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Parallel model of the kinetic depth effect using local
computations
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This paper defines a new model for the kinetic depth effect for multidot stimuli. The calculation is performed in a
cooperative-competitive network, described as a relaxation labeling process. The process involves a local iterative
computation to meet best the constraints indicated by image cues to depth. Given a constraint that prefers interdot
distances in three dimensions to remain constant (local rigidity), the model becomes a local parallel computation of
the Ullman incremental-rigidity scheme. Several simulations of the model are described, including some in which
additional cues are combined with the changing-dot-position cue.

1. INTRODUCTION

The human visual system extracts information concerning
the three-dimensional (3D) structure of objects by using a
large variety of cues. These cues derive from a number of
the factors that affect the stream of retinal images on our
two eyes,' including the geometry of viewing from two posi-
tions (binocular stereopsis), the geometry of projection [e.g.,
shape from perspective drawings, texture gradients, and if
the viewer or object moves, motion parallax and the kinetic
depth effect (KDE)], the minutiae of visual optics (cues from
accommodation, focus, and chromatic dispersion), and the
characteristics of the light-scattering medium (distant ob-
jects appear hazy and bluish). These cues may act either
alone or in concert to result in the 3D percept. For example,
the cue to depth from relative motion of objects (the KDE)
can be effective even in the absence of other cues to depth, 2

but additional cues may be used together to control the
particular percept chosen among several ambiguous possi-
bilities.3

In the case of the KDE, there has been a great deal of work
concerning the determinants of the effect. Using displays
consisting of a number of luminous points in a rigid 3D
configuration rotating about a fixed axis (Fig. 1), the
strength of the perceived depth impression is controlled to
varying degrees by the number of points, the speed of rota-
tion, the presence and degree of polar projection, occlusion
of farther points by nearer point-containing objects, etc.4

There have been several recent attempts to model the
computation of depth values from relative motion. 5 If a
given set of points has been viewed in motion over time, and
one assumes that these points were in a rigid 3D configura-
tion (the rigidity assumption), it is possible that the geome-
try is sufficient to specify the unknown depth values. This
approach to the problem has led to several n-views-of-m-
points results.6 These results take as their input the two-
dimensional (2D) image coordinates of the points for a se-
quence of frames. General assumptions are made about the
positions of the points relative to one another and (perhaps)
the axis of motion, allowing the depth values to be derived.
The geometry of parallel projection is such that these values

can be known only up to an additive constant (i.e., the
distance can be known only in relative terms) and up to a
possible reflection about the image plane [the reversal of
depth and motion direction is often seen in thse multidot
displays; such reversals are also visible in static displays such
as the Necker cube (Fig. 11A below)].

A second approach is to use more measurements at each
object point. For example, in addition to measuring object
position in the image plane, one might also compute the
derivatives of these measurements (i.e., the velocity vector
in the image plane). This results in an optical flow map
across the image. There are several models that utilize this
flow in addition to the positions.7

A recent model by Ullman8 uses an elegant scheme to
compute depth values. Since it is closely related to the
model discussed in this paper, we will describe it in some
detail. Its input consists of a sequence of point positions
and correspondences between the points in successive
frames. A generalization of the rigidity assumption is used.
Rather than assuming that the object is totally rigid, it
assumes that the perceived depth values are such that the
amount of perceived nonrigidity is minimized. This allows
the scheme to deal robustly with deviations from rigidity
and also makes for a simple computational scheme.

Briefly, this computation operates as follows. At any
given point in time t (with its corresponding image frame),
the input to the computation consists of the known xit and yit
image positions for each point i. The depth values zit are
unknown. At each time t, an estimated depth zit is comput-
ed for each point. (Note that a coordinate system is used
throughout in which the x and y axes are the horizontal and
vertical, respectively, and lie in the image plane. The z axis
is the depth axis; positive values lie toward the observer.)

The relevant data used by the computation are the esti-
mated interpoint distances dij between all pairs of points i
and j,

ai t = [(xi t - Xjt )2 + (yet - yjt)2 + (2,t - 2t)2]1/2 (1)

The computation starts with an assumed shape estimate for
frame 0 where all ZiO = 0. In other words, given no initial
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Fig. 1. The KDE. A transparent cylinder with dots painted on it is rotated in a series of discrete steps. Each position of the cylinder is pro-
jected onto an image plane using parallel projection. A single frame has little or no cues to depth, and yet the sequence of frames yields a strong
and convincing impression of depth.

cues to depth, the object is assumed to be flat in the image
plane. Then, given the estimated object shape for time t, as
codified in the set Idijtj of interpoint distances, and the sub-
sequent frame for time t + 1 (i.e., the measured image values
for, xit+1 and yit+1), a set of estimated depth values 12it+11 is
chosen that minimizes the amount of nonrigidity in the
estimated shape between these two frames. The nonrigidity
metric computes a weighted total of the amount of stretch
that each 3D interpoint distance undergoes:

amount of nonrigidity = E (di -dijt)2

The numerator is the square of the change in interpoint
distance. The denominator ensures that a given percent
change in interpoint distance is weighted more heavily if the
two points are close (with respect to the previous frame's
estimated shape). Minimization is carried out by using an
algorithm of Davidon. 9

A physical analog of this model described by Ullman is
shown in Fig. 2. The minimization can be carried out as
energy minimization in a physical system. After a particu-
lar image frame, the internal representation of the object
consists of the known xit and yit values and the estimated zit
values. At the end of the frame, a construction of rods and
springs is made. The rods are positioned at the new known
image-plane positions. The springs are attached to the rods
at the estimated depths and are at their resting lengths.
When the next stimulus frame arrives, the rods are moved in
the image plane to their new positions, and the springs ride
up and down the rods in order to achieve a minimal energy
configuration (minimal stretch). The spring constants are
set so as to mimic Eq. (2). The new vertical positions at-
tained by the springs constitute the estimated depth values
2 it+1.

