined edge is shifted relative to the
orientation-defined edge in the inconsistent-cues stimu-
lus), and the value of Dx (how far the orientation-defined
edge in the consistent-cues stimulus is shifted relative to
the inconsistent-cues edge). The predicted probability
that the consistent-cues edge is seen to the right of the
inconsistent-cues edge is
p~f, 9, o, 9, Dcue, Dx ! 5 Pr@N~Dx, sopt
2 !

. N~wfDcue , sopt
2 !#. (5)

Note that the predicted mean location of the inconsistent-
cues edge is between that specified by orientation (0) and
that specified by frequency (Dcue). The precise value de-
pends on the weight wf of the perturbed cue.

In summary, for a choice of the four localization-
accuracy parameters, the optimal linear cue combination
model predicts every data point in each of the 25 psycho-
metric functions resulting from one observer’s trials in
one experiment (four single-cue conditions and three two-
cue conditions each of which was run at seven levels of
Dcue) by use of Eqs. (2)–(5). This model was fitted to the
data by ML. That is, a set of parameters was chosen so
as to maximize Pr(datauparameters).

The resulting predictions of the single-cue data from
Eq. (2) are shown as the curves in Figs. 2(b) and 6(b).
The model produces psychometric functions that contain
no response bias (e.g., no tendency to respond more often
that the upper edge lies to the right of the lower edge).
Thus all of the prediction curves intersect at the point (0,
0.5). For observer MJY in Experiment 1 (Fig. 2) this re-
sults in a substantial difference in the predictions from
the individual psychometric function fits. Observer MSL
in Experiment 2 does not show substantial bias. How-
ever, here the model fits appear to be notably shallower
than the individual psychometric function fits in Fig. 6(a).
We will discover the reason for this shortly.

Figure 8 shows the fit values of scue for the two experi-
ments. In every case, increasing the stimulus texture
blur resulted in a large decrease in localization accuracy.
Note the logarithmic scale on the ordinate of these plots.
This is to accommodate the data for observer MJY in Ex-

Fig. 8. Values of the four scue parameters from fits of the opti-
mal linear cue combination model to the data for each observer in
each experiment. The fit values of scue increased with increas-
ing texture blur. A logarithmic scale was employed to accommo-
date the huge value of scue(o, 36) for observer MJY in Experi-
ment 2.
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periment 2, who was nearly unable to use the orientation
cue in the sc 5 36 min condition.

The predictions of the optimal linear cue combination
model for the two-cue conditions may be seen as the
curves in the right-hand panels of Figs. 3 and 7. It can
be seen that this model captures much of what is going on
in these very regular data sets. The predictions are even
easier to examine in Fig. 9, which shows the individual
psychometric function fits as well as the optimal linear
cue combination model fits for observer MJY in Experi-
ment 2, omitting the raw data points. In each case, the
predictions are a series of parallel psychometric func-
tions, because the noise in Eq. (5) does not depend on
Dcue. The shifts of successive psychometric functions
are predicted to be the difference in the corresponding
Dcue values multiplied by the weight on the perturbed
cue (wf or wc). Large shifts are predicted when this is
the more reliable cue, and smaller shifts are predicted
when it is the less reliable cue. In comparing these pre-

Fig. 9. Fits to the two-cue data sets from Experiment 2 for ob-
server MJY. Fits to each of the 21 two-cue conditions are plot-
ted. Plotting conventions and curves are as in Fig. 3, but with
the data points omitted. (a), (c), (e) The curves are fits of cumu-
lative Gaussian functions to individual psychometric functions.
(b), (d), (f) The curves are fits of the optimal linear cue combina-
tion model to the entire Experiment 2 data set for this observer.
dictions with the individual psychometric function fits, we
can see that they predict the main aspects of the data, al-
though they are far more regularly spaced and the data
do not always show identical slopes.