In this paper a model is described for the computation of

(2)

depth from changing relative position cues in multidot dis-
plays. The model is described as a relaxation-labeling pro-
cess (RLP10"'), which is a local cooperative-competitive
network model. The structure of the model treats the sepa-
rate dots as objects and the possible depth values for each
dot as a set of labels that might be applied to that object.
The model involves a process that uses constraints derived
from the image data and labelings from previous frames to
converge iteratively on a choice of label (i.e., estimated
depth value) for each object (i.e., dot);

The paper proceeds as follows. First we describe the

Fig. 2. A physical analog of the Ullman 8 incremental-rigidity mod-
el. The rods project out of the image plane at the positions of the
dots in a KDE stimulus. The springs are set to be at resting length
for the current depth estimates of each point. Given a new frame,
the rods are moved to the new image points, and the springs ride up
and down the rods in order to achieve a minimal energy configura-
tion. The new endpoints of the springs constitute the new depth
estimates.
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model in detail. Next, several simulations of the model are
discussed. The model is then contrasted with the Ullman
model just described.8 This leads to a discussion of exten-
sions of the model, in particular, to the problem of combin-
ing different types of cues to depth.

2. A PARALLEL KINETIC-DEPTH-EFFECT
MODEL

We now describe a model of the KDE for multidot displays,
cast as a RLP. First we describe relaxation labeling in
general. Then, the RLP model for kinetic depth is outlined.
Some immediate assumptions and consequences of this
model are discussed.

A. Relaxation-Labeling Processes
RLP's are a form of iterative local computation used to solve
a labeling problem. In such a problem, a finite set of objects
is given, and for each object one of a finite set of labels is to
be chosen. The process maintains a state vector that codi-
fies the estimated likelihoods of the possible labels at each
object. A set of constraints on the state vector results in a
support vector, which evaluates the current evidence for
each label at each object. The state and support vectors are
then combined with the current state by using an update
rule, resulting in a new state. 12 This process is iterated as
many times as desired and, it is hoped, converging to a high
state value for a single label at each object, effectively choos-
ing a mutually consistent labeling of the set of objects.

More formally, in RLP, time takes on discrete values, t =
0, 1, . .. , corresponding to the iterations of the relaxation
process. There are n objects, 1, ... , i, ... , n, and the
possible labels range over the finite set Z. A particular label
for object i is designated zi. At time t, the state of the
process is summarized in the state vector ft. The con-
straints on labels result in a support vector st, representing
the current degree of support for each label at each object.
Finally, an update rule results in a new state f t+1 = F(f t, St).

This process is iterated, resulting in a sequence of states f 0,
fl, f2' 

At time t, the state of the process f t is a vector of probabili-
ty distributions (f0t, f1t, . .. , fit, . .. , fnt), one for each object,
satisfying

fit: Z - IR,

fit(zi) > 0 for all zi e Z,

E fi t (zi) = 1. (3)
Ziez

At any given time t, the state of a RLP represents the current
estimates of the relative likelihoods of the possible labels at
each object.

The support calculation also results in a vector St = (sot,
sit, ... Isit, . .. , SW) satisfying sit: Z - IR. In most RLP
models, the support for a given label zi at object i is a linear
sum of the support of all labels at all objects for this particu-
lar label:

n

sit(zi) = cijt(zi, z)fjt(z) (4)
j.1 ZieZ

cit(zi, zj) is the compatibility coefficient. The value of
ci/t(zi, Z1) indicates the extent to which the label zj at object j
is compatible with the label zi at object i. This value is
weighted by fjt(zj), so a label at an object that has a low state
value will contribute little to the support calculation. A
large value of sit(zi) indicates that label zi is compatible with
the other object labelings.

The state of the process f t and the support St are combined
by using an update rule, F, which mixes the current confi-
dences f t with the new evidence st. There is a wide class of
models for combining sources of evidence in circumstances
such as this.12 For now, we describe the update rule for
RLP's originally discussed by Rosenfeld et al.11 :

F: (f t, St) . ft+l,

fit+l(zi) =
fit(zi)[1 + sit(zi)]

(5)

fit(zi')[l + sit(zi')]
zl'e Z

This formula, although admittedly ad hoc, still has the basic
features desired of an update rule. In particular, the larger
the support value is (relative to the support values for the
other labels at an object), the larger is the increase in confi-
dence. The denominator is a normalization that ensures
that the resulting values of fit still form a probability-distri-
bution function. The form of the function requires con-
straints to be formed so that sit(zi) > -1; otherwise fit+1(zi)
would become negative, contradicting our assumption.

B. A Relaxation-Labeling-Process Model for the Kinetic
Depth Effect
The application of the RLP to the kinetic depth problem for
multipoint displays is relatively straightforward. The set of
objects are the points in the display. The label set is a fixed
set of potential depth values for each point. The labeling
problem is to choose the appropriate label, or depth value,
for each object, or image point. The support function evalu-
ates the support of the image data and current depth esti-
mates for each possible depth value at each object. The
constraints used to generate the support vector are based on
whatever image cues that one wishes to include in the model,
such as consistency with the previous interpoint distance, as
in Ref. 8. The only departures from standard RLP, as
described above, are the addition of gain controls in the
support calculation and the allowance for constraints that
change with the appearance of each new stimulus frame.

The KDE stimulus is assumed to be a multidot display
consisting of a sequence of discrete frames, which appear at
times to, t1, . .. , t,. For a given time step t, we will occasion-
ally need to refer to the time, say, tk, at which the current
stimulus frame appeared, Tt = maXk=0,1,2,. .tkltk 5 t). Each
input frame consists of n points, called objects in relaxation-
labeling terminology. For any given object i, 1 < i S n, the
input data at time t are the image-plane coordinates of that
point, xit and yit. The output of the process consists in the
estimated depth values 2it, which are chosen from a finite set
of potential depth values, Z, the label set.

Given these definitions, the RLP model for the KDE is
given by the following algorithm:

(1) Initialize. Set fi°(zi) = 1/|Zi, where IZ3 is the number
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of elements in the set Z (the number of distinct depth la-
bels), and set 2iO = 0 for all objects i, 1 • i • n, and labels zi E
Z.

(2) Wait for Second Frame. Set fit(zi) = ff0(zi) and =it

2iO for all objects i, 1 S i < n, labels zi e Z, and times 1 • t •
tl.

(3) Iterate. For t = t1, t1 + 1, t1 + 2, . .. , perform steps
(4)-(6) below.

(4) Compute st. For all objects i and labels zi, set

sit(zi) = agit(zi) hi t A [cit(zi, z1)fjt(zj)] (6)

where

ci/t(zi, z,) = G[Adijt(zi, z1), oea), (7)

Ad it(Z,, Zj) = [(Xt - Xjt)2 + (yit - yjt)2 + (Z, -ZP/2

d-iiT (8)

ai t = [(Xit - xjt)2 + (yet - yjt)2 + (2,t _ 2jt)2]1/2, (9)

G(x, ) = exp(-x 2/2o 2 ) (10)

hijt = G(lijt, 9), (11)

1i t = [(Xit-xjt)2 + (y/t - yjt)2]1/2, (12)

git(zi) = G[Azjt(zi), oAz], (13)

Azit(zi) = Zi -i ' (14)

and a, ao, ul, and o-Aa are constants.
(5) Compute ft+l. For all objects i and labels zi, set

fit+l(Z) =
fit(zi)[I + sjt(zj)]

ft(Zi')[1 + Sit(Zi)]
Zi'E Z

(6) Compute Zi'+'. For all objects i, set

2it+1 = Zi e Z such that fit+l(2it+l) = max fit+l(zi). (16)
Zis Z

Algorithm steps (1) and (2) are basically initialization.
Step (3) controls the iterations. Steps (4) and (5) are the
basic RLP steps of support calculation and update rule.
Finally, step (6) estimates the depth values from the new
state vector computed in step (5).

The process attempts to compute an estimated depth val-
ue for each object. It begins with no knowledge of the
various depth values, as represented by a uniform distribu-
tion over the zi values at each object, as computed in step (1).
Given no knowledge of the possible depth, the process de-
faults to considering the object as flat, with all 2iO equal to
zero.

During the entirety of input stimulus frame 0, there is no
previous input stimulus or estimated shape with which to
compare the current input, and so fit remains flat, and the
process is in a state of ignorance about depth values. All 2it
are 0 throughout this period (by default). This is the pur-
pose of step (2). When a new stimulus frame appears, the
relaxation process can begin.

For each time step during which a stimulus frame remains
displayed, an iteration of the relaxation process takes place
[step (3)]. The state of the process ft is already available as
the result of time step t - 1 [from either step (2) or step (5)].

The support values st are computed in step (4) using Eq.
(6). This step is the heart of the process. As in other RLP
models, support for a given label at a given object is comput-
ed as a sum of constraints from other labels at other objects
by weighting a compatibility coefficient cit(zi, zj) by the
state value fjt(zj). In a generalization of RLP, we add gain
controls to the calculation: hijt and git(Zi). Finally, the
supports are scaled by the term a, which acts as a rate
parameter for the relaxation process.

The compatibility coefficients are computed by using
Adijt(zi, z1 ), which provides a measure of the change in inter-
point distance between objects i and j that this pair of z
values would entail, as compared with the estimated inter-
point-distance value from the end of the final relaxation
iteration of the previous stimulus frame. This previous
estimate is actually computed just after that time step [in
step (6)]; hence the comparison with dijTt, the estimated
interpoint distance available at the beginning of the current
stimulus frame. G(x, a) is the value of the 0-mean or-stan-
dard-deviation Gaussian density function evaluated at the
point x. Thus cijt(zi, zj) has a value that is greatest if Aic
(zi, zj) is zero. Recalling that the compatibility ci/(zi, zj)
expresses the support that the depth value zj at object j has
for the depth value zi at object i, we see that support is
highest if the values of zi and zj determine a 3D Euclidean
interpoint distance between objects i and j that is equal to
their estimated interpoint distance at the end of the preced-
ing stimulus frame. As in Ref. 8, the process rewards small
incremental nonrigidity as measured by interpoint dis-
tances. oma is a parameter that controls the tolerance for
small amounts of nonrigidity.

In a generalization of the usual neighborhood structure of
relaxation-labeling problems, we include a gain control hijt,
which allows us to couple more tightly certain object pairs.
1i/t is the interpoint distance in the image plane between
objects i and j at time t. Examining Eq. (11), we see that
constraints are most effective between points that are close
in the image. The degree of this unequal gain is controlled
by the parameter o-a.

support s(z,) for label z,

Label zJ

Object 3

Fig. 3. Constraint and support in the relaxation-labeling model of
the KDE. This is a top view of two points in a KDE stimulus. Next
to each point is a line representing the range of possible depth values
that may be assigned to the point. The state value is a probaility
distribution across those depth values, representing relative confi-
dence in each depth. The peak in each distribution is the current
estimated depth for that point ,ti. Each depth at each point can
constrain each depth at each other point. The value of the con-
straint is basically the confidence value weighted by the connecting
coefficient. These constraints are summed to form the support for
any particular depth at a given point.

Current Estimated
Depth £f of Object i
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The constraints are also gated by the term git(zi). This
term permits the inclusion of bias for particular zi values,
and in this case it allows for a preference for smaller changes
in zi values from frame to frame. Azit(zi) is the amount of
change in depth value that label zi would imply for object i
relative to its final estimated value from the previous frame.
Support is thus amplified if the zi value does not differ too
strongly from its estimated value in the previous frame, as
controlled by the parameter cr7.

In step (5), the update rule F is applied, resulting in
F(ft, St) = ft+l, the state at the beginning of the next time
step. The estimated depth values for that time step, 2it+',
are computed from the state vector in step (6). The depth
value is chosen for each object that has the largest confi-
dence value. This cycle of support calculation, update, and
depth estimation continues for each time step during which
the second frame is available. The state values, depth esti-
mation, and support calculation are illustrated in Fig. 3.

C. Comments on the Model
The depth is estimated from the state vector in the algo-
rithm by choosing the label with the highest confidence
value. In the rare case of ties, preference is given to z values
nearer the horopter (defined to be a depth of zero). This is
the rule that implies the depth values of zero corresponding
to flat confidence distributions used in steps (1) and (2).
The maximum rule for the computation of 2it is not the only
way in which one might estimate depth from the distribu-
tion. For example, the values of the distribution at several
points near a peak could be used to interpolate an estimate
of the peak. In order to interpret the depth estimates, they
must be compared with the depth values used to generate
the stimulus (before projection) zit. Given the underdeter-
mination of the structure-from-motion problem, especially
under parallel perspective, the values of zit reflect only how
the input for a given simulation was derived, and comparison
of zit and 2it must necessarily take that underdetermination
into account.

Notice that we are assuming, as does Ullman,8 that the
correspondence problem for these multidot frame sequences
has already been solved, since the model is given the se-
quence of image-plane coordinates of an identified object
rather than having to determine which object in a previous
frame corresponds to any particular object in the current
frame. One might assume a previous correspondence pro-
cess such as that of Ullman,'3 but this still remains a large
assumption, and the robustness of the model under errors of
the given correspondences is an important and still untested
issue.