There are a couple of interesting things to note in Fig.
9. First, recall that this is the experiment in which sub-
ject MJY had difficulty with the orientation cue, espe-
cially in the so 5 36 min condition (viz., Fig. 8). Thus in
Fig. 9(d) the predicted curves are maximally displaced, so
that a value of Dcue 5 13.5 min displaces the curve by al-
most 13.5 min. Second, there is a hint of shallower
slopes for the conditions with the largest cue perturba-
tions, especially in Fig. 9(e). This is interesting, as it is
what one would expect if a subject were to use a robust
estimator, increasing the weight of one cue relative to an-
other when cue conflict grew large (McGraw et al.32 had a
similar result). For this condition, given the relative re-
liabilities of the cues shown in Fig. 8, we would have pre-
dicted that the observer would have down-weighted the
less reliable contrast cue, and thus the mean would have
regressed back toward zero (the location of the
orientation-defined edge). This seems to be the case for
the right-hand Dcue 5 13.5 min curve but not for the left-
hand Dcue 5 213.5 min curve.

The PSEs predicted by the model are shown as the
solid curves in Fig. 4. A weighted average of cues results
in a curve of PSEs as a function of Dcue that is a straight
line through the origin with a slope equal to the weight of
the perturbed cue. These lines are consistent with the
major trends in the data but do not fit the data particu-
larly well. The residual errors, however, do not show any
clear, explicable trends. One apparent trend is in the
so 5 9 min/sf 5 36 min data for MSL in Experiment 1
[open diamonds in Fig. 4(b)]. These data points lie
mostly above the prediction line, indicating a bias to indi-
cate that the inconsistent-cues stimulus lay to the right of
the consistent-cues stimulus, independent of the value of
Dcue. This makes little sense, since the inconsistent-

Fig. 10. Scatterplots of the parameters of the individual psycho-
metric function fits to each of the 100 psychometric functions (25
per experiment, 2 experiments, 2 observers) versus those pre-
dicted by the four fits of the optimal linear cue combination
model to the data from each experiment and observer. (a) PSEs,
(b) standard deviations.
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cues stimulus was randomly chosen to be the upper or
lower stimulus from trial to trial, and it was very difficult
to tell which of the two stimuli was the inconsistent-cues
stimulus in the brief presentations we employed. We
conclude that the poor fit to the predicted PSEs is simply
noisy data.

Figure 10 shows scatterplots of PSEs and scue’s for the
entire set of data collected here (100 psychometric func-
tions: 25 each for each observer and experiment). This
is simply another way to represent the degree to which
the model was able to capture the bulk of the regularities
in the data. The horizontal row of data points in Fig.
10(a) at an ordinate value of zero corresponds to the
single-cue conditions, many of which are biased in the
separate fits but all of which are predicted to have a PSE
of zero by the optimal cue combination model. The cor-
relation in Fig. 10(a) is 0.78 (and rises to 0.94 if we omit
the data from the single-cue conditions). The correlation
in Fig. 10(b) is 0.99 (0.93 if calculated between the log-
transformed values).

The optimal cue combination model implies that the lo-
calization accuracy achieved in a two-cue condition should
always be as good as or better than the accuracy achieved
with either of the single-cue conditions of which it is com-
posed. In Fig. 11 we show a histogram for each of the 42
two-cue conditions run by each subject, of the ratio of the
s value for that condition (from the individual psychomet-
ric function fits) divided by the minimum of the two s val-
ues from the corresponding single-cue conditions. For
observer MJY these values are generally near or slightly
lower than 1. However, for observer MSL these values
are almost all above 1, indicating that MSL was less ac-
curate in the two-cue conditions than in the single-cue
conditions even though his data [Figs. 4(b) and 4(d)]
showed clear effects of cue combination, linear cue
weighting, and cue weights dependent on relative cue re-

Fig. 11. Histograms of the ratios of the estimated standard de-
viations from the individual fits for the two-cue conditions to the
smaller of the two standard deviations from the corresponding
one-cue conditions.
liability. This explains why the slopes in the fits of the
optimal cue combination model to MSL’s single-cue data
are shallower than the slopes of the individual fits (Fig.
6). These poor fits were required for the slopes to better
match the 21 two-cue psychometric functions. We have
no explanation for how a subject can satisfy so many pre-
dictions of linear, weighted cue combination and still suf-
fer a loss of localization accuracy with additional localiza-
tion cues.