The relaxation process can compute the depth values for
frame i from the time of its appearance at time tk until the
appearance of the next frame at time tk+l. If one assumes
that relaxation iterations take a fixed amount of time, this
may have consequences. If the relaxation process takes
several iterations to converge to a correct solution, the model
may then predict the outcome of speeding up the motion of a
KDE stimulus as simulated by permitting fewer relaxation
iterations per input stimulus frame.

The compatibility coefficients ci/t(zi, zi) allow inclusion in
the model of specific cues derived from the image. The
version of the model described by the above algorithm uses a
support calculation similar to the incremental-rigidity error

metric used by Ullman.8 On the other hand, there is no
reason not to use the compatibilities to utilize other cues to
depth, simply by adding them in as additional constraints.
In Section 5, the addition of other cues to the compatibilities
is discussed.

The algorithm used for most of the simulations in this
paper is actually slightly different from that described
above. As described so far, the state vectors are always
carried forward from one time step to the next. This process
takes place regardless of whether a new time step involves a
new display frame of the stimulus or not. In principle, this
would allow the depth values from the previous frame to
influence those of the next frame by the carried-over state-
vector values, in addition to influencing them by the con-
straint calculation. For the moment, we will in fact reset the
state at the beginning of all input stimulus frames to a flat
distribution. In effect, step (4) of the algorithm is replaced
by the following:

(4a) Reset ft. If t = Tt then setf 1
0(zi) = 1/1iZ for all objects

i, 1 < i S n, and labels zi E Z.
(4b) Compute st. For all objects i and labels zi, set

sit(zd) = agit(zi) 7 {hijt Z [cijt(Zi, Z)fjt(Zi)]}.
j=l zj6Z

(6)

Thus, when stimulus frame j appears at time step tj, we have
the state as computed by the last iteration fti. This is used
to compute the 2iti values as usual. Then the state values are
reset to flat distributions before the support values sti are
computed. We discuss this resetting of the state values
below.

There are five parameters that control the process. The
label set for any given object is a fixed set of possible depth
values, Z. At any time t, the estimate of the depth of object
i, 2it e Z. In addition to the set Z, there are four parameters
used in the support calculation: a, arz, al, and ora.

3. SIMULATIONS OF THE MODEL

The model described above was used to simulate the compu-
tation of depth from moving dot stimuli (KDE) for a variety
of configurations. In this section we present the results of
several such simulations in which the number of points, the
number of relaxation iterations per frame, and the form of
the update rule are varied.

A. Initial Simulations
The first simulation of the model that we discuss involves a
simple three-point stimulus. These three points were rotat-
ed about a vertical axis through the origin. The three points
were rotated through two complete revolutions, for 48
frames, at an increment of 15 deg per frame.

While working on this initial simulation, a difficulty with
the model was discovered that, as we see in Subsection 5B,
gets to the heart of the kind of information that the KDE
provides. The model as outlined above operates purely on
the assumption of parallel perspective. Given this fact, a
particular series of stimulus frames representing rigid mo-
tion has an infinite number of possible rigid interpretations,
because a reversal of all depth values or the addition of a
constant amount of depth to all depth values would not
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Table 1. Parameter Values Used in the Simulations

Parameter Meaning Normal Value Narrow Focus

a Relaxation step size 30 11
aNz Strength of constraint for small 4 4

change in depth
al Strength of differential gain for 3 0.7

closer points in the image
plane (locality)

opa Tightness of tuning of constraint 0.3 0.3
for small change in 3D inter-
point distances

Z Set of possible depth values 1 -1.0, . . .1.0, 1.11 {-1.1,-1.0. 1.0,1.1}
gPLC Strength of the PLC constraint 0.1 NA

change the image under parallel perspective. Thus, in a
particular frame, depth 0.1 at object 1 may support depth 0.6
at object 2, but depth 0.2 supports depth 0.7, 0.3 supports
0.8, and so on, all to the same extent. The relaxation process
has no input or bias rooting it to a particular interpretation
distance.

Precisely the same problem exists in Ullman's model. 8 In
replicating the results of Ullman's model, solutions tend to
oscillate greatly in absolute .distance, showing more about
the order in which parameters are adjusted in the particular
minimization algorithm chosen than about the stimulus per
se. In the relaxation model, several interpretations can be
considered simultaneously, in effect, by keeping a probabili-
ty distribution over the depth values at each point. This
absolute depth ambiguity then prevents a single interpreta-
tion from winning out in the competition, and the model
operates extremely poorly.

In order to circumvent this problem, we have included a
bias to keep the interpretation rooted to the image plane. In
particular, to any input stimulus, we insert an extra stimulus
point at the origin, which never moves. In terms of the
algorithm, there is an n-plus-lst point that is considered to
be at a depth of 0 with total confidence [i.e., f', 1(0) = 1].
This point takes part in the support calculation [step (4) of
the algorithm], but its portion of the state vector f is never
changed in step (5). This is clearly an ad hoc solution to this
problem. An alternative would have been to bias the gain
control git(zi) for low depth values.

In Subsection 5.B we discuss this problem in the context
of other cues to depth and the kinds of information that they
provide. For example, one might consider other cues that
do yield an absolute distance estimate and use this informa-
tion as an input to the process that roots the solution to a
particular depth region. The absolute size of the display
does not change throughout the rotation, and so there is no
size cue for recession or approach. This information may
also serve as an input to the process causing the solution to
remain in a particular depth region.

With the addition of the phantom point at the origin, the
model performs quite well. The parameters that were used
are given in Table 1. The actual depth values computed by
the model for several frames are illustrated in Fig. 4A. The
model starts from a flat interpretation and requires several
frames of input to grow out to the correct depth values. The
error in the prediction as a function of frame number is given
in Fig. 4B. The ordinate is a normalized predictive inter-
point-distance error given by

error'(t) = E (di t -dit)2,
i<j

error'(t)error(t) -=error'(0) (17)

This error metric is the same as that used by Ullman8 and is
normalized to unity for the first frame, i.e., for a flat inter-

A
Frame 0

zX
Lx

Frame 10

6 A
X = "Actual" Depth

Frame 5

Frame 15

I-x

o = Model Estimate

B
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0 :
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L. 

a) I,

C§- Li

N C

-0E .52

0z

1.5

1.0
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1st Full Rotation

0 10 20 30 40 50

Stimulus Frame
Fig. 4. A, Top view of a three-point stimulus, and the depths
calculated by the model. The estimate is initially flat (no depth)
and slowly grows out to be an accurate estimate of the actual object.
B, Convergence behavior for the three-point stimulus. The error is
the mean square error of the estimated interpoint distances, nor-
malized to 1 for the first frame.
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tial error) is much more effective with the stimulus rotated
60 deg per frame. In Fig. 6B the data are replotted as a
function of rotation angle rather than of frame number, and
the convergence seems to be a function of the rotation angle,
independent of the amount of rotation per frame in this
range. Evidently convergence behavior is driven by infor-
mation, in some generalized sense, rather than merely by
additional frames.

In the Ullman model convergence improves with amount
of rotation per frame for amounts less than those used here
and then stops improving in the range from 30 to 60 deg.8"5

These results are fairly consistent with those presented here.
Given the quantization of depth planes used in this model, it
is clear that with very small amounts of rotation per frame,
the current model would also converge more slowly and in
the limit would not find any depth at all.

All the stimuli discussed so far were generated by using
parallel projection and hence were rigid according to the
model's internal representation of the world. In Fig. 7, the
convergence behavior is shown for a stimulus generated by
using a fairly large magnitude of polar projection. Since this
stimulus is nonrigid, as far as the model is concerned, the
comparison depth values are in a sense not something that
one could expect the model to find. Nevertheless, the model
does converge reasonably well for a time, although near the

Frame 1 0 Frame 15

R o

I 2 X
t_ 6 

X = "Actual" Depth o = Model Estimate
Fig. 5. A, Effect of the number of points. B, An example of the
depths calculated by the model for a six-point stimulus (this is a top
view, as in Fig. 4A).

pretation of the first frame. It is based entirely on inter-
point distances and thus reaches a minimum value (of zero)
not only if the model produces estimated depths identical to
the intended depths but also for alternative valid interpreta-
tions, including those with a constant added to all depth
values and those including a mirror reflection about the
image plane (a depth reversal). The error value, after an
initial rise, falls to a relatively low value. The small period-
icity in error after the first rotation is probably an artifact of
the error metric.

B. Effect of Dot Numerosity, Number of Iterations, and
Focus of Constraints
In Fig. 5A the normalized interpoint-distance error is plot-
ted as a function of the number of dots in the stimulus.
Each curve represents a single simulation for a single multi-
dot stimulus rotating about a vertical axis. In general, the
model appears relatively indifferent to the number of points,
as long as there are at least three points in the stimulus.
Note that a two-point stimulus often yields a poor depth
impression in human observers. 14 In Fig. 5B, an example of
the model solution for a six-point stimulus is shown.

The effect of degree of rotation per frame is illustrated in
Fig. 6. In Fig. 6A the error is plotted as a function of the
frame number. It appears that the algorithm (after an ini-
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Fig. 8. Effect of narrow focus for a 20-point stimulus. The focus of
the interpoint constraints is narrowed by decreasing a, (see Table 1).

end of the first rotation the model loses track of the correct
depth values (in fact, it recovers during the next rotation).

The simulations discussed so far use a value for ul that
effectively neutralizes the gain control for locality in the
image plane. As Ullman 8 mentions, it would be interesting
to note whether a network model such as this would succeed
when only local connectivity and constraints are used rather
than when each stimulus point is permitted to interact with
all others as we have been doing thus far. One can imagine
such a localized interaction as the first step toward a KDE
model that can handle multiple objects with separate motion
paths. In Fig. 8 the convergence behavior is illustrated with
a much smaller value of al, which effectively narrows the
focus of the constraints on a particular point to those arising
from points nearer in the image (see Table 1; a was also
changed to keep the support values comparable in magni-
tude). Constraints on more-distant points arise only by
propagation through intermediate points under these condi-
tions. The convergence behavior is certainly as fast when
this narrow focus for hi/* is used, compared with the original
wider-focus simulation, and in fact appears to be slightly
faster. Thus local constraints can be used effectively in a
KDE model.

C. Update Rule and Convergence Behavior
As a model of human kinetic depth performance, the current
model is lacking in several directions. One problem is relax-

ation convergence time. The number of relaxation itera-
tions per stimulus frame has been fixed at 75 for all the
simulations illustrated thus far. For a network model that is
intended to be carried out in a neural substrate, this may
well seem like an inordinately large number of iterations.' 6

In Fig. 9 we illustrate how the model operates as a function of
the number of relaxation iterations per stimulus frame. As
the number is decreased from 75 to 25, the model performs
noisily, and, with a further reduction to 10 iterations, the
model is completely incapable of convergence. (The 180-
deg periodic behavior is a function of the 180-deg periodicity
of the relative image-plane positions of the points and not of
the model's depth computation-i.e., it is a side effect of the
particular error metric chosen.)

The slow-convergence problem is, in fact, even worse. As
mentioned previously, the original intent was to carry the
depth distributions at each point fti from one frame to the
next. This seemed sensible for two reasons. First, this
would allow the state information to be much larger over
time, allowing previous knowledge of depths to influence
further computations (more on this below). Second, it is not
clear why there is anything special about the arrival of a new
frame that should trigger a new process (the resetting of the
fit to be flat distributions). The KDE clearly does not suffer
given true motion input rather than sampled input; quite the
contrary, in fact.

It would therefore be desirable to remove the flattening of
the distributions that occurs at the appearance of a new
stimulus frame. Unfortunately, as it currently stands, this
cannot be done without destroying the performance of the
model. Several of the above simulations were repeated
without the flattening of the distributions [as was the simu-
lation with proximity luminance covariance (PLC) dis-
cussed below]. In all cases, the model totally failed to con-
verge. The problem is one of stability. After 75 iterations
on frame 2, the distributions have reached a certain strength
at the chosen depth values. For the next frame, the compu-
tation needs both to flatten that peak and to create a new
peak at the new appropriate depth value if it is to succeed in
converging to the correct depth values and thus remain con-
verged. In effect, it requires twice as much change in the fit
values as it did on the previous iteration. At the present
time, we have no solution for this problem.

The simulations discussed thus far all utilize the update
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Fig. 9. Effect of number of relaxation iterations per stimulus frame
for a three-point stimulus. The parameter is the number of itera-
tions per frame.
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4. INTERMEDIATE DISCUSSION

One important question at this point is: How does this
-Re/lecte/d\ model compare with the Ullman incremental rigidity mod-

el? Looking into this question raises several issues about
the model's performance.