B. Other Models
Up to this point we have discussed two models, each fitted
to each data set. The first consisted simply of separate
fits of cumulative Gaussian distributions to each of the 25
individual psychometric functions, with two parameters
each (m and s). This is a 50-parameter model. It is
merely descriptive; it has no particular theoretical moti-
vation. On the other hand, we have discussed exten-
sively the optimal linear cue combination model with its
4 scue parameters. We now examine the results of seven
different models fitted to each of the four data sets:

1. Separate fits. This is the fit of separate cumulative
Gaussian functions, each with a m and s parameter, to the
25 psychometric functions in each data set.

2. No bias. This is the same as Model 1, except that
the m parameters for the single-cue conditions are fixed at
zero. That is, this model assumes no observer bias to re-
spond that the upper edge is, e.g., to the right of the lower
edge.

3. Biased, parallel. This is the same as Model 1, ex-
cept that for each two-cue condition, the seven psycho-
metric functions corresponding to different values of Dcue
are assumed to be parallel and hence share a single s pa-
rameter.

4. No bias, parallel. This is the same as Model 3, ex-
cept that the single-cue m’s are again fixed at zero.

5. Detecting. This is an extension of the optimal lin-
ear cue combination that includes parameters that govern
how likely the observer will detect each of the cued edges.
Thus, in addition to the four scue parameters, there are
corresponding pcue parameters (e.g., in Experiment 1
there are pcue(o, 9), pcue(o, 36), pcue(f, 9) and pcue(f, 36)).
In a single-cue trial, if both the upper and lower edges are
detected, their noisy location signals are compared, lead-
ing to a response. If either or both are missed, then the
observer is forced to guess. With a two-cue edge there
are two cued edges in the upper stimulus and two in the
lower one. Any may be either detected or missed (con-
trolled independently by the corresponding values of pcue),
leading to 24 5 16 possible scenarios. If all four edges
are detected, optimal cue combination proceeds. If either
upper or lower edge has only a single cue detected, then
that cue’s noisy location signal is used to estimate that
edge’s location. If both cues are missed in at least one of
the stimuli, then the observer is forced to guess.

6. Switching. This is a cue-switching model. It has
four scue parameters that are used to predict the single-
cue data in the same way as in the optimal linear cue
combination model. In addition, it has three parameters,
one for each two-cue condition, that give the probability
po(so , s f) that the orientation cue will be used. Thus, on
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each two-cue trial, with probability po the orientation cue
is the only cue used on that trial, and with probability
1 2 po the frequency cue is the only cue that is used (and
analogously for Experiment 2, substituting the contrast
for the frequency cue).

7. Optimal. This is the optimal linear cue combination
model that we have discussed extensively.

Each of these models was fitted, by using a ML crite-
rion, to each of the four data sets. Table 1 gives the log-
likelihood at the maximum relative to that of Model 1,
which is the model with the greatest number of free pa-
rameters. When two models are fitted to the same data
set with use of ML, one can test whether the improve-
ment in fit in the more complex model justifies the num-
ber of extra parameters it has by performing a ‘‘nested hy-
pothesis test.’’ 40 In brief, the quantity
2@log(Lcomplex)2 log(Lsimple)# is distributed as x2 with de-
grees of freedom equal to the number of additional pa-
rameters in the more complex model. In the table, p val-
ues are supplied for a number of such tests, uncorrected
for the 24 tests that have been performed (across Tables 1
and 2). Most conclusions are unchanged if a Bonferroni
correction is applied (multiplying each p value by 24).
The choice of models tested was motivated by several
considerations. First, we were interested in a parsimo-
nious account of the data. The optimal model is an ex-
tremely efficient description of the data, as it uses only 4
parameters to account for 25 psychometric functions,
comprising over 400 choice probabilities and 10,000 indi-
vidual psychophysical trials. Second, to the extent that
such a model did not fit the data, we were interested in
which individual predictions of the model succeeded and
which failed. Models of intermediate complexity (Models
2, 3, and 4) were formulated to better understand where
the optimal model succeeded and where it failed. Finally,
a common alternative model of cue combination is a veto
model, where cues are not averaged but rather a single
cue is chosen (e.g., the cue perceived to be the most reli-
able). The detecting and switching models both involve
trials in which cues are not combined. The switching
model is literally a cue veto model: on each trial one cue
vetoes the other. The probability that a particular cue
will be chosen is a function of the relative reliability of the
cues (i.e., it can be different for each of the three two-cue
conditions). On the other hand, the detecting model is
more of a generalization of the optimal model. It allows
Table 1. Relative Log-Likelihood Values and Nested Hypothesis Tests for Various Models Fitted to the
Entire Data Set for the Two Experiments and Two Observersa