First, in one sense the use of a model utilizing relaxation
t Full \/labeling need not result in behavior different from that of

correct Rotation the global energy minimization proposed by Ullman.8
Hummel and Zucker' 8 proved that relaxation labeling with
symmetric constraints [as we have done in Eqs. (7) and (8)]
and their update rule results in an algorithm equivalent to a

Stimulus Frame global energy minimization. Thus, with properly chosen
:eptual reversal, which occurred when the Hummel- constraints, there exists a relaxation-labeling model that is
ule was used with a three-point stimulus. The error precisely equivalent to the incremental-rigidity model.
mean-squared error in the estimated z values, as Such a model would constitute a different choice of minimiz-
the nominally correct values and with the reflected ing algorithm, and that is all. Hummel and Zucker' 8 also
values (both normalized to 1 for the first frame). prove convergence of the relaxation algorithm, which means
4 the structure was temporarily lost, and the recov- that, on any given frame, a single depth value will eventually
;as reversed.

be chosen for each point. We have not proved that the
model converges to the correct depth values over a sequence
of frames. It certainly has done so in the simulations, and,

by Eq. (15). Thisgi onl nef of m pdate inasmuch as the model is similar to that of Ullman, the
lforrelargeafthionmabelngviewand inthe ed s- convergence and stability results of Hildreth and
quite large if this model is viewed in the gener- 1

nodels for the aggregation of evidence.12 We Grzywacz' 5 should apply.On the other hand, the actual support functions that we
rthe modeulbyuiong. ar varlet s of o ttherupdate have used [Eq. (6)] differ from the energy calculation of)ort calculations. For example, as an attempt UlmnAta h

onvergence we tried raising the support values [Eq. (2)]. minor problem with Eq. (2) is
rersg error measure blows up if any di/ approaches zero. If two
ver*: stimulus points happen to cross paths in a particular frame,

fi't(zi)1 + [sit(zi)]nJ Eq. (2) may cause this pair of points to have an overriding
(Z = * (18) influence on the percept if their estimated depths are simi-

fit(zi)l1 + sit(z/i)]n1 lar. Rather than dividing by dit (enabling points near each
other in 3D distance to have a greater weight in the energy
calculation), we use a gain control hijt, which puts greater

)n used a support calculation wherein only the weight on pairs of points that are close in the image plane
-ith the largest confidence value is allowed to [Eq. (11)].
r points and depth values.i7 Finally, we tried The quantization of the possible depth values makes di-
is on the Hummel-Zucker relaxation update rect comparisons with Ullman's model difficult on a quanti-

tative level. Clearly, this is an arbitrary feature of the mod-
these changes of support calculation and up- el, and a more realistic implementation would include units
no major effect on the convergence speed and tuned to a continuum of overlapping depth ranges. Quan-
he model. As n grew larger in Eq. (18), the tizing depth implies quantization error in the model's out-
ibit noisier behavior and a tendency to lose the put. This is visible both in the noise in the error functions
retation once having gained it. The same after convergence (e.g., Fig. 4B) and, more importantly, in
irred occasionally with the Hummel-Zucker the higher average error after convergence in this model, as
he step-size parameter of that operator was compared with that of Ullman.
n example of this is shown in Fig. 10. The Ullman refers to the occasional loss of the 3D structure by
I plotted here is normalized depth error rather his model and states that occasionally the recovered struc-
it-distance error as follows: ture is reversed. Thus his model suffers occasional depth

reversals, as is also the case with human percepts. There are
error'(t) = E (z/ _ z.t)2 two remarks to be made here. First, depth reversals in

human perception are more complicated than an occasional
error'(t) loss of structure and recomputation. Depth reversals occur

error(t) = e (19) quite frequently'9 and appear to be related to, among other
error'(0) things, eye movements and tracking of particular image fea-

using this new error measure is that it allows tures/points. 2 0 These aspects of reversals are clearly out-
a depth reversal occurred in this particular side the scope of the two models.

Vith the previous error metric, we would have The fact that reversals do occur in the models is no sur-
ge interpoint-distance error climb at frame 43 prise. Both models consist of an energy measure and a
kly return again to a low value. Plotted as z minimization algorithm. In both energy measures, the cor-
see that the interpretation was lost and then rect and reversed percepts are minimal in energy in the
I to the reflected interpretation. steady state-with both measures, the veridical estimate of
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depth over a pair of frames should result in zero energy,
which is clearly minimal. Thus, if zero energy is ever
achieved, then a pair of shape estimates with no changes in
interpoint distances has been found, and this is almost cer-
tainly the veridical one (up to changes in absolute depth and
reversal). Any loss of this perfect estimate in later frames,
including subsequent reversals following loss of structure, is
clearly a function of errors made by the minimization algo-
rithm and of the energy surface that the energy measure
defines. A more robust function minimizer 2 ' need never
suffer losses of structure.

One final note about contrasts between the relaxation-
labeling model and that of Ullman: The state space used in
relaxation labeling is clearly far larger than that given by the
Ullman algorithm. At any given time, the Ullman represen-
tation of the stimulus consists of a single depth value for
each point. In the RLP model, the state consists of a proba-
bility distribution across the possible depths at each point.
Although we have been discarding these data across frames
(by flattening the distributions), assume for the moment
that a future RLP model actually maintains this informa-
tion. Why would one want a representation of the stimulus
that contains this extra information?

When placed in the general context of models for the
aggregation of knowledge,'12 it is clear that the RLP para-
digm and Ullman's model are only two examples of a larger
class of models for combining evidence, in which the amount
of state information can vary across a wide range. The RLP
state provides, for example, a degree of confidence in a par-
ticular depth value once it is chosen. Thus the RLP model
can differentiate between a flat object in the zero depth
plane (a set of distributions all peaked at the same depth
value of zero) and total ignorance of the object's structure (a
set of flat depth distributions). The Ullman model repre-
sents these two situations in an identical manner and cannot
differentiate between the two. It would be interesting to see
if biasing the degree of confidence in a current shape esti-
mate can cause the time course to converge on a new struc-
ture in the human percept (as has been studied recently by
Adelson and Hildreth2 2 ).