Model
No. Model/Test

No. of
Parameters

Experiment 1 Experiment 2

MJY MSL MJY MSL

1 Separate fits 50 0 0 0 0
1 versus 2 ,0.0001 ,0.0001 ,0.0001 ,0.0001

2 No bias 46 253.9 281.0 221.9 228.5
3 Biased, parallel 32 29.9 226.9 216.8 217.8
4 No bias, parallel 28 263.8 2107.9 238.7 246.3

4 versus 7 ,0.0001 ,0.0001 ,0.0001 ,0.0001
5 Detecting 8 2193.8 2200.3 2122.6 297.3

5 versus 7 ,0.0001 ,0.0001 ,0.0001 0.18
6 Switching 7 2282.5 2196.6 2135.5 298.2
7 Optimal 4 2208.6 2255.2 2134.8 2100.4

a The log-likelihoods listed are relative to Model 1, which has the greatest number of free parameters. When two models are compared, a nested hy-
pothesis test is performed and the resulting p value (with no correction for multiple tests) is given. See text for details.

Table 2. Relative Log-Likelihood Values and Nested Hypothesis Tests for Various Models Fitted to the
Two-Cue Data for the Two Experiments and Two Observersa

Model
No. Model/Test

No. of
Parameters

Experiment 1 Experiment 2

MJY MSL MJY MSL

1 5 2 Separate fits 42 0 0 0 0
1 versus 3 0.36 ,0.0001 0.014 0.008

3 5 4 Parallel 24 29.8 227.0 216.8 217.7
3 versus 7 ,0.0001 ,0.0001 ,0.0001 0.0006

5 Detecting 8 2119.6 294.6 290.0 234.5
5 versus 7 ,0.0001 ,0.0001 ,0.0001 0.01

6 Switching 7 2128.3 2112.9 2113.2 242.4
7 Optimal 4 2132.2 2166.2 2102.5 241.1

a See Note for Table I. Note that with the one-cue data omitted, Models 1 and 2 are identical, as are Models 3 and 4.



M. S. Landy and H. Kojima Vol. 18, No. 9 /September 2001 /J. Opt. Soc. Am. A 2319
for trials in which one (or both) of the two cues goes un-
detected, forcing the observer to rely completely on the
other cue. If no cues result in detection for one of the
edges, the observer is forced to guess.

The most obvious summary of Table 1 is this: In al-
most every case, the more complex model fits the data sig-
nificantly better than the more parsimonious one. Al-
though this is dismaying, it is not particularly surprising.
The full 25-psychometric-function data set consists of
10,000 psychophysical trials. With so much data, an im-
proved fit from a more complex model can be statistically
significant without being particularly meaningful. It is
for this reason that we spent so much time discussing the
degree to which our most parsimonious model (the opti-
mal linear cue combination rule) fitted the important as-
pects of the data.