In this more general context, the relationship between the
two models becomes clear. In a sense, Ullman's model
tracks the peak of the distributions over depth, and the RLP
model tracks the entire distribution over a discrete set of
depths. Other possibilities might include, for example, pa-
rameterizing the distributions (say, as Gaussians) and track-
ing the mean and the variance (related to the work of Hum-
mel and Landy23 ). This would also provide a means of
establishing confidence ratings of the depth estimates-
higher confidence would be modeled as lower variance.

In any case, these are interesting questions. They speak
to the issue of representation of objects in an internal esti-
mation of shape, including the representation of uncertain
evidence about this estimate and how that evidence is com-
bined. We now turn to the combination of evidence about
the objects when the sources of evidence include more than
one cue.

5. COMBINING CUES

It has become apparent that the problem of combining dif-
ferent cues (e.g., cues to depth) is an important one. Ever
since Gibson24 and others pointed out that there is a multi-

plicity of cues to depth in the visual environment, there has
been much work demonstrating human sensitivity to a wide
variety of cues to depth. But saying that we are sensitive to
a particular cue does not answer the question of how the cue
is derived from the image and how it is used.

More recently there have been a series of models in com-
puter vision that derive depth from various single cues (ste-
reo, motion, texture, shading, blur, 2D form cues, etc.25 ).
These models have had varying success in reconstructing
depth from image data, demonstrating that the data may be
there but that they are noisy and difficult to obtain. The
results of different models for different cues will each obtain
evidence that may, in fact, conflict. The problem of com-
bining the outputs of these methods can be seen as critical.
The hope is that converging evidence from a variety of cues
will result in less noisy estimates of depth than those derived
from each cue separately. 2 6

A. Experimental Studies of Cue Combination
It is of interest in this problem of cue combination to probe
the mechanism for cue combination in human perception.
This can be accomplished by creating stimuli in which two
cues are varied independently. This approach has been
taken, for example, in the study of shape from texture gradi-
ents (with cues such as density, texel shape, arid orienta-
tion).2 7 In KDE, such an approach has also been used.2 8

The results of Dosher et al.2 9 are especially relevant to the
current work. These authors investigated the relative con-
tribution of two cues as combined with a kinetic depth stim-
ulus. The basic stimulus was a Necker cube presented with
polar perspective and rotated about a central vertical axis.
Such a stimulus (see Fig. 11A), like all KDE stimuli, can
undergo perceptual reversals. Given the polar perspective,
the two percepts are either of a rigid cube rotating (say, with
the front face moving rightward) or of a highly nonrigid
truncated pyramid (rotating with the front face moving left-
ward). The task was always to designate (e.g., at the stimu-
lus onset) which percept was first seen ("front-left" or
"front-right").

The image was manipulated in two ways. First, variable
amounts of stereo disparity were added favoring one percept
or the other. Second, variable amounts of proximity lumi-
nance covariance (PLC) were added. This rather effective
cue consists of brightening those edges that are intended to
be closer in depth (Fig. 11A). Again, this cue may be used to
favor either of the two percepts and to varying degrees,
depending on the extent of the luminance difference from
front to back. In the experiment, varying degrees of stereo
and PLC were added to the basic stimulus, and the two cues
were either in agreement or in conflict.

This interest in such an experiment is that it allows one to
probe how cues are combined. In the paper by Dosher et
al.,2 9 the data for each individual subject were fitted by using
a simple additive-cues model, wherein each level of a given
cue adds a certain amount of bias to which percept is chosen,
and these levels for each of the two cues are simply added,
along with a subject bias term, resulting in a criterion for the
rigid percept. The resulting number was compared with an
error value (a sample of a standard normal random variable),
and if the error value exceeded the criterion, the rigid per-
cept was chosen; otherwise the nonrigid one was chosen.
This simple additive-cues model was effective in fitting the
data of several subjects, with individual differences appear-

Michael S. Landy



874 J. Opt. Soc. Am. A/Vol. 4, No. 5/May 1987

C

._0:
a- -L.L.O
-I. L.
C: Li

-0 a)

0 0

E v'

0z

1.5

1.0

0.5

0.0

PLC

1st Full
Rotation

10 20

Stimulus Frame

D

Cu(zi9zJ)

zJ

a)

N~0
L.

a-

N

0
E

zi 0z

0
L-

U-1

0

N

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0 10 20

Stimulus Frame
Fig. 11. Effect of adding cues. A, A Necker cube in polar perspective with added PLC,2 8 here represented as thicker lines. The face with the
thicker line is more likely to be perceived as closer to the observer. B, A PLC constraint for the KDE model. If the pair of points and depths is
consistent with the brightness cue, then a fixed amount of support, gPLC, is added. C, The effect of positive and negative PLC on interpoint-
distance error for a six-point stimulus. Convergence is faster than PLC, and PLC+ and PLC- yield identical convergence. D, Plotted as z er-
ror, it is clear that PLC+ created a bias for the nominally correct interpretation and PLC- that for the reversed interpretation.

ing in the parameters that estimate the effectiveness of each
level of each cue.

The success of this simple model suggests that the combi-
nation of cues may be effectively computed in a process
model such as the one described here. Evidence in the RLP
in the form of constraints is combined in an additive fashion
(the support calculation), so it seems reasonable to suppose
that this model might be extended to add some of the other
cues that are often present in KDE displays, such as PLC,
stereo disparity, relative motion, and occlusion.

B. Classes of Cues to Depth
Before discussing in detail how one might go about adding
other cues to the model (beyond incremental-rigidity or in-
terpoint-distance changes), it is of interest to examine the
type of information afforded by various cues. Depth cues
give information about the distance from the observer of
objects corresponding to image features. There are at least
three types of information available depending on the cue:
absolute, relative, and ordinal (akin to ratio, interval, and
ordinal scales in measurement theory).

Absolute cues give information about the absolute dis-
tance from the observer to an object. Stereo disparity can

be considered an absolute cue, assuming that the viewer
knows the eye positions and orientations, as can motion
parallax under self-motion (both of these may not be the
case30 ). Relative cues give information about the relative
distances of objects in depth but not about their absolute
distance from the viewer. The failure to provide absolute
distance results from an underdetermination of the problem
wherein the same image would result either from adding a
constant to all depths (in parallel perspective) or from scal-
ing the stimulus and the depths (in polar perspective). Ex-
amples of relative cues include the KDE (both interpoint
distance and relative motion cues) and foreshortening. Fi-
nally, there is the class of ordinal cues. These cues specify
only the order in depth of certain pairs of objects, without
constraining the relative distances. Examples of ordinal
cues include PLC and occlusion. In addition, there is some
evidence for ambiguous ordinal cues, such as motion shear or
texture accretion/detection, where occlusion is indicated but
depth order is ambiguous.3"

Examining the effects of combining cues across classes is
complicated. For example, imagine a multidot KDE stimu-
lus with added PLC. If the PLC is consistent with the
relative motions, then one would expect the PLC simply to

A

B
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bias the observer toward one of the two reversed interpreta-
tions of the object, as was the case in the paper by Dosher et
al.

2 9 On the other hand, consider a stimulus in which the
PLC is not consistent with either interpretation, for exam-
ple, one in which the brightest dots are those at intermediate
depths and the closest and farthest dots are darker. Here
the two cues are in conflict, and it is by no means obvious
how this combination would be affected, given the two types
of information provided by the cues.

Consider how one might reconcile these different types of
cues in the current model. Since constraints are already
treated additively in the support calculations [Eq. (6)], one
can simply add other cues into the support. The question is
about how the constraints are to be computed for the various
classes of cue. The only cue in the model as described so far
is a relative cue. The way in which it works as a relative cue
is clear from the calculation of Adijt(zi, zj) [Eq. (8)], which
depends only on relative depth zi - zj.

With these considerations it becomes clear how other
classes of cues might be added to the support calculations.
To add an absolute cue, the constraint would support only
the absolute depth indicated by the cue. For ordinal cues,
the constraint would support all depth values consistent
with the indicated ordinal relationship.

Given a model that embodies combinations of different
classes of cues, it becomes possible to examine in simulations
the effects of cue combination. For example, what happens
if stereo information is available for only one dot of a multi-
dot KDE stimulus? Does the absolute position of the entire
structure follow that point around as its stereo position
changes? This might also be tested experimentally by put-
ting a (sparse) KDE stimulus in one eye and only one match-
ing point in the other eye, although it might be difficult to
force a particular correspondence for that point (perhaps by
vertical position).

C. Modeling Proximity Luminance Covariance
In order to begin testing these ideas, we added a constraint
corresponding to PLC to the model. PLC is an ordinal
constraint; given a point j that is brighter (and therefore
prefers to be closer) than a point i, depth zj at point j should
support all depths zi at point i that are more distant (i.e., all
zi such that zi <zj; see Fig. 1iB). The change to the model is
quite simple. The constraint calculation of Eq. (7) is re-
placed with

cijt(zi, z1) = G[Adijt(zi, z;), orAd] + PLCU,(zi, z), (20)

where PLCQ- (zi, zj) is defined as

PLCU,(zi, z3) =

model with no PLC. When plotted as interpoint-distance
error, the PLC+ and PLC- curves are identical, as is to be
expected given the complete symmetry of the situation. On
the other hand, when the curves are plotted as normalized
predicted depth error (as compared with the front-right
interpretation), as in Fig. liD, we see that PLC+ has indeed
biased the interpretation as it should have, and likewise for
PLC-.

It is clear that it is possible to use a process model of depth
interpretation such as the one outlined here to investigate
cue combination. The addition of PLC to the incremental-
rigidity cue had precisely the desired effects. In addition, it
also led to faster relaxation convergence. When the second
frame appears in this stimulus, without PLC only three of
the six points develop any nonzero depth at all, and it takes
most of the 75 relaxation iterations before the third of these
three points develops this depth. On the other hand, given
the unambiguous character of the ordinal PLC cue, conver-
gence is far faster. Starting with flat distributions, in one
single relaxation iteration all six points are in the correct
depth order, as indicated by the PLC, which is why the PLC
convergence in Fig. 11C starts out so much more quickly.

6. DISCUSSION

We have described a model for the KDE in the form of a
cooperative-competitive network described in the language
of relaxation labeling. The model successfully computes
depth values in a manner similar to that of the incremental-
rigidity model of Ullman,8 although the precise equations
are somewhat different. In addition, we have discussed how
such a process model may be extended to investigate cue
combination and have tried out these ideas on the simple
case of PLC.

The model is not currently in a state in which it might be
used to fit psychophysical data since it is completely deter-
ministic. To remedy this would require inclusion of a source
of noise.32

The model as it stands represents only one piece of the
picture as far as KDE is concerned. The mode concerns
only tracked dots or any tracked feature points, such as
endpoints of lines in vector drawings and trackable features
in natural images. The assumption of known feature corre-
spdndences is a major one, and the robustness of the model's
computations under errors in correspondence should be in-
vestigated and compared with human performance. Also,
KDE from tracked features is only one form of KDE; there is

gPLc if object i is brighter than objectj and zi > zj

gPLc if object jis brighter than objecti and zi < zj (21)

0 otherwise

and gPLC is a parametric defining the relative strengths of
the PLC cue and the rigidity cue. It can be considered a
function of the difference in luminance of the two points.

This newqnodel was simulated (with a value of 9PLc = 0.1),
using the same six-point stimulus as in Fig. 5. The PLC was
either used to bias toward the front-moving-to-the-right
(PLC+) or the front-moving-to-the-left (PLC-) percept.
As can be seen from Fig. 11C, the model with added PLC
works reasonably well, converging slightly faster than the

also KDE from tracked occluding contours that do not corre-
spond to single positions on an object.33

In the context of multidot stimuli, the model uses only the
cue of changing interpoint distance-incremental rigidity. It
ignores other cues such as relative motion of dots (which may
be a cue to relative depth, as in the optic flow models, or to
ambiguous ordinal depth, similar to motion shear), dot den-
sity, and the dynamic foreshortening of groups of dots (i.e.,
deformation, as used by the model of Koenderink and van
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Doorn34), any one of which may turn out to be more impor-
tant for the human percept. This is a matter for further
study. Finally, any scheme of incremental rigidity should
eventually prefer a rigid interpretation of a stimulus if one
can be found (although it may become caught in a local
minimum in the energy function that does not correspond to
this interpretation). On the other hand, in cases of objects
extending more in depth than in visible breadth, nonrigid
percepts of rigid objects are quite common.35

To conclude, we have defined a model for the KDE. The
model is by no means a final answer, and we have identified a
number of problems with it. On the other hand, it is a real
attempt at a process model of the KDE and shows some
promise for being capable of dealing with some of the com-
plexities of the phenomenon. Finally, we have discussed
some of the difficulties of modeling cue combination in the
context of this KDE model and have pointed the way toward
solutions.
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