In three of four cases in Table 1, the detecting model
fits significantly better than the optimal cue combination
model. The switching model, on the other hand, provides
a worse fit to the data than the optimal model in two of
four cases and a minimally improved fit in a third case,
despite the additional three parameters. This can hap-
pen because this is, in fact, not a nested pair of models
(the switching model does not contain the optimal model
as a special case). Thus no nested hypothesis test is per-
formed and no p value is computed (although the poor fit
would reject the switching model in favor of the optimal
model by Akaike’s AIC criterion for model
identification).41

The optimal-model prediction is based on a fixed set of
optimal weights used in each two-cue condition, derived
from the reliabilities in the single-cue conditions. Even if
a different, suboptimal set of fixed weights is used in each
two-cue condition, a linear cue combination predicts par-
allel psychometric functions that are equally spaced [as
in, e.g., Fig. 9(b)]. We accept half of this prediction by fit-
ting parallel psychometric functions to the data (Models 3
and 4). The fits of parallel psychometric functions to the
two-cue data are significantly better than in the optimal
model in all cases. The parallel model fits better than
the detecting model as well, but these models are not
nested so no test was performed. The separate fits (Mod-
els 1 and 2) are significantly better than the parallel ones
in three of four cases. (Note that this comparison of Model
1 to 3 and Model 2 to 4, in Table 1, is identical to the com-
parison of Model 1 to Model 3 where the fit is restricted to
the two-cue conditions, as shown in Table 2, and where
this test is actually listed.)

The single-cue psychometric functions (e.g., in Fig. 2),
which give the proportion of trials in which observers saw
the upper stimulus as appearing to the right of the lower
one, look distinctly biased. In fact, the separate fits
(Model 1) are also significantly better than those that do
not allow for response bias (Model 2). A response bias of
this kind is inconsistent with the optimal, detecting, and
switching models. On the other hand, the two-cue data
compare the position of the inconsistent-cues stimulus
with that of the consistent-cues stimulus, averaging over
occurrences of the inconsistent-cues stimulus in the upper
or lower position. Thus a response bias to say that the
upper stimulus is to the right of the lower stimulus will
lead to a response bias in the single-cue data but will lead
to shallower slopes (averaging over two opposing biases)
only in the two-cue conditions. Because of this result, we
repeated the model fits while omitting the single-cue data
(Table 2). (Note that once the single-cue data are omitted
from the fit, Models 1 and 2 become identical, as do Mod-
els 3 and 4.) It turned out that although the log-likelihood
of the fits was then substantially higher, it had no effect
on the conclusions of the nested hypothesis tests.

5. GENERAL DISCUSSION
The results of the experiments are somewhat equivocal
regarding the optimal linear combination of cues to loca-
tion. In support of the model are the findings that per-
ceived edge location is midway between that signaled by
each cue in the inconsistent-cues stimulus, that this is
reasonably modeled as a linear function of Dcue, and that
the slope of this function (the estimated weight of the per-
turbed cue) is larger when that cue is relatively more re-
liable. The model largely captured the variation in the
slopes of the various psychometric functions and in their
means. The model is also consistent, in spirit, with the
independent contributions of texture cues to contour de-
tection and orientation discrimination.26,29,31 In con-
trast, the model is not consistent with the larger standard
deviations in the two-cue conditions for subject MSL com-
pared with that in the single-cue conditions, and the
model was handily rejected in favor of, for example, sepa-
rate fits for each of the 25 conditions.

It is worth considering how an independent-cues model
would be implemented in the nervous system. It is cer-
tainly true that the cues investigated here (spatial fre-
quency, orientation, and contrast) are multiplexed at
early stages in the visual system. That is, any given neu-
ron in, say, cortical area V1 will modulate its response
with changes in any of these three stimulus variables.
With such a distributed representation of our stimuli, the
attribution of edge location to each cue separately may
seem artificial. It is true that we can detect edges sig-
naled by one or the other of these cues alone. For
example, observers are able to compute an estimate of
local orientation and to detect variations in orientation
over space, and models have been suggested as to how
this is done.42 It may well be the case that models can
fit our data equally well that do not begin by splitting
the stimulus into separate estimates of individual cue
properties but rather work with the raw, distributed
representation and look for significant spatial changes in
the pattern of neural responses, whatever form they may
take. Formulating models of this sort and relating them
more closely to the underlying neural representation
of spatial patterns constitute an important and challeng-
ing direction that remains for research in this area to
take.
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